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\Meosures and Distributions

Continuous Discrete

p:R™ = R>o {0, 1} or ZZ, — Rxo

focus o?,this talk



Continuous Land
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\Algorithmic Primitives

Unnormalized density u: R™ — R>o
gives rise to probability distribution:

PIA] o p(A) = JA u(x)dx.

> Sampling: Produce a sample? ,
& Counting: Compute [ u(x)dx? -
> Optimization: Find the mode? -~
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\Log—Concove Distributions

Sampling [Dyer-Frieze-Kannan'91, ...]

Efficiently sample k approximately
satisfying

Plk € A] ox p(A)

using MCMC methods.

Optimization
The mode of a log-concave distribution log 1t is concave or equivalently
can be found by convex programming:

n()*u(y)'* < plox + (1 — a)y)
mgX|0g(u(K))-
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\Algorithmic Primitives

Finite-support measure w : Zgo — Rxo
gives rise to probability distribution:

P[k] oc u(k).

> Sampling: Produce a sample?

. . ? //
> Counting: Compute erzgo u(K)/.//
> Optimization: Find the mode? -~



What should be the analog of log-concavity in
?



\Anologg Between Continuous and Discrete /

Continuous Discrete

Distributions:

upports: @

convex set matroid(-like)
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\First Attempt

First Proposal

(k) * (k)™ < plog kg + -+ - 4+ XmKm),

for «q + -+ + o, = 1, whenever it makes sense.

Problem: Satisfied by any p: {0, 1}™ — R>o.

1-D case well-studied in combinatorics:

> u(k) = k-matchings in a graph.
> u = coefficients of chromatic polynomial.

ﬂ 1-dimensional case
ow. I )2

: ik = Dp(c +1) < plk
[Huh10]
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Mnterlude: Hodge Theory /

Many log-concave sequences are associated with shadows of “Hodge Theory™

Polytope Algebra Rota’s Conjecture

u(k) = mixed-vol(K,...,K, L,...,L). u = coefficients of matroid
ktimes d—«k times characteristic polynomial.

[McMullen’89] [Adiprasito-Huh-Katz17]

> (Weak) Mason’s Conjecture: u(k) = number of independent sets of size k in
a matroid [Huh-Schréter-wang18].

> Kazhdan-Lusztig Conjecture: Certain objects in representation theory
[Elias-Williamson4].
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Coefficients of Real-Rooted Polynomials [Newton]
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Coefficients of Real-Rooted Polynomials [Newton]

If 1(0)z% + - -- + u(d)z® € Rzl is real-rooted, then u(0),..., u(d) is log-concave.
In fact, the following is also log-concave (ultra-log-concavity):

1(0) (1) u(d).
" ¢ (9

Forpu:Z%, — Rxo. define the generating polynomial:

Kn

gulziy..oyzn) = Z TS TR Y A AN

(K],...,Kn)eZgo

> For1-D:If g, has real roots, then p is log-concave.
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\Stronglg Rayleigh Distributions

[Borcea-Brandén-Liggett’07]

YL

Call w:{0,1}™ — R>o Strongly Rayleigh 3
when g, is real stable.

> Binomial distribution: 1
gu(z) = (1 —p) +pz)™.

> Spanning trees in a graph:

gulz1,22) =1+ 321 + 22, + 5212,

1 S forms a spanning tree,
u(ls) = .
0 otherwise.
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> For L > 0 the determinantal
distribution w is

1g) =det(Ls ¢
u(ls) (Ls,s) v,
I
1
1
ViVl Vi-Va2 /... V]-Vn
vy vy [va-va o] voov, V3 V1
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\Moin Example: Determinantal Point Process /

> For L > 0 the determinantal
distribution pis

K(Ls) = det(Ls <) v

1
1

ViVl Vi-Va2 /... V]-Vn

vy vy [va-va o] voov, V3 V1
L= i : )

Vn'v] \)n'VZ “oe Vn\)n

> The generating polynomial is Vi

gulz1y...yzn) = det(I+diag(z1,...,zn)L) w(1s) = det([vilies)?
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\Algorithms for Strongly Rayleigh Distributions

(B

: Local Markov chains mix in polynomial time [*-Oveis
Gharan-Rezaei16, Li-Jegelka-Sra™7].

: Polynomial time 2°(deg 9u)_gpproximation to maxs p(S)
[Nikolov16]. Matching hardness of approximation for k-DPPs
[Civril-Magdon-Ismail10].
: Given oracle for g, can 200" -agpproximate coefficients of g,, in
polynomial time [Gurvits’04]. Given oracles for gy, gu, can

2mintdeg 9wy deg 9y} gpproximate > s H1(S)u2(S) [#-Oveis Gharan17]. Similar
results [Nikolov-Singh16, Straszak-Vishnoi17].
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Strongly Rayleigh seems to be a powerful
definition. But is it restrictive?

Not many interesting non-determinantal
examples known.

Supports are matroids [Choe-Oxley-Sokal-Wagner'04], but not
all matroids are possible supports srandeno.
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\ReoIStobilitg —> Log-Concavity — Algorithms/

(> . In all mentioned algorithms, the important property is
log-concavity of g, not real-stability.

> Coefficient inequalities: [Gurvits'06, Gurvits'08] used log-concavity to derive
capacity-based inequalities on coefficients of (strongly) log-concave

polynomials.

> Next we will see illustrative applications of log-concavity in optimization
and deterministic counting. More throughout the semester.



\Log-Concovitg —> Optimization /

For d-homogeneous g, find S € (™)) such that 1(S) is maximized.

Relax and solve the following [on board ...]

max{gu(z1,...y2zn) 121,..0y2Zn 20,21 + - + 2 = d}.
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If wis an arbitrary distribution and __--marginals ---__
Wi, ..., Uy are the marginals: y \

Hw) < H(w) + -+ H(pn).

[A-Oveis Gharan-Vinzant18] B J
When g, is log-concave H(u) >

Z @ and Z FH(pi) — deg(gy).

i

> A deterministic efficient algorithm to 2°(rank) _gpproximately count bases of
a matroid or common bases of two matroids [/ -Oveis Gharan-Vinzant18].
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\Motroids /

A matroid is a family J of subsets of {1,...,n}, called independent sets:
Downward Closed Exchange Axiom

fleJand]J c Il then] e IfI,JeJand|]| > |I], thereisee ] —1
such that TU{e} € J.

> Bases: Maximal independent sets B. They all have size rank.
> Examples: Uniform, Laminar, Graphic, Linear, Algebraic, Paving, etc.



\Motroid in Real Life 1: Erasures in Linear Codes /

For linear code {(x1,...,xn) € F} | Mx = 0}, can recover from erasures iff

columns corresponding to erased bits are linearly independent.
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\Motroid in Real Life 2: Graph Reliability

For graph G = (V, E) and number k,
connected k-subsets of E form bases
of a matroid.

> How many connected
subgraphs are there?
2018

O Graph Reliobility: If each edge » .
fails with probability p what's the w5 California
chance graph remains SEira Tracker
connected?




\Motroid in Real Life 3: Rigidity Matroids /

Link failure probabilities known. What is the chance the structure remains rigid?
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If wis an arbitrary distribution and __--marginals ---__
Wi, ..., Uy are the marginals: y \

Hw) < H(w) + -+ H(pn).

[A-Oveis Gharan-Vinzant18] B J
When g, is log-concave H(u) >

Z @ and Z FH(pi) — deg(gy).

i

> A deterministic efficient algorithm to 2°(rank) _gpproximately count bases of
a matroid or common bases of two matroids [/ -Oveis Gharan-Vinzant18].
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\Third Attempt: Complete Log-Concavity /

Real stable polynomials and strongly Rayleigh measures

> have negative correlation. Matroids were conjectured to have this property
[Seymour-Welsh’75], but the same people found a counterexample.

P[i € B] - P[j € B] > P[i,j € B] for random base B.

n
B are log-concave over RY,,.

> are closed under directional derivatives in positive directions.

Complete Log-Concavity [A-Oveis Gharan-Vinzant18 inspired by Gurvits’06]

A polynomial g € Rlzy,...,z,] is completely log-concave iff for any k > 0 and
any vi, ..., vk € RS, the following function is log-concave on RZ,

Dy, Dy, ... Dy, g.
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Based on Hodge theory for matroids [Adiprasito-Huh-Katz177;

Matroids are Completely Log-Concave [A-Oveis Gharan-Vinzant'18]
If wis the indicator of bases of a matroid, then g, is completely log-concave:

gu(z1s--yzm) = )_ [ 2

BeB ieB

Complete log-concavity is equivalent to:

> Strong log-concavity of [Gurvits'06].

> Mixed order-1 Hodge-Riemann relations in Hodge theory.

> “Perfect” high-dimensional expansion of [Kaufman-Oppenheim™17].
> Notion independently developed by [Bréandén-Huh].

Q':.
-
R - A 3
w. s
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Complete Log-Concavity: Forany k and vy,..., vk € RY, the following is
log-concave over R

D,,Dy,...Dy,g(z1,...,2n).

[A-Liu-Oveis Gharan-Vinzant] [A-Liu-Oveis Gharan-Vinzant]

For d-homogeneous For 2-homogeneous g complete
“connected-support” g,, enough to log-concavity means
check k =d —2 and

v g E]RTLXTL

V.o, Va—2 € {17, 13,...,1,}.
has < 1 positive eigenvalue.

> The premise of these is the notion independently developed by
[Br&ndén-Huh].

[matroids and bivariate polynomials on board ..]
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Continuous Discrete

Distributions:

upports: @

convex set matroid(-like)
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\Moson’s Conjecture /

[A-Liu-Oveis Gharan-Vinzant, equivalent form by Brandén-Huh]

Suppose that J is the collection of independent sets of a matroid on {1,...,n}
elements. Then the following is completely log-concave:

9(1%21 yeouyZn) = ZUniIII HZi.

1cJ i€l
> This finally resolves the strongest form of Mason’s conjecture [Mason’72]:
[0 I i
() (D)7 (o
is log-concave where J¥ is the collection of independent sets of size k.
> Weaker form was solved by matroid Hodge theory [Huh-Schréter-wang'18]:

Ol - |70, 11+ 197|,..., rank! - [J72"K].
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Matroids Submodular Polytopes

X1 o
Zy .. o Z™

P N B >

1eJ iel (OC],...,O(TL)EPQZSO

Random Cluster Model Fractional DPPs

V2
V3 Vi
Vg

P[S] o q#<p!SI(1 —p)S! for q < 1. P[S] o |det([vilies)|* for o < 2.
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