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Natural proofs

Definition (Razborov & Rudich)

A property P of Boolean functions is natural if it has the following
properties:
Usefulness: If £:{0, 1}™ — {0, 1} has poly(n)-sized circuits, then
feP.
Constructivity: Given f by a truthtable of size N = 2", we can
decide f € P in time poly(N).
Largeness: A random function is not in P with probability at
least 1/ poly(N) = 2-0(0),



The Razborov—Rudich barrier

» A function f: {0, 11 x {0, 1}* — {0, 1} is pseudorandom if
when sampling the key k € {0, 1}* uniformly at random, the
resulting distribution f( ., k) is computationally
indistinguishable from a truly random function.

> If oneway functions exists, so do pseudorandom functions.

Theorem (Razborov & Rudich)

A natural property P distinguishes a pseudorandom function having
poly(n)-size circuits from a truly random function in time 2°™).

Conclusion

If you believe in private key cryptography, then no natural proof
will show superpolynomial circuit lower bounds.



Algebraic natural proofs

Definition (Forbes, Shpilka & Volk,
Grochow, Kumar, Saks & Saraf)

Let M C K[X] be a set of monomials.

Let C C (M) and let D C K[T,, : m € M].

A polynomial D € D is an algebraic D-natural proof against C, if
1. D is a nonzero polynomial and

2. for all f € C, D(f) =0, that is, D vanishes on the coefficient
vectors of all polynomials in C.



Succinct hitting sets

Definition
A hitting set for P C K[Xy,...,X.] is a set H C K such that for
all p € P, there is an h € H such that p(h) # 0.

Definition (Succinct hitting sets)
Let M C K[X] be a set of monomials.
Let C C (M) and let D C K[T,, : m € M].
H is a C-succinct hitting set for D if
» HCC and

> H viewed as a set of vectors of coefficients of length [M] is a
hitting set for D.



The succinct hitting set barrier

Theorem

Let M C K[X] be a set of monomials.

Let C C (M) and let D C K[T,, : m € M].

There are algebraic D-natural proofs against C iff
there are no C-succinct hitting set for D.

Corollary

Let C C K[Xj,...,X] with degree < d and computable by
poly(n, d)-size circuits.

Then there is an algebraic poly(Ny q)-natural proof against C iff
there is no poly(n, d)-succinct hitting set for poly (N q)-size
circuits in Ny, q variables.

Nia = ("3")



The succinct hitting set barrier (2)

Typical regime:
> Noa = ("39)

» d = poly(n) — poly(n) = poly log(Nn,4)

Conjecture/Wish /Fear
There poly log(N)-succinct hitting sets for poly(N)-size circuits.



Tensor rank

Definition
1. A tensor t € K¥*™XN hag rank-one if
t=u®vew:= (upviw;) foru e Kk, v e K™, and w € K™.
2. The rank R(t) of a tensor t € KKX™*T is the smallest number
T of rank-one tensors s7,...,s; such that t =s7+ -+ + s;.

3. S; denotes the set of all tensors of rank < r.

Definition

D € K[Xj,..., Xkmnl is a poly(k, m, n)-natural proof against S, if
» D is nonzero,
» D vanishes on S, and
» D is computed by circuits of size poly(k, m,n).



Tensor rank (2)

Good news:

Theorem (Héstad)

Tensor rank is NP-hard.

Theorem (Shitov; Schaefer & Stefankovic)

Tensor rank is as hard as the existential theory over K.

Bad news:

P> S, is not the zero set of a set of polynomials.
» When D vanishes on S,, it also vanishes on its closure S;.
> X, :=S, is the set of tensors of border rank < .

» X, contains tensors of rank > r.



(Generalized) matrix completion

Definition
Let Ag,Aq,y..., A € K™™ The completion rank of
Aoy Aly...,An is the minimum number r such that there are

scalars Ay, ..., A with
tk(Ag + MAT+ -+ ARAR) < 1.

We denote the completion rank by CR(Ap, A1,...Am).

» Can also be phrased in terms of an affine linear matrix
Ao+ XA+ + XnAnm.



(Generalized) matrix completion (2)

» The set of all (m + 1)-tuples of n x n-matrices together with
m scalars A1y..., An

(Agy ALy vy Amy Ay e vy Agy) € KmFTINEEM

such that
k(Ao +AMAT+ ... ARAR) < T

is a closed set, since it is defined by vanishing of all
(r+1) x (r+ 1)-minors.
» Denote this set by P™™.

» Let C™™ be the projection of P™™ onto the first (m + 1)n?
components, that is, CI™™ is the set of all (Ag, A1,...,An)
with CR(Ag,Aqy...,An) <.

» C™™" is not closed.



Example

> Let
10 0 1
Ao—<0 1) and A1:<O O>
CR(Ap, A7) =2
> Let
1 0 +l O 1Y\ (1 1/e
e 1 e\0 0/) \e 1 )
~—_——
=A0,e

CR(Ag,c,A1) =1 for every € # 0.
» (Ao, A1) converges to (Ag, A7) in the Euclidean topology.
> (Ap,A;) is contained in the Euclidean closure of Cy.



Closure

Example:

> Let B be any rank-one matrix.

» The completion rank of (I, B) is at least n — 1.
> We can approximate B by B + €l.

> ButI— 1E(B + €l) has rank 1.

Conclusion:

» The rank of the approximating matrices should not be larger
than the rank of the matrix itself.

> We take the closure in K™"*™ x K;‘]X“ X oo X K?ﬁf“, where
K5 ™™ denotes the closed set of matrices of rank at most p
and T = rk(Ai).



Border completion rank

Definition

Let Ap,A1y..., A € KM™™ The border completion rank of

Aoy A1y ..., Am is the minimum number 1 such that there are
approximations A; € K(e);‘kx(;‘_) with A; =A; +0(e), 0 <i<m,
and rational functions Aq,..., A € K(€) with

rk(Ao ar 7\1A1 A oooaF }\mAm) <.

We denote the border completion rank by CR(Ap, A1,...An).



Hardness of completion rank

» ¢ formula in 2-CNF over the variables x1,...,xt with clauses
Cly...yCs.

» Given b, it is NP-hard to decide whether there is an
assignment satisfying at least b clauses.

Clause gadget: ¢; =1 VL,

1—46 1
0 1—-40

» {; in the matrix is xy if the literal [ = xy and
itis T —xy if Lj =X, j= 1,2.

Observation

The clause gadget has rank 1 iff at least one of the literals {1, is
set to be 1. Otherwise, it has rank 2.



Hardness of completion rank (2)

» All clause gadgets are blocks of our desired block diagonal
matrix.

> We get a matrix Ag + x1A7 + - - - + x¢Ay with affine linear
forms as entries

Proposition

CR(Ap,Aq,...,A) < 2s —Db iff b clauses of & can be satisfied.
?

Thus the problem CR(Agp, A1, ...,At) < k is NP-hard.



Hardness of border completion rank

Observation

Each Ai, i > 1, is a diagonal matrix with diagonal entries +1.
If the j*" diagonal entry of A; is nonzero, then the jt" diagonal
entry of any other Ay is zero, i,k > 1.

Let Ao,;‘q, .. ,At be approximations to Ay, A1,..., Ay, that is,
Ai = Ai + O(G)

Lemma

There are (inv~ertible) ‘matrices S = I, + O(e) and T=1,, + O(¢)
such that S (Ag+MAT+ -+ MA) T =Ag+MAT+-- -+ AAy
for some Ay = Ag + O(e).



Hardness of border completion rank (2)

Lemma
CR(Ap, A1,...,At) <2s—Db iffb clauses of ¢ can be satisfied.

>
>

& follows from hardness proof for CR.

Assume there are A = (11’06‘1i + Qi editl 4 .. with ajo #0
such that rk(Ag + MA] +--- +AA) <25 —b.

Ai induce an assignment to the x; and thus to literals {;.

A clause gadget looks like

1+0(e)— ¢ 1+ 0(€)
< Ofe) 1+o(e)—ez>

To have rank 1, &1 =1+ 0O(e) or £, =1+ O(e). We call such
clauses “e-satisfied”.

If we have at least b “e-satisfied” clauses, then we substitute
€ = 0 in corresponding A; and get an exact assignment.

If there are < b e-satisfied clauses, then
@(Ao,A],...,At) >2s—D.



Algebraic natural proofs for border completion rank

Let t € KMmx(m+1) - An algebraic poly(n)-natural proof for the
border completion rank of t being > 1 is a polynomial
P € K[Xpijl1 <h,i<n, 0<j<m]such that

1. P(t) #0,

2. P(s) =0 for every s € K™™x(m+1) with CR(s) < r.

3. P is computed by a constant-free algebraic circuit of size
poly(n).



Universal tensors

Observation

Let Ui’j,Vi’j, 1 <i<p,1<j<n beindeterminates. If we
substititute arbitrary constants for the indeterminates in

Zf:1 (Uiy..n, Ui,n)T(Vm, ..+, Vin), then we get all matrices in
KTIXTI

P
Lemma
Let Qo, Q1,..., Q¢ be polynomial matrices as in the observation
above having ranks 1o, ..., 1, respectively. We use fresh variables
for each Q;.
Let g:= (QO _ZOQ1 - _ZtQt) Qh---)Qt): where Zh-'-)zt

are new variables. If we substitute arbitrary constants for the
indeterminates, then we get all tensors of completion rank < 1q
with the ith slice having rank < ti, 1 <i < t.



Main result

Theorem

For infinitely many n, there is an m, a tensor t € K™™™ and a
value v such that there is no algebraic poly(n)-natural proof for
the fact that CR(t) > v unless coNP C IBPP.

> Let ¢ be a formula in 2-CNF and let b € N. We want to
check whether every assignment satisfies < b clauses of ¢.
This problem is coNP-hard.

Let Ty = (Ag,...,A¢) be the tensor constructed above.
Guess a circuit C of polynomial size computing some P.
Decide whether P(g) = 0 using polynomial identity testing.

Check whether P(Tg) # 0. If yes, then accept. Otherwise
reject.

vvyyy



Orbit closures

Observation

We can write CI™™ as an orbit closure.

— Orbit closure containment problem is hard

Caveat:

P> group might not be reductive

» closure taken in some variety (not a vector space)



Minrank problem

The homongeneous version, given Ay, ..., At and 1, is there a
nontrivial linear combination such that

rk(AoAo + -+ +AAL) <,

is also NP-hard.

» closure is taken with respect to a vector space

» all tensors of (border) minrank < r can be written as an orbit
closure

» group GLy, X GL,, x GLg is reductive

P the generating tensors are described by their symmetries

Theorem
The orbit closure containment problem for tensors is NP-hard.



Relation to tensor (border) rank

Theorem (Derksen)

Ift= (AO,A1, .,Am) is a concise tensor such that
k(A1) =---=1k(An) =1. Then

R(t) = CR(t) + m
Proposition
Ift=(Ag,A1,...,An) is a tensor such that
k(A7) =---=1k(An) =1. Then

R(t) <CR(t)+m



Tensor rank is hard to approximate

Theorem

Tensor rank is NP-hard to approximate within (1 + €).

Independently also proven by

» Song, Woodruff, and Zhong
» Swernofsky



Tensor rank is hard to approximate (2)

vvyyy

Let ¢ be a formula in 3-CNF with t variables and s clauses
such that every variable appears in a constant number ¢ of
clauses. Note that s = O(t).

We construct a matrix completion problem as before.
We will have variable gadgets and clause gadgets.
They will appear as blocks on the main diagonal.

Problem: Everything needs to be of rank 1.



Variable gadget

1 X 0 0 0 0 0 0

1 u 0O u—uy 0 u—w 0 0

0 u—uz 1 u 0 u—uy 0 0

0 0 1 v 0 0 0 2v — v
0 u—us 0 u—ug 1 u 0 0

0 0 0 0 1 w 2w —wq 0

0 0 0 v—wv; 0 0 1 2(v—1/2)
0 0 0 0 0 w—wy, 2(w—1/2) 1

Lemma

1. Ifx is set to O or 1, then the local variables in the variable
gadget can be set such that the resulting matrix has rank 4.

2. If the variables are set in such a way that the rank of the
variable gadget is 4, then x is set to 0 or 1.




Variable gadget

1 x 000 0 0 0
1T w000 0 0 0
001 uo o0 0 0
001 v oo 0 0
00001 u 0 0
00001 w 0 0
00000 O 1 2(v—1/2)
00000 0 2w—1/2) 1

Lemma

1. Ifx is set to O or 1, then the local variables in the variable
gadget can be set such that the resulting matrix has rank 4.

2. If the variables are set in such a way that the rank of the
variable gadget is 4, then x is set to O or 1.



Clause gadget

1 X 0 0 0 0 0 0 0
1 u 0 0 0 0 s(u) —uy 0 0
0 0 1 y 0 0 0 0 0
0 0 1 v 0 0 0 s(v) —v; 0
0 0 0 0 1 z 0 0 0
0 0 0 0 1 w 0 0 s(w) —w,
0 u—u O 0 0 0 1—4L(u) 1 0
0 0 0 v—vy; 0 0 0 1—2(v) 1
0 0 0 0 0 w—w> 0 0 1—4{(w)

» {(u) = u if x appears positive in the clause and £(u) =1 —u
otherwise.

> s(u) = —u if x appears positive in the clause and s(u) =u
otherwise.




Hardness of approximation

Lemma

Assume that & is either satisfiable or any assignment satisfies at
most (1 — €) of the clauses for some € > 0.

1. If § is satisfiable, then the completion rank of Ty, is 4t + 5s.

2. If ¢ is not satisfiable, then the completion rank of Ty, is at
least 4t + 5s + dt for some constant & > 0.

Theorem

Tensor rank is NP-hard to approximate.



Matrices with permanent zero

Let X be an n X n matrix. Construct a matrix Z as follows:

Ziyj = Xjj fOI’iSTl—L
Znj = Xnj Per Xnn forj <m—1,
-1
Znn = — Z;; Xnj per an,
where X;; is the matrix obtained from X by removing the i" row

and the jth column.

Observation

We have per Z = 0. Moreover, any matrix with per Z =0 and
per Znn # 0 can be obtained in this way.



Natural proofs for matrices with permanent zero

Theorem

Let Z, C K™"*™ be the set of matrices with permanent 0.
If Z., has algebraic VP natural proofs, then P#P C 3BPP.

>

v

vvvyYyy

Construct iteratively a polynomial size circuit computing per.
Using the circuit for per;_; compute a small circuit
computing Zy.

Guess a polynomial size circuit Cy vanishing on Zy

Verify this by checking Ci(Zy) = 0.

By Hilbert's Nullstellensatz, pery divides Cy.

Compute a small circuit of per, using Kaltofen's factoring
algorithm.



GCT breaks the algebraic natural proofs barrier

> Z C C™™ all matrices with permanent 0.

» GL, x GL; acts on C™*™ via left-right multiplication:

(91,92) - A= g1A(g2)".

> Let Qn, € GL, denote the group of monomial matrices, i.e.,
matrices with nonzero determinant that have a single nonzero
entry in each row and column.

> Z is closed under the action of the group
G : = Qn X Qn € GLy x GLy, which means that if A € Z,
then gA € Z for all g € G.



The GCT framework

Assume that A € Z.
GA :={gA | g € G} is contained in Z
GA C Z as a subvariety.

For a Zariski-closed subset Y C C™*™ let I(Y) C C[C™*™]
denote the vanishing ideal of Y.

vvvyyypy

v

I(Y)q the homogeneous degree d component of I(Y).
(inherits grading)
» Coordinate ring C[Y] of Y is the quotient
CIY] := C[C™™M]/I(Y),
inherits the grading C[Y]4 := C[C™*™]4/1(Y)q4.
» Since GA C Z, I(Z)q C I(GA)q for all d.
» Canonical surjection by restriction: C[Z]3 — C[GAl4



Representations

Definition
» An H-representation is a finite dimensional vector space V
with a group homomorphism p : H — GL(V).
We write gf for (p(g))(f).

» A linear map ¢ : Vi — V, between two H-representations is
called equivariant if for all g € H and f € Vi, @(gf) = go(f).

P> A bijective equivariant map is called an H-isomorphism.

» Two H-representations are called isomorphic if an
H-isomorphism exists from one to the other.

» A linear subspace of an H-representation that is closed under
the action of H is called a subrepresentation.

» An H-representation whose only subrepresentations are itself
and 0 is called irreducible.



Representations (2)

» Canonical pullback: (gf)(B) := f(g'B)
forge G, f € C[Y], Be CV™

» Turns C[Z]4 and C[GAlq4 into G-representations.

» G is linearly reductive, which means that every
G-representation V decomposes into a direct sum of
irreducible representations.

» For each type A the multiplicity multy (V) of A in V is unique.

Lemma (Schur)

For an equivariant map ¢ : V — W, the image @(V) is a
G-representation and multy (V) > multy(@(V)).

» The map C[Z]4 — C[GA]4 is equivariant, thus

multy (C[Z]3) > multy(C[GAly).

> A A that violates this is an obstruction and proves “A & Z".



Main result

Theorem

Let G := Qn x Qn and v := (((1M), (n)), ((1"), (n))). Then
» multy (C[Z],,) = 0 and

{o ifAeZ

1 otherwise

» mult, (C[GA],) =

» Subrepresentation is (per) with mult, C[C™*"],, = 1.
» multy(I(Z),,) =1 and thus multy (C[Z],,) = 0.
» For A € Z, GA C Z. Therefore mult,(C[GA],) = 0.

» For A ¢ Z , multy(I(GA))n) = 0 and therefore
multy (C[GA)], =1).




Thank You!



