Generalized matrix completion and algebraic natural proofs

Markus Bläser

Saarland University

with Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf Schreyer

Natural proofs

Definition (Razborov & Rudich)

A property P of Boolean functions is *natural* if it has the following properties:

Usefulness: If $f : \{0, 1\}^n \to \{0, 1\}$ has $\text{poly}(n)$ -sized circuits, then $f \in \mathcal{P}$.

Constructivity: Given f by a truthtable of size $N = 2^n$, we can decide $f \in \mathcal{P}$ in time $\text{poly}(N)$.

Largeness: A random function is not in P with probability at least $1/\text{poly}(N) = 2^{-O(n)}$.

KORKAR KERKER SAGA

The Razborov–Rudich barrier

- A function $f: \{0, 1\}^n \times \{0, 1\}^l \rightarrow \{0, 1\}$ is pseudorandom if when sampling the key $\mathrm{k} \in \{0,1\}^{\ell}$ uniformly at random, the resulting distribution $f(x, k)$ is computationally indistinguishable from a truly random function.
- \blacktriangleright If oneway functions exists, so do pseudorandom functions.

Theorem (Razborov & Rudich)

A natural property P distinguishes a pseudorandom function having $\operatorname{poly}({\mathfrak n})$ -size circuits from a truly random function in time $2^{{\mathsf{O}}({\mathfrak n})}.$

Conclusion

If you believe in private key cryptography, then no natural proof will show superpolynomial circuit lower bounds.

Algebraic natural proofs

Definition (Forbes, Shpilka & Volk, Grochow, Kumar, Saks & Saraf)

Let $M \subset K[X]$ be a set of monomials. Let $C \subseteq \langle M \rangle$ and let $\mathcal{D} \subseteq K[T_m : m \in M]$.

A polynomial $D \in \mathcal{D}$ is an algebraic D-natural proof against C, if

- 1. D is a nonzero polynomial and
- 2. for all $f \in \mathcal{C}$, $D(f) = 0$, that is, D vanishes on the coefficient vectors of all polynomials in C.

KORK EXTERNE PROVIDE

Succinct hitting sets

Definition

A *hitting set* for $\mathcal{P} \subseteq \mathsf{K}[X_1,\ldots,X_\mu]$ is a set $\mathcal{H} \subseteq \mathsf{K}^\mu$ such that for all $p \in \mathcal{P}$, there is an $h \in \mathcal{H}$ such that $p(h) \neq 0$.

Definition (Succinct hitting sets)

Let $M \subseteq K[X]$ be a set of monomials. Let $C \subseteq \langle M \rangle$ and let $\mathcal{D} \subseteq K[T_m : m \in M]$.

H is a \mathcal{C} -succinct hitting set for $\mathcal D$ if

- \blacktriangleright H $\subset \mathcal{C}$ and
- \blacktriangleright H viewed as a set of vectors of coefficients of length $|M|$ is a hitting set for D.

KORKARYKERKER OQO

The succinct hitting set barrier

Theorem

Let $M \subseteq K[X]$ be a set of monomials. Let $C \subseteq \langle M \rangle$ and let $\mathcal{D} \subseteq K[T_m : m \in M]$.

There are algebraic D -natural proofs against C iff there are no C-succinct hitting set for D.

Corollary

Let $C \subseteq K[X_1, \ldots, X_n]$ with degree $\leq d$ and computable by $poly(n, d)$ -size circuits. Then there is an algebraic $poly(N_{n,d})$ -natural proof against C iff there is no $poly(n, d)$ -succinct hitting set for $poly(N_{n,d})$ -size circuits in $N_{n,d}$ variables.

KORKARYKERKER OQO

 $N_{n,d} = \binom{n+d}{d}$ $\binom{+d}{d}$

The succinct hitting set barrier (2)

Typical regime:

$$
\begin{aligned} &\blacktriangleright N_{n,d} = \binom{n+d}{d} \\ &\blacktriangleright d = \text{poly}(n) \longrightarrow \text{poly}(n) = \text{poly}\log(N_{n,d}) \end{aligned}
$$

Conjecture/Wish/Fear

There $polylog(N)$ -succinct hitting sets for $poly(N)$ -size circuits.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Tensor rank

Definition

1. A tensor $t \in K^{k \times m \times n}$ has rank-one if

 $\mathfrak{t}=\mathfrak{u}\otimes\mathfrak{v}\otimes\mathfrak{w}:=(\mathfrak{u}_\mathfrak{h}\mathfrak{v}_\mathfrak{i}\mathfrak{w}_\mathfrak{j})$ for $\mathfrak{u}\in\mathsf{K}^\mathfrak{k}$, $\mathfrak{v}\in\mathsf{K}^\mathfrak{m}$, and $\mathfrak{w}\in\mathsf{K}^\mathfrak{n}$.

- 2. The rank R(t) of a tensor $t \in K^{k \times m \times n}$ is the smallest number r of rank-one tensors s_1, \ldots, s_r such that $t = s_1 + \cdots + s_r$.
- 3. S_r denotes the set of all tensors of rank \leq r.

Definition

 $D \in K[X_1, \ldots, X_{k+m}]$ is a poly (k, m, n) -natural proof against S_r if

KORKARYKERKER OQO

- \blacktriangleright D is nonzero.
- \blacktriangleright D vanishes on S_r , and
- \triangleright D is computed by circuits of size $\text{poly}(k, m, n)$.

Tensor rank (2)

Good news:

Theorem (Håstad)

Tensor rank is NP-hard.

Theorem (Shitov; Schaefer & Stefankovic)

Tensor rank is as hard as the existential theory over K.

Bad news:

- \triangleright S_r is not the zero set of a set of polynomials.
- \triangleright When D vanishes on S_r , it also vanishes on its closure $\overline{S_r}$.

KORKAR KERKER SAGA

- $X_r := \overline{S_r}$ is the set of tensors of *border rank* $\leq r$.
- \blacktriangleright X_r contains tensors of rank $>$ r.

(Generalized) matrix completion

Definition

Let $A_0, A_1, \ldots, A_m \in K^{n \times n}$. The *completion rank* of A_0, A_1, \ldots, A_m is the minimum number r such that there are scalars $\lambda_1, \ldots, \lambda_m$ with

$$
rk(A_0+\lambda_1A_1+\cdots+\lambda_mA_m)\leq r.
$$

KORKARYKERKER POLO

We denote the completion rank by $\operatorname{CR}(A_0, A_1, \ldots, A_m)$.

 \triangleright Can also be phrased in terms of an affine linear matrix $A_0 + X_1A_1 + \cdots + X_mA_m$.

(Generalized) matrix completion (2)

 \blacktriangleright The set of all $(m + 1)$ -tuples of $n \times n$ -matrices together with m scalars $\lambda_1, \ldots, \lambda_m$

$$
(A_0, A_1, \ldots, A_m, \lambda_1, \ldots, \lambda_m) \in K^{(m+1)n^2+m}
$$

such that

$$
\operatorname{rk}(A_0+\lambda_1 A_1+\dots \lambda_m A_m)\leq r
$$

is a closed set, since it is defined by vanishing of all $(r + 1) \times (r + 1)$ -minors.

- Denote this set by $P_r^{m,n}$.
- In Let $C_r^{m,n}$ be the projection of $P_r^{m,n}$ onto the first $(m+1)n^2$ components, that is, $C_r^{m,n}$ is the set of all (A_0, A_1, \ldots, A_m) with $CR(A_0, A_1, \ldots, A_m) \leq r$.

KORKAR KERKER SAGA

 \blacktriangleright $C_r^{m,n}$ is not closed.

Example

 \blacktriangleright Let $A_0=\left(\begin{array}{cc} 1 & 0 \ 0 & 1 \end{array}\right) \qquad \text{and} \qquad A_1=\left(\begin{array}{cc} 0 & 1 \ 0 & 0 \end{array}\right).$ $CR(A_0, A_1) = 2.$ \blacktriangleright Let $\begin{pmatrix} 1 & 0 \\ \epsilon & 1 \end{pmatrix} + \frac{1}{\epsilon}$ $=:\!\!\overbrace{A_{0,\epsilon}}$ ϵ $\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 1/\epsilon \\ \epsilon & 1 \end{array}\right).$

 $CR(A_{0,\epsilon}, A_1) = 1$ for every $\epsilon \neq 0$.

 $(A_{0,\varepsilon}, A_1)$ converges to (A_0, A_1) in the Euclidean topology.

KORKARYKERKER POLO

 (A_0, A_1) is contained in the Euclidean closure of C₁.

Closure

Example:

- \blacktriangleright Let B be any rank-one matrix.
- \blacktriangleright The completion rank of (I, B) is at least $n 1$.
- \triangleright We can approximate B by $B + \epsilon I$.

► But
$$
I - \frac{1}{\epsilon}(B + \epsilon I)
$$
 has rank 1.

Conclusion:

- \triangleright The rank of the approximating matrices should not be larger than the rank of the matrix itself.
- \blacktriangleright We take the closure in $K^{n \times n} \times K^{n \times n}_{r_1} \times \cdots \times K^{n \times n}_{r_m}$, where $K_{\rho}^{n \times n}$ denotes the closed set of matrices of rank at most ρ and $r_i = \text{rk}(A_i)$.

Border completion rank

Definition

Let $A_0, A_1, \ldots, A_m \in K^{n \times n}$. The *border completion rank* of A_0, A_1, \ldots, A_m is the minimum number r such that there are approximations $\tilde{\bm{\mathsf{A}}}_{\mathfrak{t}} \in \mathsf{K}(\bm{\mathsf{\varepsilon}})^{\mathfrak{n} \times \mathfrak{n}}_{\mathrm{rk}(\bm{\mathsf{A}})}$ $\max_{\mathrm{rk}(A_\mathfrak{i})}^{\mathfrak{n}\times\mathfrak{n}}$ with $\tilde{A}_\mathfrak{i}=A_\mathfrak{i}+O(\epsilon)$, $0\leq\mathfrak{i}\leq\mathfrak{m}$, and rational functions $\lambda_1, \ldots, \lambda_m \in K(\epsilon)$ with

$$
\mathrm{rk}(\tilde{A}_0+\lambda_1\tilde{A}_1+\cdots+\lambda_m\tilde{A}_m)\leq r.
$$

KORKAR KERKER ST VOOR

We denote the border completion rank by $\operatorname{CR}(A_0, A_1, \ldots, A_m)$.

Hardness of completion rank

- \triangleright ϕ formula in 2-CNF over the variables x_1, \ldots, x_t with clauses c_1, \ldots, c_s .
- \triangleright Given b, it is NP-hard to decide whether there is an assignment satisfying at least b clauses.

Clause gadget: $c_i = L_1 \vee L_2$

$$
\left(\begin{array}{cc}1-\ell_1 & 1\\0 & 1-\ell_2\end{array}\right)
$$

 \blacktriangleright ℓ_j in the matrix is x_k if the literal $L_j = x_k$ and it is $1 - x_k$ if $L_i = -x_k$, $j = 1, 2$.

Observation

The clause gadget has rank 1 iff at least one of the literals ℓ_1, ℓ_2 is set to be 1. Otherwise, it has rank 2.

Hardness of completion rank (2)

- \triangleright All clause gadgets are blocks of our desired block diagonal matrix.
- \triangleright We get a matrix $A_0 + x_1A_1 + \cdots + x_tA_t$ with affine linear forms as entries

Proposition

 $CR(A_0, A_1, \ldots, A_t) \leq 2s - b$ iff b clauses of ϕ can be satisfied. Thus the problem $\text{CR}(A_0, A_1, \ldots, A_t) \stackrel{?}{\leq} k$ is NP-hard.

KORKARYKERKER POLO

Hardness of border completion rank

Observation

Each A_i , $i \geq 1$, is a diagonal matrix with diagonal entries ± 1 . If the j^{th} diagonal entry of A_i is nonzero, then the j^{th} diagonal entry of any other A_k is zero, i, $k > 1$.

Let $\tilde{A}_0, \tilde{A}_1, \ldots, \tilde{A}_t$ be approximations to A_0, A_1, \ldots, A_t , that is, $\tilde{A}_i = A_i + O(\epsilon).$

Lemma

There are (invertible) matrices $S = I_n + O(\epsilon)$ and $T = I_n + O(\epsilon)$ such that $\hat{S}\cdot(\tilde{A}_0+\lambda_1\tilde{A}_1+\cdots+\lambda_t\tilde{A}_t)\cdot T=\hat{A_0}+\lambda_1A_1+\cdots+\lambda_tA_t$ for some $\hat{A_0} = A_0 + O(\epsilon)$.

KORKAR KERKER ST VOOR

Hardness of border completion rank (2)

Lemma

 $CR(A_0, A_1, \ldots, A_t) \leq 2s - b$ iff b clauses of ϕ can be satisfied.

- $\blacktriangleright \Leftarrow$ follows from hardness proof for CR.
- Assume there are $\lambda_i = a_{i,0} \epsilon^{d_i} + a_{i,1} \epsilon^{d_i+1} + \dots$ with $a_{i,0} \neq 0$ such that $\operatorname{rk} (\tilde A_0 + \lambda_1 A_1 + \cdots + \lambda_t A_t) \leq 2s - b$.
- \blacktriangleright λ_i induce an assignment to the x_i and thus to literals ℓ_j .
- \blacktriangleright A clause gadget looks like

$$
\left(\begin{array}{cc}1+O(\varepsilon)-\ell_1&1+O(\varepsilon)\\O(\varepsilon)&1+O(\varepsilon)-\ell_2\end{array}\right)
$$

To have rank 1, $\ell_1 = 1 + O(\epsilon)$ or $\ell_2 = 1 + O(\epsilon)$. We call such $clauses$ " e -satisfied".

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

- If we have at least b " ϵ -satisfied" clauses, then we substitute $\epsilon = 0$ in corresponding λ_i and get an exact assignment.
- If there are **is e-satisfied clauses, then** $CR(A_0, A_1, \ldots, A_t) > 2s - b$.

Algebraic natural proofs for border completion rank

Let $t \in K^{n \times n \times (m+1)}$. An *algebraic* $\operatorname{poly}(n)$ *-natural proof* for the border completion rank of t being $>$ r is a polynomial $P \in K[X_{h,i,j}|1 \leq h, i \leq n, 0 \leq j \leq m]$ such that

- 1. $P(t) \neq 0$.
- 2. $P(s) = 0$ for every $s \in K^{n \times n \times (m+1)}$ with $\underline{CR}(s) \leq r$.
- 3. P is computed by a constant-free algebraic circuit of size $\text{poly}(n)$.

Universal tensors

Observation

Let $U_{i,j}, V_{i,j}, 1 \leq i \leq \rho, 1 \leq j \leq n$ be indeterminates. If we substititute arbitrary constants for the indeterminates in $\sum_{i=1}^{\rho} (U_{i,1}, \ldots, U_{i,n})^{\text{T}} (V_{i,1}, \ldots, V_{i,n})$, then we get all matrices in $K_\rho^{n\times n}$

Lemma

Let Q_0, Q_1, \ldots, Q_t be polynomial matrices as in the observation above having ranks r_0, \ldots, r_t , respectively. We use fresh variables for each Q_i .

Let $g := (Q_0 - Z_0Q_1 - \cdots - Z_tQ_t, Q_1, \ldots, Q_t)$, where Z_1, \ldots, Z_t are new variables. If we substitute arbitrary constants for the indeterminates, then we get all tensors of completion rank $\leq r_0$ with the i^{th} slice having rank \leq r_i , $1 \leq i \leq t$.

Main result

Theorem

For infinitely many n , there is an m , a tensor $t \in K^{n \times n \times m}$ and a value r such that there is no algebraic $poly(n)$ -natural proof for the fact that $CR(t) > r$ unless coNP $\subseteq \exists BPP$.

- \blacktriangleright Let φ be a formula in 2-CNF and let $b \in \mathbb{N}$. We want to check whether every assignment satisfies $< b$ clauses of ϕ . This problem is coNP-hard.
- Let $T_{\Phi} = (A_0, \ldots, A_t)$ be the tensor constructed above.
- \triangleright Guess a circuit C of polynomial size computing some P.
- \triangleright Decide whether P(g) = 0 using polynomial identity testing.
- **In Check whether P(T_φ)** \neq **0. If yes, then accept. Otherwise** reject.

Orbit closures

Observation

We can write $C_r^{m,n}$ as an orbit closure.

 \longrightarrow Orbit closure containment problem is hard

Caveat:

- \blacktriangleright group might not be reductive
- \triangleright closure taken in some variety (not a vector space)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Minrank problem

The homongeneous version, given A_0, \ldots, A_t and r, is there a nontrivial linear combination such that

```
rk(\lambda_0A_0+\cdots+\lambda_tA_t)\leq r
```
is also NP-hard.

- \triangleright closure is taken with respect to a vector space
- lacktriangleright all tensors of (border) minrank $\leq r$ can be written as an orbit closure
- group $\operatorname{GL}_m \times \operatorname{GL}_n \times \operatorname{GL}_\ell$ is reductive
- \blacktriangleright the generating tensors are described by their symmetries

Theorem

The orbit closure containment problem for tensors is NP-hard.

KORKAR KERKER SAGA

Relation to tensor (border) rank

Theorem (Derksen)

If $t = (A_0, A_1, \ldots, A_m)$ is a concise tensor such that $rk(A_1) = \cdots = rk(A_m) = 1$. Then

 $R(t) = CR(t) + m$.

Proposition

If
$$
t = (A_0, A_1, ..., A_m)
$$
 is a tensor such that
\n $rk(A_1) = \cdots = rk(A_m) = 1$. Then

 $R(t) \leq C R(t) + m$.

KORKARYKERKER POLO

Tensor rank is hard to approximate

Theorem

Tensor rank is NP-hard to approximate within $(1 + \epsilon)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Independently also proven by

- ▶ Song, Woodruff, and Zhong
- \blacktriangleright Swernofsky

Tensor rank is hard to approximate (2)

 \blacktriangleright Let ϕ be a formula in 3-CNF with t variables and s clauses such that every variable appears in a constant number c of clauses. Note that $s = O(t)$.

- \triangleright We construct a matrix completion problem as before.
- \triangleright We will have variable gadgets and clause gadgets.
- \blacktriangleright They will appear as blocks on the main diagonal.
- \triangleright Problem: Everything needs to be of rank 1.

Variable gadget

$$
\left(\begin{array}{ccccccccc} 1 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & u & 0 & u-u_1 & 0 & u-u_2 & 0 & 0 \\ 0 & u-u_3 & 1 & u & 0 & u-u_4 & 0 & 0 \\ 0 & 0 & 1 & v & 0 & 0 & 0 & 2v-v_1 \\ 0 & u-u_5 & 0 & u-u_6 & 1 & u & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & w & 2w-w_1 & 0 \\ 0 & 0 & 0 & v-v_2 & 0 & 0 & 1 & 2(v-1/2) \\ 0 & 0 & 0 & 0 & 0 & w-w_2 & 2(w-1/2) & 1 \end{array}\right)
$$

Lemma

- 1. If x is set to 0 or 1, then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
- 2. If the variables are set in such a way that the rank of the variable gadget is 4, then x is set to 0 or 1.

Variable gadget

$$
\left(\begin{array}{cccccc} 1 & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & u & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & u & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & v & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & u & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & w & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2(v-1/2) \\ 0 & 0 & 0 & 0 & 0 & 0 & 2(w-1/2) & 1 \end{array}\right)
$$

Lemma

- 1. If x is set to 0 or 1, then the local variables in the variable gadget can be set such that the resulting matrix has rank 4.
- 2. If the variables are set in such a way that the rank of the variable gadget is 4, then x is set to 0 or 1.

Clause gadget

 $\triangleright \ell(\mathfrak{u}) = \mathfrak{u}$ if x appears positive in the clause and $\ell(\mathfrak{u}) = 1 - \mathfrak{u}$ otherwise.

 \triangleright s(u) = -u if x appears positive in the clause and s(u) = u otherwise.

KORKARYKERKER POLO

Hardness of approximation

Lemma

Assume that ϕ is either satisfiable or any assignment satisfies at most $(1 - \epsilon)$ of the clauses for some $\epsilon > 0$.

- 1. If ϕ is satisfiable, then the completion rank of T_{ϕ} is 4t + 5s.
- 2. If ϕ is not satisfiable, then the completion rank of T_{ϕ} is at least $4t + 5s + \delta t$ for some constant $\delta > 0$.

KORK EXTERNE PROVIDE

Theorem

Tensor rank is NP-hard to approximate.

Matrices with permanent zero

Let X be an $n \times n$ matrix. Construct a matrix Z as follows:

$$
\begin{cases} z_{ij}=x_{ij} &\text{for } i\leq n-1,\\ z_{nj}=x_{nj}\operatorname{per}X_{nn} &\text{for } j\leq n-1,\\ z_{nn}=-\sum_{j=1}^{n-1}x_{nj}\operatorname{per}X_{nj}, \end{cases}
$$

where $X_{\mathfrak{ij}}$ is the matrix obtained from X by removing the $\mathfrak{i}^{\mathsf{th}}$ row and the jth column.

Observation

We have per $Z = 0$. Moreover, any matrix with per $Z = 0$ and per $Z_{nn} \neq 0$ can be obtained in this way.

Natural proofs for matrices with permanent zero

Theorem

Let $\mathcal{Z}_n \subseteq K^{n \times n}$ be the set of matrices with permanent 0. If \mathcal{Z}_n has algebraic VP⁰-natural proofs, then $P^{\#P} \subseteq \exists BPP$.

- Sonstruct iteratively a polynomial size circuit computing per_k .
- \triangleright Using the circuit for per_{k-1} compute a small circuit computing Z_k .
- Guess a polynomial size circuit C_k vanishing on \mathcal{Z}_k
- \triangleright Verify this by checking $C_k(Z_k) = 0$.
- \blacktriangleright By Hilbert's Nullstellensatz, per^e_k divides C_k .
- **In Compute a small circuit of** per_k **using Kaltofen's factoring** algorithm.

GCT breaks the algebraic natural proofs barrier

 \triangleright $\mathcal{Z} \subseteq \mathbb{C}^{n \times n}$ all matrices with permanent 0.

 \blacktriangleright $\mathrm{GL}_n \times \mathrm{GL}_n$ acts on $\mathbb{C}^{n \times n}$ via left-right multiplication:

$$
(g_1,g_2)\cdot A:=g_1A(g_2)^T.
$$

- Exect $Q_n \subseteq GL_n$ denote the group of monomial matrices, i.e., matrices with nonzero determinant that have a single nonzero entry in each row and column.
- \triangleright $\mathcal Z$ is closed under the action of the group $G := Q_n \times Q_n \subseteq GL_n \times GL_n$, which means that if $A \in \mathbb{Z}$, then $gA \in Z$ for all $g \in G$.

KELK KØLK VELKEN EL 1990

The GCT framework

- Assume that $A \in \mathcal{Z}$.
- ► GA := {gA | g \in G} is contained in \mathcal{Z}
- \blacktriangleright $\overline{GA} \subseteq \mathcal{Z}$ as a subvariety.
- For a Zariski-closed subset $Y \subseteq \mathbb{C}^{n \times n}$ let $I(Y) \subseteq \mathbb{C}[\mathbb{C}^{n \times n}]$ denote the vanishing ideal of Y.
- \blacktriangleright I(Y)_d the homogeneous degree d component of I(Y). (inherits grading)
- \triangleright Coordinate ring $\mathbb{C}[Y]$ of Y is the quotient $\mathbb{C}[Y] := \mathbb{C}[\mathbb{C}^{n \times n}]/I(Y),$ inherits the grading $\mathbb{C}[Y]_d := \mathbb{C}[\mathbb{C}^{n \times n}]_d/I(Y)_d$.
- \triangleright Since $\overline{GA} \subseteq \mathcal{Z}$, $I(\mathcal{Z})_d \subseteq I(\overline{GA})_d$ for all d.
- **Canonical surjection by restriction:** $\mathbb{C}[\mathcal{Z}]_d \twoheadrightarrow \mathbb{C}[\overline{GA}]_d$

KORKARYKERKER POLO

Representations

Definition

- \blacktriangleright An H-representation is a finite dimensional vector space V with a group homomorphism $\rho : H \to GL(V)$. We write gf for $(\rho(q))(f)$.
- A linear map $\varphi: V_1 \to V_2$ between two H-representations is called *equivariant* if for all $q \in H$ and $f \in V_1$, $\varphi(qf) = q\varphi(f)$.
- \triangleright A bijective equivariant map is called an H-isomorphism.
- \blacktriangleright Two H-representations are called *isomorphic* if an H-isomorphism exists from one to the other.
- \triangleright A linear subspace of an H-representation that is closed under the action of H is called a subrepresentation.
- \triangleright An H-representation whose only subrepresentations are itself and 0 is called irreducible.

Representations (2)

- **Canonical pullback:** $(gf)(B) := f(g^T B)$ for $g \in G$, $f \in \mathbb{C}[Y]$, $B \in \mathbb{C}^{n \times n}$.
- Turns $\mathbb{C}[\mathcal{Z}]_d$ and $\mathbb{C}[\overline{GA}]_d$ into G-representations.
- \triangleright G is linearly reductive, which means that every G-representation V decomposes into a direct sum of irreducible representations.
- For each type λ the *multiplicity* mult_{λ}(V) of λ in V is unique.

Lemma (Schur)

For an equivariant map $\varphi: V \to W$, the image $\varphi(V)$ is a G-representation and $\text{mult}_{\lambda}(V) \ge \text{mult}_{\lambda}(\varphi(V))$.

$$
\blacktriangleright \text{ The map } \mathbb{C}[\mathcal{Z}]_d \twoheadrightarrow \mathbb{C}[\overline{GA}]_d \text{ is equivariant, thus }
$$

 $\text{mult}_{\lambda}(\mathbb{C}[\mathcal{Z}]_{d}) > \text{mult}_{\lambda}(\mathbb{C}[\overline{GA}]_{d}).$

IF [A](#page-37-0) λ **that violates this is [an](#page-34-0) obstruction an[d p](#page-36-0)[r](#page-34-0)[ov](#page-35-0)[e](#page-36-0)[s "](#page-0-0)A** $\notin \mathbb{Z}$ **[".](#page-0-0)**

Main result

Theorem

Let $G := Q_n \times Q_n$ and $v := (((1^n), (n)), ((1^n), (n)))$. Then

$$
\triangleright \text{ mult}_{\nu}(\mathbb{C}[Z]_n) = 0 \text{ and}
$$

$$
\triangleright \text{ mult}_{\nu}(\mathbb{C}[\overline{GA}]_n) = \begin{cases} 0 & \text{if } A \in \mathbb{Z} \\ 1 & \text{otherwise} \end{cases}.
$$

- Subrepresentation is $\langle \text{per} \rangle$ with $\text{mult}_{\mathbf{v}} \mathbb{C}[\mathbb{C}^{n \times n}]_n = 1$.
- In mult_v $(I(\mathcal{Z})_n) = 1$ and thus mult_v $(\mathbb{C}[\mathcal{Z}]_n) = 0$.
- **►** For $A \in \mathcal{Z}$, $\overline{GA} \subseteq \mathcal{Z}$. Therefore $\operatorname{mult}_{\mathcal{V}}(\mathbb{C}[\overline{GA}]_{\mathfrak{n}}) = 0$.
- For $A \notin \mathcal{Z}$, $\text{mult}_{\mathcal{V}}(I(\overline{GA})_n) = 0$ and therefore $\text{mult}_{\gamma}(\mathbb{C}[GA])_n = 1.$

Thank You!

K ロ K K d K K B K K B K X B K Y Q Q Q