Generalized matrix completion and algebraic natural proofs

Markus Bläser

Saarland University

with Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf Schreyer

Natural proofs

Definition (Razborov & Rudich)

A property \mathcal{P} of Boolean functions is *natural* if it has the following properties:

 $\begin{array}{ll} \text{Usefulness:} \ \text{If} \ f: \{0,1\}^n \to \{0,1\} \ \text{has} \ \mathrm{poly}(n)\text{-sized circuits, then} \\ f \in \mathcal{P}. \end{array}$

Largeness: A random function is not in ${\cal P}$ with probability at least $1/\operatorname{poly}(N)=2^{-O(n)}.$

The Razborov-Rudich barrier

- A function f: {0, 1}ⁿ × {0, 1}^ℓ → {0, 1} is *pseudorandom* if when sampling the key k ∈ {0, 1}^ℓ uniformly at random, the resulting distribution f(.,k) is computationally indistinguishable from a truly random function.
- If oneway functions exists, so do pseudorandom functions.

Theorem (Razborov & Rudich)

A natural property \mathcal{P} distinguishes a pseudorandom function having poly(n)-size circuits from a truly random function in time $2^{O(n)}$.

Conclusion

If you believe in private key cryptography, then no natural proof will show superpolynomial circuit lower bounds.

Algebraic natural proofs

Definition (Forbes, Shpilka & Volk, Grochow, Kumar, Saks & Saraf)

Let $M \subseteq K[X]$ be a set of monomials. Let $C \subseteq \langle M \rangle$ and let $\mathcal{D} \subseteq K[T_{\mathfrak{m}} : \mathfrak{m} \in M]$.

A polynomial $D \in \mathcal{D}$ is an algebraic \mathcal{D} -natural proof against \mathcal{C} , if

- 1. D is a nonzero polynomial and
- 2. for all $f \in C$, D(f) = 0, that is, D vanishes on the coefficient vectors of all polynomials in C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Succinct hitting sets

Definition

A hitting set for $\mathcal{P} \subseteq K[X_1, \dots, X_{\mu}]$ is a set $\mathcal{H} \subseteq K^{\mu}$ such that for all $p \in \mathcal{P}$, there is an $h \in \mathcal{H}$ such that $p(h) \neq 0$.

Definition (Succinct hitting sets)

 $\begin{array}{l} \mbox{Let } M \subseteq K[X] \mbox{ be a set of monomials.} \\ \mbox{Let } \mathcal{C} \subseteq \langle M \rangle \mbox{ and let } \mathcal{D} \subseteq K[T_m:m \in M]. \end{array}$

H is a C-succinct hitting set for \mathcal{D} if

- ▶ $H \subseteq C$ and
- H viewed as a set of vectors of coefficients of length |M| is a hitting set for D.

The succinct hitting set barrier

Theorem

Let $M \subseteq K[X]$ be a set of monomials. Let $C \subseteq \langle M \rangle$ and let $\mathcal{D} \subseteq K[T_m : m \in M]$.

There are algebraic D-natural proofs against C iff there are no C-succinct hitting set for D.

Corollary

Let $C \subseteq K[X_1, \ldots, X_n]$ with degree $\leq d$ and computable by poly(n, d)-size circuits. Then there is an algebraic $poly(N_{n,d})$ -natural proof against C iff there is no poly(n, d)-succinct hitting set for $poly(N_{n,d})$ -size circuits in $N_{n,d}$ variables.

 $\mathsf{N}_{\mathfrak{n},d} = \binom{\mathfrak{n}+d}{d}$

The succinct hitting set barrier (2)

Typical regime:

Conjecture/Wish/Fear

There $\operatorname{poly}\log(N)$ -succinct hitting sets for $\operatorname{poly}(N)$ -size circuits.

Tensor rank

Definition

1. A tensor $t \in K^{k \times m \times n}$ has rank-one if

 $t=u\otimes \nu\otimes w:=(u_h\nu_iw_j) \text{ for } u\in K^k\text{, }\nu\in K^m\text{, and }w\in K^n.$

- 2. The rank R(t) of a tensor $t \in K^{k \times m \times n}$ is the smallest number r of rank-one tensors s_1, \ldots, s_r such that $t = s_1 + \cdots + s_r$.
- 3. S_r denotes the set of all tensors of rank $\leq r.$

Definition

 $D \in K[X_1, \ldots, X_{kmn}]$ is a $\operatorname{poly}(k, m, n)\text{-natural proof against } S_r$ if

- D is nonzero,
- D vanishes on S_r, and
- D is computed by circuits of size poly(k, m, n).

Tensor rank (2)

Good news:

Theorem (Håstad)

Tensor rank is NP-hard.

Theorem (Shitov; Schaefer & Stefankovic)

Tensor rank is as hard as the existential theory over K.

Bad news:

- ► S_r is not the zero set of a set of polynomials.
- When D vanishes on S_r , it also vanishes on its closure $\overline{S_r}$.

- $X_r := \overline{S_r}$ is the set of tensors of *border rank* $\leq r$.
- ► X_r contains tensors of rank > r.

(Generalized) matrix completion

Definition

Let $A_0, A_1, \ldots, A_m \in K^{n \times n}$. The *completion rank* of A_0, A_1, \ldots, A_m is the minimum number r such that there are scalars $\lambda_1, \ldots, \lambda_m$ with

$$\operatorname{rk}(A_0 + \lambda_1 A_1 + \dots + \lambda_m A_m) \leq r.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We denote the completion rank by $CR(A_0, A_1, \dots A_m)$.

Can also be phrased in terms of an affine linear matrix A₀ + X₁A₁ + ··· + X_mA_m.

(Generalized) matrix completion (2)

The set of all (m + 1)-tuples of n × n-matrices together with m scalars λ₁,...,λ_m

$$(A_0, A_1, \ldots, A_m, \lambda_1, \ldots, \lambda_m) \in K^{(m+1)n^2 + m}$$

such that

$$\operatorname{rk}(A_0+\lambda_1A_1+\ldots\lambda_mA_m)\leq r$$

is a closed set, since it is defined by vanishing of all $(r+1)\times(r+1)\text{-minors.}$

- Denote this set by $P_r^{m,n}$.
- ▶ Let $C_r^{m,n}$ be the projection of $P_r^{m,n}$ onto the first $(m+1)n^2$ components, that is, $C_r^{m,n}$ is the set of all (A_0, A_1, \ldots, A_m) with $CR(A_0, A_1, \ldots, A_m) \leq r$.
- ► C_r^{m,n} is not closed.

Example

Let $A_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } A_{1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$ $CR(A_{0}, A_{1}) = 2.$ Let $\underbrace{\begin{pmatrix} 1 & 0 \\ \varepsilon & 1 \end{pmatrix}}_{=:A_{0,\varepsilon}} + \frac{1}{\varepsilon} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1/\varepsilon \\ \varepsilon & 1 \end{pmatrix}.$

 $\operatorname{CR}(A_{0,\varepsilon},A_1)=1$ for every $\varepsilon \neq 0$.

- $(A_{0,\epsilon}, A_1)$ converges to (A_0, A_1) in the Euclidean topology.
- (A_0, A_1) is contained in the Euclidean closure of C_1 .

Closure

Example:

- Let B be any rank-one matrix.
- The completion rank of (I, B) is at least n 1.
- We can approximate B by $B + \epsilon I$.

• But
$$I - \frac{1}{\epsilon}(B + \epsilon I)$$
 has rank 1.

Conclusion:

- The rank of the approximating matrices should not be larger than the rank of the matrix itself.
- We take the closure in $K^{n \times n} \times K^{n \times n}_{r_1} \times \cdots \times K^{n \times n}_{r_m}$, where $K^{n \times n}_{\rho}$ denotes the closed set of matrices of rank at most ρ and $r_i = \operatorname{rk}(A_i)$.

Border completion rank

Definition

Let $A_0, A_1, \ldots, A_m \in K^{n \times n}$. The border completion rank of A_0, A_1, \ldots, A_m is the minimum number r such that there are approximations $\tilde{A}_i \in K(\varepsilon)_{\mathrm{rk}(A_i)}^{n \times n}$ with $\tilde{A}_i = A_i + O(\varepsilon)$, $0 \le i \le m$, and rational functions $\lambda_1, \ldots, \lambda_m \in K(\varepsilon)$ with

$$\operatorname{rk}(\tilde{A}_0 + \lambda_1 \tilde{A}_1 + \dots + \lambda_m \tilde{A}_m) \leq r.$$

We denote the border completion rank by $\underline{CR}(A_0, A_1, \dots, A_m)$.

Hardness of completion rank

- φ formula in 2-CNF over the variables x₁,..., x_t with clauses c₁,..., c_s.
- Given b, it is NP-hard to decide whether there is an assignment satisfying at least b clauses.

Clause gadget: $c_i = L_1 \vee L_2$

$$\left(\begin{array}{cc} 1-\ell_1 & 1\\ 0 & 1-\ell_2 \end{array}\right)$$

▶ l_j in the matrix is x_k if the literal $L_j = x_k$ and it is $1 - x_k$ if $L_j = \neg x_k$, j = 1, 2.

Observation

The clause gadget has rank 1 iff at least one of the literals l_1, l_2 is set to be 1. Otherwise, it has rank 2.

Hardness of completion rank (2)

- All clause gadgets are blocks of our desired block diagonal matrix.
- We get a matrix A₀ + x₁A₁ + · · · + x_tA_t with affine linear forms as entries

Proposition

$$\begin{split} &\operatorname{CR}(A_0,A_1,\ldots,A_t) \leq 2s-b \text{ iff } b \text{ clauses of } \varphi \text{ can be satisfied.} \\ & \text{Thus the problem } \operatorname{CR}(A_0,A_1,\ldots,A_t) \stackrel{?}{\leq} k \text{ is NP-hard.} \end{split}$$

Hardness of border completion rank

Observation

Each A_i , $i \ge 1$, is a diagonal matrix with diagonal entries ± 1 . If the jth diagonal entry of A_i is nonzero, then the jth diagonal entry of any other A_k is zero, $i, k \ge 1$.

Let $\tilde{A}_0, \tilde{A}_1, \dots, \tilde{A}_t$ be approximations to A_0, A_1, \dots, A_t , that is, $\tilde{A}_i = A_i + O(\varepsilon)$.

Lemma

There are (invertible) matrices $S = I_n + O(\varepsilon)$ and $T = I_n + O(\varepsilon)$ such that $S \cdot (\tilde{A}_0 + \lambda_1 \tilde{A}_1 + \dots + \lambda_t \tilde{A}_t) \cdot T = \hat{A}_0 + \lambda_1 A_1 + \dots + \lambda_t A_t$ for some $\hat{A}_0 = A_0 + O(\varepsilon)$.

Hardness of border completion rank (2)

Lemma

 $\underline{\mathrm{CR}}(A_0,A_1,\ldots,A_t) \leq 2s-b \text{ iff } b \text{ clauses of } \varphi \text{ can be satisfied}.$

- \blacktriangleright \Leftarrow follows from hardness proof for CR.
- Assume there are $\lambda_i = a_{i,0} \varepsilon^{d_i} + a_{i,1} \varepsilon^{d_i+1} + \dots$ with $a_{i,0} \neq 0$ such that $\operatorname{rk}(\tilde{A}_0 + \lambda_1 A_1 + \dots + \lambda_t A_t) \leq 2s b$.
- \triangleright λ_i induce an assignment to the x_i and thus to literals ℓ_j .
- A clause gadget looks like

$$\left(\begin{array}{cc} 1+O(\varepsilon)-\ell_1 & 1+O(\varepsilon) \\ O(\varepsilon) & 1+O(\varepsilon)-\ell_2 \end{array}\right)$$

To have rank 1, $\ell_1=1+O(\varepsilon)$ or $\ell_2=1+O(\varepsilon).$ We call such clauses " $\varepsilon\text{-satisfied}$ ".

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If we have at least b " ϵ -satisfied" clauses, then we substitute $\epsilon = 0$ in corresponding λ_i and get an exact assignment.

▶ If there are
$$< b \epsilon$$
-satisfied clauses, then
 $\underline{CR}(A_0, A_1, \dots, A_t) > 2s - b.$

Algebraic natural proofs for border completion rank

Let $t\in K^{n\times n\times (m+1)}$. An algebraic $\mathrm{poly}(n)$ -natural proof for the border completion rank of t being >r is a polynomial $P\in K[X_{h,i,j}|1\leq h,i\leq n,\ 0\leq j\leq m]$ such that

- 1. $P(t) \neq 0$,
- 2. P(s) = 0 for every $s \in K^{n \times n \times (m+1)}$ with $\underline{CR}(s) \le r$.
- 3. P is computed by a constant-free algebraic circuit of size $\operatorname{poly}(n)$.

Universal tensors

Observation

Let $U_{i,j}, V_{i,j}, 1 \leq i \leq \rho, 1 \leq j \leq n$ be indeterminates. If we substitute arbitrary constants for the indeterminates in $\sum_{\substack{i=1\\ \rho}}^{\rho} (U_{i,1}, \ldots, U_{i,n})^T (V_{i,1}, \ldots, V_{i,n})$, then we get all matrices in $K_{\rho}^{n \times n}$

Lemma

Let Q_0, Q_1, \ldots, Q_t be polynomial matrices as in the observation above having ranks r_0, \ldots, r_t , respectively. We use fresh variables for each Q_i . Let $g := (Q_0 - Z_0Q_1 - \cdots - Z_tQ_t, Q_1, \ldots, Q_t)$, where Z_1, \ldots, Z_t are new variables. If we substitute arbitrary constants for the indeterminates, then we get all tensors of completion rank $\leq r_0$

with the i^{th} slice having rank $\leq r_i$, $1 \leq i \leq t$.

Main result

Theorem

For infinitely many n, there is an m, a tensor $t \in K^{n \times n \times m}$ and a value r such that there is no algebraic poly(n)-natural proof for the fact that $\underline{CR}(t) > r$ unless $coNP \subseteq \exists BPP$.

- Let φ be a formula in 2-CNF and let b ∈ N. We want to check whether every assignment satisfies < b clauses of φ. This problem is coNP-hard.
- Let $T_{\varphi} = (A_0, \dots, A_t)$ be the tensor constructed above.
- Guess a circuit C of polynomial size computing some P.
- Decide whether P(g) = 0 using polynomial identity testing.
- ▶ Check whether $P(T_{\varphi}) \neq 0$. If yes, then accept. Otherwise reject.

Orbit closures

Observation

We can write $\overline{C_r^{m,n}}$ as an orbit closure.

 \longrightarrow Orbit closure containment problem is hard

Caveat:

- group might not be reductive
- closure taken in some variety (not a vector space)

Minrank problem

The homongeneous version, given A_0, \ldots, A_t and r, is there a nontrivial linear combination such that

```
\operatorname{rk}(\lambda_0 A_0 + \dots + \lambda_t A_t) \leq r,
```

is also NP-hard.

- closure is taken with respect to a vector space
- ► all tensors of (border) minrank ≤ r can be written as an orbit closure
- ▶ group $\operatorname{GL}_m \times \operatorname{GL}_n \times \operatorname{GL}_\ell$ is reductive
- the generating tensors are described by their symmetries

Theorem

The orbit closure containment problem for tensors is NP-hard.

Relation to tensor (border) rank

Theorem (Derksen)

If $t=(A_0,A_1,\ldots,A_m)$ is a concise tensor such that $\mathrm{rk}(A_1)=\cdots=\mathrm{rk}(A_m)=1.$ Then

 $\mathbf{R}(t) = \mathbf{CR}(t) + \mathbf{m}.$

Proposition

If
$$t = (A_0, A_1, \dots, A_m)$$
 is a tensor such that $rk(A_1) = \dots = rk(A_m) = 1$. Then

 $\underline{R}(t) \leq \underline{CR}(t) + \mathfrak{m}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tensor rank is hard to approximate

Theorem

Tensor rank is NP-hard to approximate within $(1 + \varepsilon)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Independently also proven by

- Song, Woodruff, and Zhong
- Swernofsky

Tensor rank is hard to approximate (2)

Let φ be a formula in 3-CNF with t variables and s clauses such that every variable appears in a constant number c of clauses. Note that s = O(t).

- We construct a matrix completion problem as before.
- We will have variable gadgets and clause gadgets.
- They will appear as blocks on the main diagonal.
- **Problem:** Everything needs to be of rank 1.

Variable gadget

$$\begin{pmatrix} 1 & x & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & u & 0 & u - u_1 & 0 & u - u_2 & 0 & 0 \\ 0 & u - u_3 & 1 & u & 0 & u - u_4 & 0 & 0 \\ 0 & 0 & 1 & v & 0 & 0 & 0 & 2v - v_1 \\ 0 & u - u_5 & 0 & u - u_6 & 1 & u & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & w & 2w - w_1 & 0 \\ 0 & 0 & 0 & v - v_2 & 0 & 0 & 1 & 2(v - 1/2) \\ 0 & 0 & 0 & 0 & w - w_2 & 2(w - 1/2) & 1 \end{pmatrix}$$

Lemma

- 1. If x is set to 0 or 1, then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
- 2. If the variables are set in such a way that the rank of the variable gadget is 4, then x is set to 0 or 1.

Variable gadget

Lemma

- 1. If x is set to 0 or 1, then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
- 2. If the variables are set in such a way that the rank of the variable gadget is 4, then x is set to 0 or 1.

Clause gadget

- ▶ l(u) = u if x appears positive in the clause and l(u) = 1 u otherwise.
- ► s(u) = -u if x appears positive in the clause and s(u) = u otherwise.

Hardness of approximation

Lemma

Assume that ϕ is either satisfiable or any assignment satisfies at most $(1 - \epsilon)$ of the clauses for some $\epsilon > 0$.

- 1. If φ is satisfiable, then the completion rank of T_φ is 4t+5s.
- 2. If ϕ is not satisfiable, then the completion rank of T_{ϕ} is at least $4t + 5s + \delta t$ for some constant $\delta > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

Tensor rank is NP-hard to approximate.

Matrices with permanent zero

Let X be an $n \times n$ matrix. Construct a matrix Z as follows:

$$\begin{cases} z_{ij} = x_{ij} & \text{for } i \leq n-1, \\ z_{nj} = x_{nj} \operatorname{per} X_{nn} & \text{for } j \leq n-1, \\ z_{nn} = -\sum_{j=1}^{n-1} x_{nj} \operatorname{per} X_{nj}, \end{cases}$$

where X_{ij} is the matrix obtained from X by removing the i^{th} row and the j^{th} column.

Observation

We have per Z = 0. Moreover, any matrix with per Z = 0 and per $Z_{nn} \neq 0$ can be obtained in this way.

Natural proofs for matrices with permanent zero

Theorem

Let $\mathcal{Z}_n \subseteq K^{n \times n}$ be the set of matrices with permanent 0. If \mathcal{Z}_n has algebraic VP⁰-natural proofs, then $P^{\#P} \subseteq \exists BPP$.

- Construct iteratively a polynomial size circuit computing perk.
- Using the circuit for per_{k-1} compute a small circuit computing Z_k.
- Guess a polynomial size circuit C_k vanishing on Z_k
- Verify this by checking $C_k(Z_k) = 0$.
- By Hilbert's Nullstellensatz, per_k^e divides C_k .
- Compute a small circuit of per_k using Kaltofen's factoring algorithm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

GCT breaks the algebraic natural proofs barrier

• $\mathcal{Z} \subseteq \mathbb{C}^{n \times n}$ all matrices with permanent 0.

▶ GL_n × GL_n acts on C^{n×n} via left-right multiplication:

$$(g_1,g_2)\cdot A := g_1 A (g_2)^\mathsf{T}.$$

- Let Q_n ⊆ GL_n denote the group of monomial matrices, i.e., matrices with nonzero determinant that have a single nonzero entry in each row and column.
- $\begin{array}{ll} \blacktriangleright \ \mathcal{Z} \ \text{is closed under the action of the group} \\ G:=Q_n\times Q_n\subseteq \operatorname{GL}_n\times \operatorname{GL}_n, \ \text{which means that if } A\in \mathsf{Z}, \\ \text{then } gA\in \mathsf{Z} \ \text{for all } g\in G. \end{array}$

The GCT framework

• Assume that $A \in \mathcal{Z}$.

▶ $GA := \{gA \mid g \in G\}$ is contained in Z

• $\overline{\mathsf{GA}} \subseteq \mathcal{Z}$ as a subvariety.

- For a Zariski-closed subset Y ⊆ C^{n×n} let I(Y) ⊆ C[C^{n×n}] denote the vanishing ideal of Y.
- I(Y)_d the homogeneous degree d component of I(Y). (inherits grading)
- Coordinate ring $\mathbb{C}[Y]$ of Y is the quotient $\mathbb{C}[Y] := \mathbb{C}[\mathbb{C}^{n \times n}]/I(Y),$ inherits the grading $\mathbb{C}[Y]_d := \mathbb{C}[\mathbb{C}^{n \times n}]_d/I(Y)_d.$
- ▶ Since $\overline{GA} \subseteq \mathcal{Z}$, $I(\mathcal{Z})_d \subseteq I(\overline{GA})_d$ for all d.
- Canonical surjection by restriction: $\mathbb{C}[\mathcal{Z}]_d \twoheadrightarrow \mathbb{C}[\overline{GA}]_d$

Representations

Definition

- An H-representation is a finite dimensional vector space V with a group homomorphism ρ : H → GL(V). We write gf for (ρ(g))(f).
- A linear map $\phi: V_1 \to V_2$ between two H-representations is called *equivariant* if for all $g \in H$ and $f \in V_1$, $\phi(gf) = g\phi(f)$.
- A bijective equivariant map is called an H-isomorphism.
- Two H-representations are called *isomorphic* if an H-isomorphism exists from one to the other.
- A linear subspace of an H-representation that is closed under the action of H is called a *subrepresentation*.
- An H-representation whose only subrepresentations are itself and 0 is called *irreducible*.

Representations (2)

- ► Canonical pullback: $(gf)(B) := f(g^T B)$ for $g \in G$, $f \in \mathbb{C}[Y]$, $B \in \mathbb{C}^{n \times n}$.
- Turns $\mathbb{C}[\mathcal{Z}]_d$ and $\mathbb{C}[\overline{GA}]_d$ into G-representations.
- G is *linearly reductive*, which means that every G-representation V decomposes into a direct sum of irreducible representations.
- For each type λ the *multiplicity* $mult_{\lambda}(V)$ of λ in V is unique.

Lemma (Schur)

For an equivariant map $\phi: V \to W$, the image $\phi(V)$ is a G-representation and $\operatorname{mult}_{\lambda}(V) \ge \operatorname{mult}_{\lambda}(\phi(V))$.

• The map $\mathbb{C}[\mathcal{Z}]_d \twoheadrightarrow \mathbb{C}[\overline{GA}]_d$ is equivariant, thus

 $\operatorname{mult}_{\lambda}(\mathbb{C}[\mathcal{Z}]_d) \ge \operatorname{mult}_{\lambda}(\mathbb{C}[\overline{\mathsf{GA}}]_d).$

► A λ that violates this is an *obstruction* and proves "A $\notin Z$ ".

Main result

Theorem

Let $G:=Q_n\times Q_n$ and $\nu:=(((1^n),(n)),((1^n),(n))).$ Then

▶
$$\operatorname{mult}_{\nu}(\mathbb{C}[Z]_n) = 0$$
 and
▶ $\operatorname{mult}_{\nu}(\mathbb{C}[\overline{GA}]_n) = \begin{cases} 0 & \text{if } A \in Z \\ 1 & \text{otherwise} \end{cases}$.

- Subrepresentation is (per) with $\text{mult}_{\nu} \mathbb{C}[\mathbb{C}^{n \times n}]_n = 1$.
- $\operatorname{mult}_{\nu}(I(\mathcal{Z})_n) = 1$ and thus $\operatorname{mult}_{\nu}(\mathbb{C}[\mathcal{Z}]_n) = 0$.
- ▶ For $A \in \mathcal{Z}$, $\overline{GA} \subseteq \mathcal{Z}$. Therefore $\operatorname{mult}_{\nu}(\mathbb{C}[\overline{GA}]_n) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► For $A \notin \mathbb{Z}$, $\operatorname{mult}_{\nu}(I(\overline{GA}))_n) = 0$ and therefore $\operatorname{mult}_{\nu}(\mathbb{C}[\overline{GA}])_n = 1)$.

Thank You!