
Completely Log-Concave
Polynomials and Distributions

Nima Anari

/
based on joint works with

Shayan Kuikui Cynthia
Oveis Gharan Liu Vinzant



Measures and Distributions

Continuous
µ : Rn → R⩾0

Discrete
µ : {0, 1}n or Zn

⩾0 → R⩾0

︸ ︷︷ ︸
focus of this talk



Continuous Land



Algorithmic Primitives

Unnormalized density µ : Rn → R⩾0

gives rise to probability distribution:

P[A] ∝ µ(A) =

∫
A

µ(x)dx.

Sampling: Produce a sample?
Counting: Compute

∫
Rn µ(x)dx?

Optimization: Find the mode?



Algorithmic Primitives

Unnormalized density µ : Rn → R⩾0

gives rise to probability distribution:

P[A] ∝ µ(A) =

∫
A

µ(x)dx.

Sampling: Produce a sample?

Counting: Compute
∫
Rn µ(x)dx?

Optimization: Find the mode?



Algorithmic Primitives

Unnormalized density µ : Rn → R⩾0

gives rise to probability distribution:

P[A] ∝ µ(A) =

∫
A

µ(x)dx.

Sampling: Produce a sample?
Counting: Compute

∫
Rn µ(x)dx?

Optimization: Find the mode?



Algorithmic Primitives

Unnormalized density µ : Rn → R⩾0

gives rise to probability distribution:

P[A] ∝ µ(A) =

∫
A

µ(x)dx.

Sampling: Produce a sample?
Counting: Compute

∫
Rn µ(x)dx?

Optimization: Find the mode?

•



Log-Concave Distributions

Sampling [Dyer-Frieze-Kannan’91, . . . ]
Efficiently sample κ approximately
satisfying

P[κ ∈ A] ∝ µ(A)

using MCMC methods.

Optimization
The mode of a log-concave distribution
can be found by convex programming:

max
κ

log(µ(κ)).

• •

•

x y

αx+ (1− α)y

logµ is concave or equivalently

µ(x)αµ(y)1−α ⩽ µ (αx+ (1− α)y)
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Examples of Log-Concave Distributions

indicator of convex set known distributions mix and match
e.g., Gaussian density

Affine transformation.
Conditioning/slicing on a coordinate.
Marginalization/projection onto a subset of coordinates.
Convolution of two log-concave functions.
Point-wise product of two log-concave functions.
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Discrete Land



Algorithmic Primitives

Finite-support measure µ : Zn
⩾0 → R⩾0

gives rise to probability distribution:

P[κ] ∝ µ(κ).

Sampling: Produce a sample?
Counting: Compute

∑
κ∈Zn

⩾0
µ(κ)?

Optimization: Find the mode?
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What should be the analog of log-concavity in
discrete distributions?



Analogy Between Continuous and Discrete

Continuous Discrete

Distributions:

Supports:

convex set matroid(-like)

• •

•

•
••

•

•



First Attempt

First Proposal

µ(κ1)
α1 . . . µ(κm)αm ⩽ µ(α1κ1 + · · ·+ αmκm),

for α1 + · · ·+ αm = 1, whenever it makes sense.

Problem: Satisfied by any µ : {0, 1}n → R⩾0.

1-D case well-studied in combinatorics:
µ(κ) = κ-matchings in a graph.
µ = coefficients of chromatic polynomial.

[Huh’10]

1-dimensional case

µ(κ− 1)µ(κ+ 1) ⩽ µ(κ)2
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Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of “Hodge Theory”:

Polytope Algebra
µ(κ) = mixed-vol(K, . . . , K︸ ︷︷ ︸

κ times

, L, . . . , L︸ ︷︷ ︸
d−κ times

).

[McMullen’89]

Rota’s Conjecture
µ = coefficients of matroid
characteristic polynomial.

[Adiprasito-Huh-Katz’17]

(Weak) Mason’s Conjecture: µ(κ) = number of independent sets of size κ in
a matroid [Huh-Schröter-Wang’18].
Kazhdan-Lusztig Conjecture: Certain objects in representation theory
[Elias-Williamson’14].



Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of “Hodge Theory”:

Polytope Algebra
µ(κ) = mixed-vol(K, . . . , K︸ ︷︷ ︸

κ times

, L, . . . , L︸ ︷︷ ︸
d−κ times

).

[McMullen’89]

Rota’s Conjecture
µ = coefficients of matroid
characteristic polynomial.

[Adiprasito-Huh-Katz’17]

(Weak) Mason’s Conjecture: µ(κ) = number of independent sets of size κ in
a matroid [Huh-Schröter-Wang’18].
Kazhdan-Lusztig Conjecture: Certain objects in representation theory
[Elias-Williamson’14].



Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of “Hodge Theory”:

Polytope Algebra
µ(κ) = mixed-vol(K, . . . , K︸ ︷︷ ︸

κ times

, L, . . . , L︸ ︷︷ ︸
d−κ times

).

[McMullen’89]

Rota’s Conjecture
µ = coefficients of matroid
characteristic polynomial.

[Adiprasito-Huh-Katz’17]

(Weak) Mason’s Conjecture: µ(κ) = number of independent sets of size κ in
a matroid [Huh-Schröter-Wang’18].
Kazhdan-Lusztig Conjecture: Certain objects in representation theory
[Elias-Williamson’14].



Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of “Hodge Theory”:

Polytope Algebra
µ(κ) = mixed-vol(K, . . . , K︸ ︷︷ ︸

κ times

, L, . . . , L︸ ︷︷ ︸
d−κ times

).

[McMullen’89]

Rota’s Conjecture
µ = coefficients of matroid
characteristic polynomial.

[Adiprasito-Huh-Katz’17]

(Weak) Mason’s Conjecture: µ(κ) = number of independent sets of size κ in
a matroid [Huh-Schröter-Wang’18].

Kazhdan-Lusztig Conjecture: Certain objects in representation theory
[Elias-Williamson’14].



Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of “Hodge Theory”:

Polytope Algebra
µ(κ) = mixed-vol(K, . . . , K︸ ︷︷ ︸

κ times

, L, . . . , L︸ ︷︷ ︸
d−κ times

).

[McMullen’89]

Rota’s Conjecture
µ = coefficients of matroid
characteristic polynomial.

[Adiprasito-Huh-Katz’17]

(Weak) Mason’s Conjecture: µ(κ) = number of independent sets of size κ in
a matroid [Huh-Schröter-Wang’18].
Kazhdan-Lusztig Conjecture: Certain objects in representation theory
[Elias-Williamson’14].



Second Attempt: Real-Rootedness

Coefficients of Real-Rooted Polynomials [Newton]
If µ(0)z0 + · · ·+ µ(d)zd ∈ R[z] is real-rooted, then µ(0), . . . , µ(d) is log-concave.
In fact, the following is also log-concave (ultra-log-concavity):

µ(0)(
d
0

) ,
µ(1)(
d
1

) , . . . ,
µ(d)(
d
d

) .

For µ : Zn
⩾0 → R⩾0, define the generating polynomial:

gµ(z1, . . . , zn) =
∑

(κ1,...,κn)∈Zn
⩾0

µ(κ1, . . . , κn)z
κ1

1 . . . zκn
n .

For 1-D: If gµ has real roots, then µ is log-concave.
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Strongly Rayleigh Distributions
[Borcea-Brändén-Liggett’07]

Call µ : {0, 1}n → R⩾0 Strongly Rayleigh
when gµ is real stable.

Binomial distribution:

gµ(z) = ((1− p) + pz)n.

Spanning trees in a graph:

µ(1S) =

{
1 S forms a spanning tree,
0 otherwise.

5

3

2

1

gµ(z1, z2) = 1+ 3z1 + 2z2 + 5z1z2
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Main Example: Determinantal Point Process

For L ⪰ 0 the determinantal
distribution µ is

µ(1S) = det(LS,S)

L =


v1 · v1 v1 · v2 . . . v1 · vn
v2 · v1 v2 · v2 . . . v2 · vn
...

... . . . ...
vn · v1 vn · v2 . . . vn · vn



The generating polynomial is

gµ(z1, . . . , zn) = det(I+diag(z1, . . . , zn)L)

v1

v2

v3

v4

µ(1S) = det([vi]i∈S)
2
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Algorithms for Strongly Rayleigh Distributions

Sampling: Local Markov chains mix in polynomial time [A-Oveis
Gharan-Rezaei’16, Li-Jegelka-Sra’17].

Optimization: Polynomial time 2O(deggµ)-approximation to maxS µ(S)
[Nikolov’16]. Matching hardness of approximation for k-DPPs
[Çivril-Magdon-Ismail’10].
Counting: Given oracle for gµ can 2O(n)-approximate coefficients of gµ in
polynomial time [Gurvits’04]. Given oracles for gµ1

, gµ2
can

2min{deggµ1
,deggµ2

}-approximate
∑

S µ1(S)µ2(S) [A-Oveis Gharan’17]. Similar
results [Nikolov-Singh’16, Straszak-Vishnoi’17].
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Strongly Rayleigh seems to be a powerful
definition. But is it too restrictive?

Not many interesting non-determinantal
examples known.

Supports are matroids [Choe-Oxley-Sokal-Wagner’04], but not
all matroids are possible supports [Brändén’07].
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Real Stability =⇒ Log-Concavity =⇒ Algorithms

Main insight: In all mentioned algorithms, the important property is
log-concavity of gµ, not real-stability.

Coefficient inequalities: [Gurvits’06, Gurvits’08] used log-concavity to derive
capacity-based inequalities on coefficients of (strongly) log-concave
polynomials.

Next we will see illustrative applications of log-concavity in optimization
and deterministic counting. More throughout the semester.
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Log-Concavity =⇒ Optimization
Optimization Problem
For d-homogeneous gµ find S ∈

([n]
d

)
such that µ(S) is maximized.

Relax and solve the following [on board …]

max{gµ(z1, . . . , zn) | z1, . . . , zn ⩾ 0, z1 + · · ·+ zn = d}.



Log-Concavity =⇒ Deterministic Counting

If µ is an arbitrary distribution and
µ1, . . . , µn are the marginals:

H(µ) ⩽ H(µ1) + · · ·+H(µn).

[A-Oveis Gharan-Vinzant’18]
When gµ is log-concave H(µ) ⩾∑
i

H(µi)

2
and

∑
i

H(µi) − deg(gµ).

marginals

A deterministic efficient algorithm to 2O(rank)-approximately count bases of
a matroid or common bases of two matroids [A-Oveis Gharan-Vinzant’18].
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Matroids

A matroid is a family I of subsets of {1, . . . , n}, called independent sets:

Downward Closed
If I ∈ I and J ⊂ I, then J ∈ I.

I
J

Exchange Axiom
If I, J ∈ I and |J| > |I|, there is e ∈ J− I

such that I ∪ {e} ∈ I.

I J

I ∪ {e}

Bases: Maximal independent sets B. They all have size rank.
Examples: Uniform, Laminar, Graphic, Linear, Algebraic, Paving, etc.
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Matroid in Real Life 1: Erasures in Linear Codes

For linear code {(x1, . . . , xn) ∈ Fn
2 |Mx = 0}, can recover from erasures iff


M11 M12 M13 M14 . . . M1n

M21 M22 M23 M24 . . . M2n

...
...

...
... . . . ...

Mk1 Mk2 Mk3 Mk4 . . . Mkn





x1
•
x3
•
...
xn


columns corresponding to erased bits are linearly independent.



Matroid in Real Life 2: Graph Reliability

For graph G = (V, E) and number k,
connected k-subsets of E form bases
of a matroid.

How many connected
subgraphs are there?
Graph Reliability: If each edge
fails with probability p what’s the
chance graph remains
connected?
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Matroid in Real Life 3: Rigidity Matroids

Link failure probabilities known. What is the chance the structure remains rigid?



Log-Concavity =⇒ Deterministic Counting

If µ is an arbitrary distribution and
µ1, . . . , µn are the marginals:

H(µ) ⩽ H(µ1) + · · ·+H(µn).

[A-Oveis Gharan-Vinzant’18]
When gµ is log-concave H(µ) ⩾∑
i

H(µi)

2
and

∑
i

H(µi) − deg(gµ).

marginals

A deterministic efficient algorithm to 2O(rank)-approximately count bases of
a matroid or common bases of two matroids [A-Oveis Gharan-Vinzant’18].
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Third Attempt: Complete Log-Concavity
Real stable polynomials and strongly Rayleigh measures

have negative correlation. Matroids were conjectured to have this property
[Seymour-Welsh’75], but the same people found a counterexample.

P[i ∈ B] · P[j ∈ B] ⩾ P[i, j ∈ B] for random base B.

are log-concave over Rn
⩾0.

are closed under directional derivatives in positive directions.

Complete Log-Concavity [A-Oveis Gharan-Vinzant’18 inspired by Gurvits’06]
A polynomial g ∈ R[z1, . . . , zn] is completely log-concave iff for any k ⩾ 0 and
any v1, . . . , vk ∈ Rn

⩾0, the following function is log-concave on Rn
⩾0

Dv1
Dv2

. . . Dvk
g.
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Déjà-Vu
Based on Hodge theory for matroids [Adiprasito-Huh-Katz’17]:

Matroids are Completely Log-Concave [A-Oveis Gharan-Vinzant’18]
If µ is the indicator of bases of a matroid, then gµ is completely log-concave:

gµ(z1, . . . , zm) =
∑
B∈B

∏
i∈B

zi.

Complete log-concavity is equivalent to:
Strong log-concavity of [Gurvits’06].
Mixed order-1 Hodge-Riemann relations in Hodge theory.
“Perfect” high-dimensional expansion of [Kaufman-Oppenheim’17].
Notion independently developed by [Brändén-Huh].
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Calculus of Complete Log-Concavity
Complete Log-Concavity: For any k and v1, . . . , vk ∈ Rn

⩾0 the following is
log-concave over Rn

⩾0:

Dv1
Dv2

. . . Dvk
g(z1, . . . , zn).

[A-Liu-Oveis Gharan-Vinzant]
For d-homogeneous
“connected-support” gµ enough to
check k = d− 2 and

v1, . . . , vd−2 ∈ {11,12, . . . ,1n}.

[A-Liu-Oveis Gharan-Vinzant]
For 2-homogeneous g complete
log-concavity means

∇2g ∈ Rn×n
⩾0

has ⩽ 1 positive eigenvalue.

The premise of these is the notion independently developed by
[Brändén-Huh].

[matroids and bivariate polynomials on board …]
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Analogy Between Continuous and Discrete

Continuous Discrete

Distributions:

Supports:

convex set matroid(-like)

• •

•

•
••

•

•



Mason’s Conjecture
[A-Liu-Oveis Gharan-Vinzant, equivalent form by Brändén-Huh]
Suppose that I is the collection of independent sets of a matroid on {1, . . . , n}

elements. Then the following is completely log-concave:

g(y, z1, . . . , zn) =
∑
I∈I

yn−|I|
∏
i∈I

zi.

This finally resolves the strongest form of Mason’s conjecture [Mason’72]:

|I0|(
n
0

) , |I1|(
n
1

) , . . . , |Irank|(
n

rank
) ,

is log-concave where Ik is the collection of independent sets of size k.
Weaker form was solved by matroid Hodge theory [Huh-Schröter-Wang’18]:

0! · |I0|, 1! · |I1|, . . . , rank! · |Irank|.
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New World of Complete Log-Concavity

Matroids

I J

I ∪ {e}

∑
I∈I

yn−|I|
∏
i∈I

zi.

Random Cluster Model

P[S] ∝ q#ccp|S|(1− p)|S| for q ⩽ 1.

Submodular Polytopes
1i − 1j

∑
(α1,...,αn)∈P∩Zn

⩾0

z
α1

1 . . . zαn
n

α1! . . . αn! .

Fractional DPPs

v1

v2

v3

v4

P[S] ∝ |det([vi]i∈S)|
α for α ⩽ 2.
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