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Natural proofs

Definition (Razborov & Rudich)

A property P of Boolean functions is natural if it has the following
properties:

Usefulness: If f : {0, 1}n → {0, 1} has poly(n)-sized circuits, then
f ∈ P.

Constructivity: Given f by a truthtable of size N = 2n, we can
decide f ∈ P in time poly(N).

Largeness: A random function is not in P with probability at
least 1/ poly(N) = 2−O(n).



The Razborov–Rudich barrier

I A function f : {0, 1}n × {0, 1}` → {0, 1} is pseudorandom if
when sampling the key k ∈ {0, 1}` uniformly at random, the
resulting distribution f( . , k) is computationally
indistinguishable from a truly random function.

I If oneway functions exists, so do pseudorandom functions.

Theorem (Razborov & Rudich)

A natural property P distinguishes a pseudorandom function having
poly(n)-size circuits from a truly random function in time 2O(n).

Conclusion

If you believe in private key cryptography, then no natural proof
will show superpolynomial circuit lower bounds.



Algebraic natural proofs

Definition (Forbes, Shpilka & Volk,
Grochow, Kumar, Saks & Saraf)

Let M ⊆ K[X] be a set of monomials.
Let C ⊆ 〈M〉 and let D ⊆ K[Tm : m ∈M].

A polynomial D ∈ D is an algebraic D-natural proof against C, if

1. D is a nonzero polynomial and

2. for all f ∈ C, D(f) = 0, that is, D vanishes on the coefficient
vectors of all polynomials in C.



Succinct hitting sets

Definition

A hitting set for P ⊆ K[X1, . . . , Xµ] is a set H ⊆ Kµ such that for
all p ∈ P, there is an h ∈ H such that p(h) 6= 0.

Definition (Succinct hitting sets)

Let M ⊆ K[X] be a set of monomials.
Let C ⊆ 〈M〉 and let D ⊆ K[Tm : m ∈M].

H is a C-succinct hitting set for D if

I H ⊆ C and

I H viewed as a set of vectors of coefficients of length |M| is a
hitting set for D.



The succinct hitting set barrier

Theorem

Let M ⊆ K[X] be a set of monomials.
Let C ⊆ 〈M〉 and let D ⊆ K[Tm : m ∈M].

There are algebraic D-natural proofs against C iff
there are no C-succinct hitting set for D.

Corollary

Let C ⊆ K[X1, . . . , Xn] with degree ≤ d and computable by
poly(n, d)-size circuits.
Then there is an algebraic poly(Nn,d)-natural proof against C iff
there is no poly(n, d)-succinct hitting set for poly(Nn,d)-size
circuits in Nn,d variables.

Nn,d =
(
n+d
d

)



The succinct hitting set barrier (2)

Typical regime:

I Nn,d =
(
n+d
d

)
I d = poly(n) −→ poly(n) = poly log(Nn,d)

Conjecture/Wish/Fear

There poly log(N)-succinct hitting sets for poly(N)-size circuits.



Tensor rank

Definition

1. A tensor t ∈ Kk×m×n has rank-one if
t = u⊗ v⊗w := (uhviwj) for u ∈ Kk, v ∈ Km, and w ∈ Kn.

2. The rank R(t) of a tensor t ∈ Kk×m×n is the smallest number
r of rank-one tensors s1, . . . , sr such that t = s1 + · · ·+ sr.

3. Sr denotes the set of all tensors of rank ≤ r.

Definition

D ∈ K[X1, . . . , Xkmn] is a poly(k,m,n)-natural proof against Sr if

I D is nonzero,

I D vanishes on Sr, and

I D is computed by circuits of size poly(k,m,n).



Tensor rank (2)

Good news:

Theorem (Håstad)

Tensor rank is NP-hard.

Theorem (Shitov; Schaefer & Stefankovic)

Tensor rank is as hard as the existential theory over K.

Bad news:

I Sr is not the zero set of a set of polynomials.

I When D vanishes on Sr, it also vanishes on its closure Sr.

I Xr := Sr is the set of tensors of border rank ≤ r.
I Xr contains tensors of rank > r.



(Generalized) matrix completion

Definition

Let A0, A1, . . . , Am ∈ Kn×n. The completion rank of
A0, A1, . . . , Am is the minimum number r such that there are
scalars λ1, . . . , λm with

rk(A0 + λ1A1 + · · ·+ λmAm) ≤ r.

We denote the completion rank by CR(A0, A1, . . . Am).

I Can also be phrased in terms of an affine linear matrix
A0 + X1A1 + · · ·+ XmAm.



(Generalized) matrix completion (2)

I The set of all (m+ 1)-tuples of n× n-matrices together with
m scalars λ1, . . . , λm

(A0, A1, . . . , Am, λ1, . . . , λm) ∈ K(m+1)n2+m

such that
rk(A0 + λ1A1 + . . . λmAm) ≤ r

is a closed set, since it is defined by vanishing of all
(r+ 1)× (r+ 1)-minors.

I Denote this set by Pm,nr .

I Let Cm,nr be the projection of Pm,nr onto the first (m+ 1)n2

components, that is, Cm,nr is the set of all (A0, A1, . . . , Am)
with CR(A0, A1, . . . , Am) ≤ r.

I Cm,nr is not closed.



Example

I Let

A0 =

(
1 0

0 1

)
and A1 =

(
0 1

0 0

)
.

CR(A0, A1) = 2.

I Let (
1 0

ε 1

)
︸ ︷︷ ︸

=:A0,ε

+
1

ε

(
0 1

0 0

)
=

(
1 1/ε

ε 1

)
.

CR(A0,ε, A1) = 1 for every ε 6= 0.

I (A0,ε, A1) converges to (A0, A1) in the Euclidean topology.

I (A0, A1) is contained in the Euclidean closure of C1.



Closure

Example:

I Let B be any rank-one matrix.

I The completion rank of (I, B) is at least n− 1.

I We can approximate B by B+ εI.

I But I− 1
ε(B+ εI) has rank 1.

Conclusion:

I The rank of the approximating matrices should not be larger
than the rank of the matrix itself.

I We take the closure in Kn×n × Kn×nr1
× · · · × Kn×nrm , where

Kn×nρ denotes the closed set of matrices of rank at most ρ
and ri = rk(Ai).



Border completion rank

Definition

Let A0, A1, . . . , Am ∈ Kn×n. The border completion rank of
A0, A1, . . . , Am is the minimum number r such that there are
approximations Ãi ∈ K(ε)n×nrk(Ai)

with Ãi = Ai +O(ε), 0 ≤ i ≤ m,

and rational functions λ1, . . . , λm ∈ K(ε) with

rk(Ã0 + λ1Ã1 + · · ·+ λmÃm) ≤ r.

We denote the border completion rank by CR(A0, A1, . . . Am).



Hardness of completion rank

I φ formula in 2-CNF over the variables x1, . . . , xt with clauses
c1, . . . , cs.

I Given b, it is NP-hard to decide whether there is an
assignment satisfying at least b clauses.

Clause gadget: ci = L1 ∨ L2(
1− `1 1

0 1− `2

)
I `j in the matrix is xk if the literal Lj = xk and

it is 1− xk if Lj = ¬xk, j = 1, 2.

Observation

The clause gadget has rank 1 iff at least one of the literals `1, `2 is
set to be 1. Otherwise, it has rank 2.



Hardness of completion rank (2)

I All clause gadgets are blocks of our desired block diagonal
matrix.

I We get a matrix A0 + x1A1 + · · ·+ xtAt with affine linear
forms as entries

Proposition

CR(A0, A1, . . . , At) ≤ 2s− b iff b clauses of φ can be satisfied.

Thus the problem CR(A0, A1, . . . , At)
?
≤ k is NP-hard.



Hardness of border completion rank

Observation

Each Ai, i ≥ 1, is a diagonal matrix with diagonal entries ±1.
If the jth diagonal entry of Ai is nonzero, then the jth diagonal
entry of any other Ak is zero, i, k ≥ 1.

Let Ã0, Ã1, . . . , Ãt be approximations to A0, A1, . . . , At, that is,
Ãi = Ai +O(ε).

Lemma

There are (invertible) matrices S = In +O(ε) and T = In +O(ε)
such that S · (Ã0+λ1Ã1+ · · ·+λtÃt) · T = Â0+λ1A1+ · · ·+λtAt
for some Â0 = A0 +O(ε).



Hardness of border completion rank (2)

Lemma

CR(A0, A1, . . . , At) ≤ 2s− b iff b clauses of φ can be satisfied.

I ⇐ follows from hardness proof for CR.
I Assume there are λi = ai,0ε

di + ai,1ε
di+1 + . . . with ai,0 6= 0

such that rk(Ã0 + λ1A1 + · · ·+ λtAt) ≤ 2s− b.
I λi induce an assignment to the xi and thus to literals `j.
I A clause gadget looks like(

1+O(ε) − `1 1+O(ε)
O(ε) 1+O(ε) − `2

)
To have rank 1, `1 = 1+O(ε) or `2 = 1+O(ε). We call such
clauses “ε-satisfied”.

I If we have at least b “ε-satisfied” clauses, then we substitute
ε = 0 in corresponding λi and get an exact assignment.

I If there are < b ε-satisfied clauses, then
CR(A0, A1, . . . , At) > 2s− b.



Algebraic natural proofs for border completion rank

Let t ∈ Kn×n×(m+1). An algebraic poly(n)-natural proof for the
border completion rank of t being > r is a polynomial
P ∈ K[Xh,i,j|1 ≤ h, i ≤ n, 0 ≤ j ≤ m] such that

1. P(t) 6= 0,

2. P(s) = 0 for every s ∈ Kn×n×(m+1) with CR(s) ≤ r.
3. P is computed by a constant-free algebraic circuit of size

poly(n).



Universal tensors

Observation

Let Ui,j, Vi,j, 1 ≤ i ≤ ρ, 1 ≤ j ≤ n be indeterminates. If we
substititute arbitrary constants for the indeterminates in∑ρ
i=1(Ui,1, . . . , Ui,n)

T (Vi,1, . . . , Vi,n), then we get all matrices in
Kn×nρ

Lemma

Let Q0, Q1, . . . , Qt be polynomial matrices as in the observation
above having ranks r0, . . . , rt, respectively. We use fresh variables
for each Qi.
Let g := (Q0 − Z0Q1 − · · ·− ZtQt, Q1, . . . , Qt), where Z1, . . . , Zt
are new variables. If we substitute arbitrary constants for the
indeterminates, then we get all tensors of completion rank ≤ r0
with the ith slice having rank ≤ ri, 1 ≤ i ≤ t.



Main result

Theorem

For infinitely many n, there is an m, a tensor t ∈ Kn×n×m and a
value r such that there is no algebraic poly(n)-natural proof for
the fact that CR(t) > r unless coNP ⊆ ∃BPP.

I Let φ be a formula in 2-CNF and let b ∈ N. We want to
check whether every assignment satisfies < b clauses of φ.
This problem is coNP-hard.

I Let Tφ = (A0, . . . , At) be the tensor constructed above.

I Guess a circuit C of polynomial size computing some P.

I Decide whether P(g) = 0 using polynomial identity testing.

I Check whether P(Tφ) 6= 0. If yes, then accept. Otherwise
reject.



Orbit closures

Observation

We can write Cm,nr as an orbit closure.

−→ Orbit closure containment problem is hard

Caveat:

I group might not be reductive

I closure taken in some variety (not a vector space)



Minrank problem

The homongeneous version, given A0, . . . , At and r, is there a
nontrivial linear combination such that

rk(λ0A0 + · · ·+ λtAt) ≤ r,

is also NP-hard.

I closure is taken with respect to a vector space

I all tensors of (border) minrank ≤ r can be written as an orbit
closure

I group GLm ×GLn ×GL` is reductive

I the generating tensors are described by their symmetries

Theorem

The orbit closure containment problem for tensors is NP-hard.



Relation to tensor (border) rank

Theorem (Derksen)

If t = (A0, A1, . . . , Am) is a concise tensor such that
rk(A1) = · · · = rk(Am) = 1. Then

R(t) = CR(t) +m.

Proposition

If t = (A0, A1, . . . , Am) is a tensor such that
rk(A1) = · · · = rk(Am) = 1. Then

R(t) ≤ CR(t) +m.



Tensor rank is hard to approximate

Theorem

Tensor rank is NP-hard to approximate within (1+ ε).

Independently also proven by

I Song, Woodruff, and Zhong

I Swernofsky



Tensor rank is hard to approximate (2)

I Let φ be a formula in 3-CNF with t variables and s clauses
such that every variable appears in a constant number c of
clauses. Note that s = O(t).

I We construct a matrix completion problem as before.

I We will have variable gadgets and clause gadgets.

I They will appear as blocks on the main diagonal.

I Problem: Everything needs to be of rank 1.



Variable gadget



1 x 0 0 0 0 0 0

1 u 0 u− u1 0 u− u2 0 0

0 u− u3 1 u 0 u− u4 0 0

0 0 1 v 0 0 0 2v− v1
0 u− u5 0 u− u6 1 u 0 0

0 0 0 0 1 w 2w−w1 0

0 0 0 v− v2 0 0 1 2(v− 1/2)
0 0 0 0 0 w−w2 2(w− 1/2) 1



Lemma

1. If x is set to 0 or 1, then the local variables in the variable
gadget can be set such that the resulting matrix has rank 4.

2. If the variables are set in such a way that the rank of the
variable gadget is 4, then x is set to 0 or 1.



Variable gadget



1 x 0 0 0 0 0 0

1 u 0 0 0 0 0 0

0 0 1 u 0 0 0 0

0 0 1 v 0 0 0 0

0 0 0 0 1 u 0 0

0 0 0 0 1 w 0 0

0 0 0 0 0 0 1 2(v− 1/2)
0 0 0 0 0 0 2(w− 1/2) 1


Lemma

1. If x is set to 0 or 1, then the local variables in the variable
gadget can be set such that the resulting matrix has rank 4.

2. If the variables are set in such a way that the rank of the
variable gadget is 4, then x is set to 0 or 1.



Clause gadget



1 x 0 0 0 0 0 0 0
1 u 0 0 0 0 s(u) − u1 0 0
0 0 1 y 0 0 0 0 0
0 0 1 v 0 0 0 s(v) − v1 0
0 0 0 0 1 z 0 0 0
0 0 0 0 1 w 0 0 s(w) −w1
0 u− u2 0 0 0 0 1− `(u) 1 0
0 0 0 v− v2 0 0 0 1− `(v) 1
0 0 0 0 0 w−w2 0 0 1− `(w)


I `(u) = u if x appears positive in the clause and `(u) = 1− u

otherwise.

I s(u) = −u if x appears positive in the clause and s(u) = u
otherwise.



Hardness of approximation

Lemma

Assume that φ is either satisfiable or any assignment satisfies at
most (1− ε) of the clauses for some ε > 0.

1. If φ is satisfiable, then the completion rank of Tφ is 4t+ 5s.

2. If φ is not satisfiable, then the completion rank of Tφ is at
least 4t+ 5s+ δt for some constant δ > 0.

Theorem

Tensor rank is NP-hard to approximate.



Matrices with permanent zero

Let X be an n× n matrix. Construct a matrix Z as follows:
zij = xij for i ≤ n− 1,

znj = xnj perXnn for j ≤ n− 1,

znn = −
∑n−1
j=1 xnj perXnj,

where Xij is the matrix obtained from X by removing the ith row
and the jth column.

Observation

We have perZ = 0. Moreover, any matrix with perZ = 0 and
perZnn 6= 0 can be obtained in this way.



Natural proofs for matrices with permanent zero

Theorem

Let Zn ⊆ Kn×n be the set of matrices with permanent 0.
If Zn has algebraic VP0-natural proofs, then P#P ⊆ ∃BPP.

I Construct iteratively a polynomial size circuit computing perk.

I Using the circuit for perk−1 compute a small circuit
computing Zk.

I Guess a polynomial size circuit Ck vanishing on Zk
I Verify this by checking Ck(Zk) = 0.

I By Hilbert’s Nullstellensatz, perek divides Ck.

I Compute a small circuit of perk using Kaltofen’s factoring
algorithm.



GCT breaks the algebraic natural proofs barrier

I Z ⊆ Cn×n all matrices with permanent 0.

I GLn ×GLn acts on Cn×n via left-right multiplication:

(g1, g2) ·A := g1A(g2)
T .

I Let Qn ⊆ GLn denote the group of monomial matrices, i.e.,
matrices with nonzero determinant that have a single nonzero
entry in each row and column.

I Z is closed under the action of the group
G := Qn ×Qn ⊆ GLn ×GLn, which means that if A ∈ Z,
then gA ∈ Z for all g ∈ G.



The GCT framework

I Assume that A ∈ Z.

I GA := {gA | g ∈ G} is contained in Z
I GA ⊆ Z as a subvariety.

I For a Zariski-closed subset Y ⊆ Cn×n let I(Y) ⊆ C[Cn×n]
denote the vanishing ideal of Y.

I I(Y)d the homogeneous degree d component of I(Y).
(inherits grading)

I Coordinate ring C[Y] of Y is the quotient
C[Y] := C[Cn×n]/I(Y),
inherits the grading C[Y]d := C[Cn×n]d/I(Y)d.

I Since GA ⊆ Z, I(Z)d ⊆ I(GA)d for all d.

I Canonical surjection by restriction: C[Z]d � C[GA]d



Representations

Definition

I An H-representation is a finite dimensional vector space V
with a group homomorphism ρ : H→ GL(V).
We write gf for (ρ(g))(f).

I A linear map ϕ : V1 → V2 between two H-representations is
called equivariant if for all g ∈ H and f ∈ V1, ϕ(gf) = gϕ(f).

I A bijective equivariant map is called an H-isomorphism.

I Two H-representations are called isomorphic if an
H-isomorphism exists from one to the other.

I A linear subspace of an H-representation that is closed under
the action of H is called a subrepresentation.

I An H-representation whose only subrepresentations are itself
and 0 is called irreducible.



Representations (2)

I Canonical pullback: (gf)(B) := f(gTB)
for g ∈ G, f ∈ C[Y], B ∈ Cn×n.

I Turns C[Z]d and C[GA]d into G-representations.

I G is linearly reductive, which means that every
G-representation V decomposes into a direct sum of
irreducible representations.

I For each type λ the multiplicity multλ(V) of λ in V is unique.

Lemma (Schur)

For an equivariant map ϕ : V →W, the image ϕ(V) is a
G-representation and multλ(V) ≥ multλ(ϕ(V)).

I The map C[Z]d � C[GA]d is equivariant, thus

multλ(C[Z]d) ≥ multλ(C[GA]d).

I A λ that violates this is an obstruction and proves “A /∈ Z”.



Main result

Theorem

Let G := Qn ×Qn and ν := (((1n), (n)), ((1n), (n))). Then

I multν(C[Z]n) = 0 and

I multν(C[GA]n) =

{
0 if A ∈ Z
1 otherwise

.

I Subrepresentation is 〈per〉 with multνC[Cn×n]n = 1.

I multν(I(Z)n) = 1 and thus multν(C[Z]n) = 0.

I For A ∈ Z, GA ⊆ Z. Therefore multν(C[GA]n) = 0.

I For A /∈ Z , multν(I(GA))n) = 0 and therefore
multν(C[GA)]n = 1).



Thank You!


