Protection Against Reconstruction and Its Applications in Private Federated Learning

Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, Ryan Rogers

ML Privacy Team, Apple

Federated Learning [MMRHA17]

- Lots of personal data is distributed across many devices
- We hope to improve machine learning models with this sensitive data.
- Devices are powerful enough now that they can do a lot of the computation.
- Rather than transmit data to a central server, have each device do the computation and only submit the update.

Federated Learning Overview

💌 🖻 🎯

🕓 🥑 🖸 🎵

Server with Model M

 $\Delta = \frac{1}{5} \sum \Delta^{(i)}$ i $M \leftarrow M + \Delta$

Privacy of Model

- Several users download the model at each round.
- Attacks Models can memorize unique patterns [CLKES18].
- Solution Use central DP on the aggregated model [SCS13, BST14, ACGMMTZ16, MRTZ18]
- Previous works show good privacy-utility tradeoffs in this setting.

Federated Learning

Privacy of the Updates

- Consider gradient methods with example-label pair (x,y) and generalized linear loss $\ell(\theta; x, y)$.
- Update from a device:

$$\nabla \ell(\theta; x, y) = \text{scalar} \cdot x$$

User's data

Federated Learning

Threat Model in Private FL

- We consider two different adversaries in our system.
- Strong adversary can perform arbitrary inferences on the privatized model at each round of communication .
 - Protect with Central DP with small privacy parameters.
- **Curious onlooker** can see privatized updates and wants to reconstruct some function of the input.
 - Protect with reasonable privacy parameters in Local DP.

Locally Private Updates

- Local differential privacy is a strong requirement that would ensure the privacy of the individual updates.
- [Warner65, EGS03, KLNRS08] An algorithm is ε-Local DP if for all inputs x,x' and outcome sets S we have

$$\frac{\mathbb{P}[A(x) \in S]}{\mathbb{P}[A(x') \in S]} \le e^{\epsilon}$$

 [BNO13,DJW13,DJW18,DR18] - Strong lower bounds for estimating high dimensional vectors

Relaxing the Local Privacy Parameter

 $\frac{\mathbb{P}[A(x) \in S]}{\mathbb{P}[A(x') \in S]} \le e^{\epsilon}$

- Can we still provide privacy guarantees for larger ϵ ?
- Protecting against arbitrary inferences requires $\varepsilon = O(1)$.
- Consider specific adversaries curious onlookers who have limited information about the inputs and want to reconstruct the input.

Defining Reconstruction

For any z and estimator ϕ , we want: $\mathbb{P}[||X - \phi(z)||_2 < \alpha | Z = z] \ll 1$

Reconstruction $X \rightarrow W \rightarrow Z = A(W)$

- Adversary wants to reconstruct X or some f(X) given Z with some prior π over inputs.
- A normalized estimator φ causes an (α, f, p) reconstruction breach if there exists a z such that

$$\mathbb{P}\left[\left|\left|f(X) - \phi(z)\right|\right|_{2} < \alpha \mid A(W) = z\right] > p$$

 If no such estimator, then A protects against (α, f, p)reconstruction.

Reconstruction

- Adversary wants to act X or some f(X) given Z with some prior π over inputs.
- A normalized estimator φ causes an (α, f, p) reconstruction breach if there exists a z such that

$$\mathbb{P}\left[\left|\left|f(X) - \phi(z)\right|\right|_{2} < \alpha \mid A(W) = z\right] > p$$

• If no such estimator, then A protecte against (α, f, p) -reconstruction. Algorithms?

Reconstruction

- Adversary wants to act X or some f(X) given Z with some prior π over inputs.
- A normalized estimator φ causes an (α, f, p) reconstruction breach if there exists a z such that

$$\mathbb{P}\left[\left|\left|f(X) - \phi(z)\right|\right|_{2} < \alpha \mid A(W) = z\right] > p$$

• If no such estimator, then A protecte against (α, f, p) -reconstruction. Algorithms?

Target Functions $X = W \rightarrow Z = A(W)$

- Target reconstruction function - projections
- Consider projection matrix *P* with *k*<*d*:

$$f_k(x) = \frac{Px}{||Px||_2}$$

Reconstruction $X = W \rightarrow Z = A(W)$

• Adversary wants to $a \operatorname{ct} X$ or some f(X) given Z with some prior π over inputs. Target functions?

Priors?

A normalized estimator φ causes an (α, f, p) reconstruction breach if there exists a z such that

$$\mathbb{P}\left[\left|\left|f(X) - \phi(z)\right|\right|_{2} < \alpha \mid A(W) = z\right] > p$$

• If no such estimator, then A protecte against (α, f, p) -reconstruction. Algorithms?

Reconstruction $X = W \rightarrow Z = A(W)$

• Adversary wants to act X or some f(X) given Z with some prior π over inputs. Target functions?

Priors?

A normalized estimator φ causes an (α, f, p) reconstruction breach if there exists a z such that

$$\mathbb{P}\left[\left|\left|f(X) - \phi(z)\right|\right|_{2} < \alpha \mid A(W) = z\right] > p$$

• If no such estimator, then A protecte against (α, f, p) -reconstruction. Algorithms?

Reconstruction $X = W \rightarrow Z = A(W)$

• Adversary wants to act X or some f(X) given Z with some prior π over inputs. Target functions?

Priors?

A normalized estimator φ causes an (α, f, p) reconstruction breach if there exists a z such that

$$\mathbb{P}\left[\left|\left|f(X) - \phi(z)\right|\right|_{2} < \alpha \mid A(W) = z\right] > p$$

• If no such estimator, then A protects against (α, f, p) -reconstruction. Algorithms?

DP Protects Against Reconstruction

• Consider a diffuse prior π . If A is ε -DP then A protects against (α , f_k , p)-reconstruction where

$$p = \exp\left(\epsilon + c \cdot k \log(\alpha^2 \cdot (1 - \alpha^2/4))\right)$$

• We can obtain a small probability of reconstruction even for large ε .

Separated DP

• To privatize high dimensional vectors, we will decompose vector *W* into a unit vector *U* and its magnitude *R*.

$$W = \frac{W}{||W||_2} \cdot \frac{||W||_2}{U}$$

• We design DP algorithms to privatize U and R separately.

Existing Local DP Algorithms

- Let's use a local DP algorithm to privatize high dimensional unit vectors.
- Consider a unit vector $u \in \mathbb{S}^{d-1} = \{v \in \mathbb{R}^d : ||v||_2 = 1\}.$
- Add mean zero, independent noise: A(u) = u + N, then $\mathbb{E}\left[||A(u) - u||_2^2 \right] = \Theta\left(\frac{d^2}{\epsilon^2}\right)$
- [DJW13] Sampling scheme with better dependence on d $\mathbb{E}\left[\left|\left|A(u) - u\right|\right|_{2}^{2}\right] = \Theta\left(d\left(\frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}\right)^{2}\right)$

Existing Local DP Algorithms

- Let's use a local DP algorithm to privatize high dimensional unit vectors.
- Consider a unit vector $u \in \mathbb{S}^{d-1} = \{v \in \mathbb{R}^d : ||v||_2 = 1\}.$
- [DJW13] Sampling scheme with better dependence on d $\mathbb{E}\left[\left| \left| A(u) - u \right| \right|_{2}^{2} \right] = \Theta\left(d\left(\frac{e^{\epsilon} + 1}{e^{\epsilon} - 1} \right)^{2} \right)$

Privatize Unit Vectors

[DJW13]

This Work - PrivUnit($u;\gamma,\varepsilon$)

Privatize Unit Vectors

- Let $Z = PrivUnit(u;\gamma,0)$ with $\gamma \approx \sqrt{\frac{\epsilon}{d}}$ then PrivUnit is ϵ -DP.
- Further, $\mathbb{E}[Z] = u$, $\mathbb{E}\left[\left|\left|Z u\right|\right|_{2}^{2}\right] = O\left(\frac{d}{\epsilon \wedge \epsilon^{2}}\right)$
- This is optimal.

ScalarDP(*r*;ε,*r*_{max})

ScalarDP(r;ε,r_{max})

Discretize into $k = exp(\varepsilon/3)$ bins

Discretize into $k = \exp(\varepsilon/3)$ bins

ScalarDP(*r*;ε,*r*_{max})

Discretize into $k = \exp(\varepsilon/3)$ bins

ScalarDP(*r*;ε,*r*_{max})

Discretize into $k = exp(\varepsilon/3)$ bins

 $Z = PrivMagn(r;\varepsilon,r_{max}) \text{ is } \varepsilon\text{-DP}$ and $\mathbb{E}[(Z - r)^2] = O(r_{max}^2 \exp(-2\varepsilon/3))$

ScalarDP(*r*;ε,*r*_{max})

Discretize into $k = \exp(\varepsilon/3)$ bins

 $Z = PrivMagn(r;\varepsilon,r_{max}) \int C = G(r_{max}^2 \exp(-2\varepsilon/3))$ and $\mathbb{E}[(Z - r)^2] = O(r_{max}^2 \exp(-2\varepsilon/3))$

Optimality

- Consider stochastic gradient descent with example label pairs (*x*,*y*) with $||x|| \le r$ and $y \in \{-1, 1\}$.
- Using our local DP mechanisms, we have

$$n\left(L(\bar{\theta}_n) - L(\theta^{\star})\right) \xrightarrow{d} T^2$$
$$\mathsf{E}[T^2] = O\left(r^2 \cdot \frac{d}{\varepsilon \wedge \varepsilon^2}\right)$$

 This is minimax optimal for any arbitrarily interactive local-DP algorithm [DR19]

Experiments

Experiments							
Task	Dataset	d					
Image Classification over 10 Classes	MNIST	$3,\!274,\!634$					
Image Classification over 10 Classes	CIFAR10	1,068,298					
Image Classification over 100 Classes	Flickr	$1,\!255,\!524$					
Next Word Prediction	REDDIT	13,352,875					

- We conducted experiments for various tasks and models.
- We used our local DP algorithms (PrivUnit and ScalarDP) to protect against reconstruction.
- We also clipped each model update and added Gaussian noise to the aggregate update for central DP.

MNIST

Accuracy 98.8%

$ extsf{PrivUnit}_2(\cdot,\gamma,arepsilon')$ S		Sca	$\texttt{ScalarDP}(\cdot, \varepsilon_2, r_{\max})$		Central DP	
ε_1	γ	ε'	ε_2	$r_{ m max}$	Clip	σ
500	0.01729	5	10	5	100	0.005
250	0.01217	2.5	10	5	100	0.005
100	0.00760	1	10	5	100	0.005
50	0.00526	0.5	10	5	100	0.005

CIFAR10

Accuracy 71.5%

$\boxed{\texttt{PrivUnit}_2(\cdot,\gamma,\varepsilon')}$		$\texttt{ScalarDP}(\cdot, arepsilon_2, r_{\max})$		Central DP		
ε_1	γ	ε'	ε_2	$r_{ m max}$	Clip	σ
5000	0.09598	50	10	2	30	0.002
1000	0.04291	10	10	2	30	0.002
500	0.03027	5	10	2	30	0.002
100	0.01331	1	10	2	30	0.002

ResNet50v2

Top 5 Accuracy 97.7%

- Pretrained ResNet50v2 on ImageNet
- Further trained last two layers on Flickr data with 100 classes.

$\texttt{PrivUnit}_2(\cdot,\gamma,\varepsilon')$		$\texttt{ScalarDP}(\cdot, arepsilon_2, r_{\max})$		Central DP		
ε_1	γ	ε'	ε_2	$r_{ m max}$	Clip	σ
5000	0.08857	50	10	10	100	0.005
500	0.02793	5	10	10	100	0.005
100	0.01227	1	10	10	100	0.005
50	0.00851	0.5	10	10	100	0.005

Accuracy 5%

LSTM

Accuracy 19.5%

- Pretrained LSTM on Wikipedia
- Further trained on Reddit comments from Nov 2017.

$\texttt{PrivUnit}_2(\cdot,\gamma,\varepsilon')$		Sca	$\texttt{larDP}(\cdot, \varepsilon_2, r_{\max})$	Central DP		
ε_1	γ	ε'	ε_2	$r_{ m max}$	Clip	σ
10000	0.03848	100	10	5	100	0.001
2500	0.01923	25	10	5	100	0.001
500	0.00856	5	10	5	100	0.001
100	0.00376	1	10	5	100	0.001

Thanks

References

- [MMRHA17] McMahan, Moore, Ramage, Hampson, Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS'17.
- [CLKES18] Carlini, Liu, Kos, Erlingsson, Song. The Secret Sharer: Measuring Unintended Neural Network Memorization & Extracting Secrets. arXiv1802.08232.
- [MRT18] McMahan, Ramage, Talwar. Learning Differentially Private Recurrent Language Models. ICLR'18.
- [SCS13] Song, Chauduri, Sarwate. Stochastic Gradient Descent with DP updates. GlobalSIP13
- [BST14] Bassily, Smith, Thakurta. Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds. FOCS14.
- [ACGMMTZ16] Abadi, Chi, Goodfellow, McMahan, Mironov, Talwar, Zhang. Deep Learning with Differential Privacy. CCS16.
- [Warner65] Warner. Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. JASA March1965.
- [EGS03] Evfimievski, Gehrke, Srikant. Limiting Privacy Breaches in Privacy Preserving Data Mining. PODS03.
- [KLNRS08] Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith. What can we Learn Privately? FOCS08.
- [BNO08] Beimel, Nissim, Omri. Distributed private data analysis: Simultaneously solving how and what. Adv. in Crypto'08.
- [DJW13] Duchi, Jordan, Wainwright. *Local privacy and statistical minimax rates*. FOCS'13.
- [DJW18] Duchi, Jordan, Wainwright. *Minimax optimal procedures for locally private estimation*. JASA'18.
- [DR18] Duchi, Ruan. The right complexity measure in locally private estimation: It is not the Fisher information. arXiv 1806.05756.
- [DR18] Duchi, Rogers. Lower Bounds for Locally Private Estimation via Communication Complexity. arXiv 1902.00582.
- [GV16] Geng, Viswanath. The Optimal Noise-Adding Mechanism. Transactions of Information Theory. 2016.