#### Random Walk on Simplicial Complexes

#### Tali Kaufman (BIU) and Izhar Oppenheim (BGU)

Tali Kaufman (BIU) and Izhar Oppenheim (BGU) Random Walk on Simplicial Complexes

< D > < A > < B > < B >

### Simplicial Complexes



< □ > < 同 > < 回 >

3.5

#### Simplicial Complexes - Abstract Definition

A *d*-dimensional simplicial complex X is defined as follows:

- *V* is a set of vertices
- For every -1 ≤ k ≤ d, the set of k-simplices of X, denoted X(k), is a subset of <sup>V</sup><sub>k+1</sub> and we denote X = ∪<sub>k</sub> X(k)
- **③** If  $\sigma \in X$ , then for every  $\tau \subseteq \sigma$ ,  $\tau \in X$

A (1) > (1) = (1)

#### Simplicial Complexes - Abstract Definition

A *d*-dimensional simplicial complex X is defined as follows:

- V is a set of vertices
- So For every -1 ≤ k ≤ d, the set of k-simplices of X, denoted X(k), is a subset of  $\binom{V}{k+1}$  and we denote X = ⋃<sub>k</sub> X(k)
- **3** If  $\sigma \in X$ , then for every  $\tau \subseteq \sigma$ ,  $\tau \in X$

Below X is always assumed to be finite  $(|V| < \infty)$  and pure *d*-dimensional (every *k*-simplex is contained in a *d*-dimensional simplex).

イロト イポト イラト イラト

#### Geometric interpretation





### Define $C^k(X) = \{\phi : X(k) \to \mathbb{R}\}$ , e.g., $C^0(X)$ are functions from vertices of X to $\mathbb{R}$ .

(日)



Define  $C^k(X) = \{\phi : X(k) \to \mathbb{R}\}$ , e.g.,  $C^0(X)$  are functions from vertices of X to  $\mathbb{R}$ .

Define the following inner-product on  $C^{k}(X)$ :

$$\langle \phi, \psi 
angle = \sum_{\eta \in X(k)} \mathsf{w}(\eta) \phi(\eta) \psi(\eta),$$

where w is a weight function which "takes into account" the higher dimensional structure (explicitly,  $w(\tau) = (d - k)! \sum_{\sigma \in X(d), \tau \subseteq \sigma} w(\sigma), \ \forall \tau \in X(k)).$ 

#### Random Walks on Simplicial Complexes





< D > < A > < B > < B >

#### k-th Random walk on X

The *k*-random walk is a random walk on X(k) defined as follows: for  $\tau \in X(k)$ 

- Op step: Choose η ∈ X(k + 1) such that τ ⊆ η at random (according to the weight function w)
- Oown step: Choose at random  $\tau' \in X(k)$  such that  $\tau' \subseteq \eta$



We denote by  $M_k^+ : C^k(X) \to C^k(X)$  the operator corresponding to this random walk.

Tali Kaufman (BIU) and Izhar Oppenheim (BGU)

Random Walk on Simplicial Complexes

#### Up and Down operators

Define the Up operator  $U_k : C^k(X) \to C^{k+1}(X)$ : for  $\phi \in C^k(X), \eta \in X(k+1)$ ,

$$(U_k \phi)(\eta) = \sum_{ au \in X(k), au \subseteq \eta} \phi( au).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Up and Down operators

Define the Up operator  $U_k : C^k(X) \to C^{k+1}(X)$ : for  $\phi \in C^k(X), \eta \in X(k+1)$ ,

$$(U_k \phi)(\eta) = \sum_{ au \in X(k), au \subseteq \eta} \phi( au).$$

Define the *Down* operator  $D_{k+1} : C^{k+1}(X) \to C^k(X)$ : for  $\psi \in C^{k+1}(X), \tau \in X(k)$ ,

$$(D_{k+1}\psi)(\tau) = \sum_{\eta \in X(k+1), \tau \subseteq \eta} \frac{w(\eta)}{w(\tau)} \psi(\eta).$$

< ロ > < 同 > < 回 > < 回 > .

#### Up and Down operators

Define the Up operator  $U_k : C^k(X) \to C^{k+1}(X)$ : for  $\phi \in C^k(X), \eta \in X(k+1)$ ,

$$(U_k \phi)(\eta) = \sum_{ au \in X(k), au \subseteq \eta} \phi( au).$$

Define the *Down* operator  $D_{k+1} : C^{k+1}(X) \to C^k(X)$ : for  $\psi \in C^{k+1}(X), \tau \in X(k)$ ,

$$(D_{k+1}\psi)(\tau) = \sum_{\eta \in X(k+1), \tau \subseteq \eta} \frac{w(\eta)}{w(\tau)} \psi(\eta).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

 $U_k^* = D_{k+1}, \ M_k^+ = rac{1}{k+2} D_{k+1} U_k$ 

#### The 0-random walk in graphs

Assume that X is a regular graph. What is  $M_0^+$ ?

< ロ > < 同 > < 三 > < 三 >

#### The 0-random walk in graphs

#### Assume that X is a regular graph. What is $M_0^+$ ?



Note: This is not the usual random walk, but a lazy RW (has probability 0.5 to stay at the vertex).

▲ 同 ▶ → 三 ▶

#### Motivating questions

Note:

- $M_k^+ \mathbb{1} = \mathbb{1}$ .
- $M_k^+$  is self-adjoint and all its eigenvalues are in [0, 1].
- Under mild connectivity conditions on X, every eigenfunction  $\phi \perp 1$  has eigenvalue < 1.

< 🗇 🕨 < 🖃 🕨

#### Motivating questions

Note:

- $M_k^+ \mathbb{1} = \mathbb{1}$ .
- $M_k^+$  is self-adjoint and all its eigenvalues are in [0, 1].
- Under mild connectivity conditions on X, every eigenfunction  $\phi \perp 1$  has eigenvalue < 1.

Questions:

• Can we bound the second largest eigenvalue of  $M_k^+$ ,

#### Motivating questions

Note:

- $M_k^+ \mathbb{1} = \mathbb{1}$ .
- $M_k^+$  is self-adjoint and all its eigenvalues are in [0, 1].
- Under mild connectivity conditions on X, every eigenfunction  $\phi \perp 1$  has eigenvalue < 1.

Questions:

• Can we bound the second largest eigenvalue of  $M_k^+$ , in other words, can we find  $\mu$  s.t. for all  $\phi \perp 1$ ,  $\langle M_k^+ \phi, \phi \rangle \leq \mu \|\phi\|^2$ ?

#### Motivating questions

Note:

- $M_k^+ \mathbb{1} = \mathbb{1}$ .
- $M_k^+$  is self-adjoint and all its eigenvalues are in [0, 1].
- Under mild connectivity conditions on X, every eigenfunction φ ⊥ 1 has eigenvalue < 1.</li>

Questions:

- Can we bound the second largest eigenvalue of  $M_k^+$ , in other words, can we find  $\mu$  s.t. for all  $\phi \perp 1$ ,  $\langle M_k^+ \phi, \phi \rangle \leq \mu \|\phi\|^2$ ?
- **②** What can we say about  $\langle M_k^+ \phi, \phi \rangle$  for a specific  $\phi$  beyond the bound on the second eigenvalue?

< ロ > < 同 > < 回 > < 回 >

#### How well can the RW mix



(日)

#### How well can the RW mix? (1)



イロト イボト イヨト イヨト

#### How well can the RW mix? (2)



イロト イヨト イヨト

#### How well can the RW mix? (3)



$$\langle M_1^+\phi,\phi\rangle=\frac{2}{3}\|\phi\|^2$$

イロト イボト イヨト イヨト

Observe that the obstruction to  $\frac{1}{3}$ -mixing came from "below":  $\phi = U_0 \psi$  where  $\psi$  is 1 on one vertex and -1 on the other (0 everywhere else)



A (1) < A (1) < A (1) </p>

Observe that the obstruction to  $\frac{1}{3}$ -mixing came from "below":  $\phi = U_0 \psi$  where  $\psi$  is 1 on one vertex and -1 on the other (0 everywhere else)



This is a general phenomenon: in general, for k > 0, in the k-walk we should expect to see  $\frac{2}{k+2}, \dots, \frac{k+1}{k+2}$  "obstructions" coming from dimensions  $k - 1, \dots, 0$ .

Image: A matrix and a matrix

### High dimensional local spectral expanders



< D > < A > < B > < B >

#### Links

Given a simplex  $\tau \in X$ , the *link* of  $\tau$  is the subcomplex of X, denoted  $X_{\tau}$  and defined as

$$X_{\tau} = \{ \sigma \in X : \sigma \cap \tau = \emptyset, \sigma \cup \tau \in X \}$$

< D > < A > < B > < B >

#### Links

Given a simplex  $\tau \in X$ , the *link* of  $\tau$  is the subcomplex of X, denoted  $X_{\tau}$  and defined as

$$X_{\tau} = \{ \sigma \in X : \sigma \cap \tau = \emptyset, \sigma \cup \tau \in X \}$$



Tali Kaufman (BIU) and Izhar Oppenheim (BGU) Random Walk on Simplicial Complexes



The 1-Skeleton of a complex is the graph (X(0), X(1)):



イロト イヨト イヨト

### High dimensional local spectral expanders - definition

For a constant  $0 < \lambda < 1$ , X is called a one-sided (two sided)  $\lambda$ -local spectral expander if:

- The 1-skeleton of X is connected and normalized spectrum of the 1-skeleton of X is contained in [−1, λ] ∪ {1} (two-sided: [−λ, λ] ∪ {1}).
- Por every τ ∈ X(k), k < d − 1, 1-skeleton of X<sub>τ</sub> is connected and normalized spectrum of the 1-skeleton of X<sub>τ</sub> is contained in [−1, λ] ∪ {1} (two-sided: [−λ, λ] ∪ {1}).

Normalized spectrum = normalized according to the weight function w.

Tali Kaufman (BIU) and Izhar Oppenheim (BGU) Random Walk on Simplicial Complexes

# Local spectral expansion can be deduces "very" locally

Theorem (O.): If X and all the links (of dim.  $\geq 1$ ) are connected and the second e.v. for all the 1-dimensional links is  $\leq \frac{\lambda}{1+(d-1)\lambda}$ , then X is  $\lambda$ -local spectral expander.

# Local spectral expansion can be deduces "very" locally

Theorem (O.): If X and all the links (of dim.  $\geq 1$ ) are connected and the second e.v. for all the 1-dimensional links is  $\leq \frac{\lambda}{1+(d-1)\lambda}$ , then X is  $\lambda$ -local spectral expander.

If in addition the smallest e.v. all the 1-dimensional links is  $\geq \frac{-\lambda}{1+(d-1)\lambda}$ , then X is a two-sided  $\lambda$ -local spectral expander.

イロト イポト イラト イラト

#### Previous work on high order walks

- First introduced by Kaufman and Mass, who studied it for ONE sided local spectral expanders; they got 1 - <sup>1</sup>/<sub>(k+2)<sup>2</sup></sub> + f(λ, k) on second e.v of M<sup>+</sup><sub>k</sub>.
- Later improved by Dinur and Kaufman who studied it for TWO sided local spectral expanders; they 1 - <sup>1</sup>/<sub>k+2</sub> + O(λ(k + 1)) on second e.v of M<sup>+</sup><sub>k</sub>; This was useful for agreement expansion questions.

#### Decomposition Theorems for Random Walks on HD expanders



#### Decomposition Theorem - general idea

If X is  $\lambda$ -local spectral expander and  $\phi \in C^k(X)$ ,  $\phi \perp 1$ , then

•  $\phi$  can be "projected" on  $C^i(X)$ ,  $0 \le i \le k$ 

These projections control how well the random walk mixes: the more φ is concentrated at the higher dimensions, the faster the mixing.

#### Decomposition Theorem - exact formulation

**Main Theorem:** Let X be a  $\lambda$ -local spectral expander and  $0 \le k \le d-1$  constant. For any  $\phi \in C^k(X), \phi \perp \mathbb{1}$  there are  $\phi^k \in C^k(X), \phi^{k-1} \in C^{k-1}(X), ..., \phi^0 \in C^0(X)$  such that

$$\phi^{k} \perp \mathbb{1}, ..., \phi^{0} \perp \mathbb{1},$$
$$\|\phi\|^{2} = \|\phi^{k}\|^{2} + \|\phi^{k-1}\|^{2} + ... + \|\phi^{0}\|^{2},$$
$$\langle M_{k}^{+}\phi, \phi \rangle \leq \sum_{i=0}^{k} \left(\frac{k+1-i}{k+2} + \lambda f(k,i)\right) \|\phi^{i}\|^{2},$$

 $(f(k,i) = \frac{(k+i+2)(k+1-i)}{2(k+2)}).$ 

#### Bound on the second eigenvalue

$$\langle M_k^+\phi,\phi\rangle\leq \sum_{i=0}^k\left(\frac{k+1-i}{k+2}+O((k+1)\lambda)\right)\|\phi^i\|^2.$$

When  $\lambda$  is small, we note that the coefficients of the  $\|\phi^i\|$ 's in the sum above become larger as *i* becomes smaller. Therefore, the "worst case scenario" is when  $\|\phi\|^2 = \|\phi^0\|^2$ .

A (1) > (1) = (1)

#### Bound on the second eigenvalue

$$\langle M_k^+\phi,\phi\rangle\leq \sum_{i=0}^k\left(\frac{k+1-i}{k+2}+O((k+1)\lambda)\right)\|\phi^i\|^2.$$

When  $\lambda$  is small, we note that the coefficients of the  $\|\phi^i\|$ 's in the sum above become larger as *i* becomes smaller. Therefore, the "worst case scenario" is when  $\|\phi\|^2 = \|\phi^0\|^2$ . In that case

$$\langle M_k^+\phi,\phi\rangle \leq \left(\frac{k+1}{k+2}+\lambda\frac{k+1}{2}\right)\|\phi\|^2,$$

and therefore the second eigenvalue is bounded by  $\frac{k+1}{k+2} + \lambda \frac{k+1}{2}$ .

### A more explicit decomposition for 2-sided $\lambda$ -local spectral expanders

(Inspired by Dikstein, Dinur, Filmus and Harsha)

Assuming 2-sided  $\lambda$ -local spectral gap:

• The non-trivial spectrum of  $M_k^+$  is contained in  $\left[\frac{1}{k+2} - f(k)\lambda, \frac{1}{k+2} + f(k)\lambda\right] \cup \ldots \cup \left[\frac{k+1}{k+2} - f(k)\lambda, \frac{k+1}{k+2} + f(k)\lambda\right]$ 

< ロ > < 同 > < 三 > < 三 >

The eigenspaces are O(λ)-approximated by the Up operators images.

# Some words about the proofs (if time permits)

Tali Kaufman (BIU) and Izhar Oppenheim (BGU) Random Walk on Simplicial Complexes

▲ 同 ▶ → 三 ▶

### Thank you for listening

Tali Kaufman (BIU) and Izhar Oppenheim (BGU) Random Walk on Simplicial Complexes

▲ 同 ▶ → 三 ▶