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Permanent versus determinant

I How many arithmetic operations are su�cient to evaluate the
permanent of an m by m matrix (xij)?

perm :=
X

⇡2Sm

x1⇡(1) · · · xm⇡(m)

I Best known algorithm: O(m2m) operations

I The determinant detn can be evaluated with poly(n) operations

detn :=
X

⇡2Sn

sgn(⇡) x1⇡(1) · · · xn⇡(n)

I Work over C
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Valiant’s Conjecture
I Are there linear forms aij = aij(x , z) in xij and z such that (n � m)

zn�m
perm = det

2

64
a11 . . . a1n
...

...
an1 . . . ann

3

75 ? (*)

I Impossible for n = m > 2 (Polya)

I Possible for n  2m � 1 (Valiant, Grenet)

I n � 1
2m

2 (Mignon & Ressayre 2004)

I Valiant’s Conjecture (1979): (*) impossible for n = poly(m)

I Conjecture equivalent to the separation VPws 6= VNP of complexity
classes

I
P 6= NP implies VPws 6= VNP under GRH (B, 2000)
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Orbit closure of detn

I Approach by Mulmuley and Sohoni (2001) based on algebraic
geometry and representation theory

I Idea of orbit closures already in Strassen (1987) for tensor rank

I nth symmetric power SymnV ⇤ of dual space V ⇤ with natural action
of group G := GL(V )

I Orbit G · f := {gf | g 2 G} of f 2 Sym

nV ⇤

I Take V := Cn⇥n, N = n2, view detn as element of SymnV ⇤

I Orbit closure w.r.t. Euclidean or Zariski topology

⌦n := GLn2 · detn ✓ Sym

n(Cn⇥n)⇤

I ⌦2 = Sym

2(C2⇥2)⇤; ⌦3 known (Hüttenhain & Lairez ‘16); ⌦4 already
unknown
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Orbit Closure Conjecture

I Padded permanent X n�m
11 perm 2 Sym

n(Cn⇥n)⇤, where n > m

I Orbit Closure Conjecture (M-S 2001)

For all c 2 N�1 we have Xmc�m
11 perm 62 ⌦mc for infinitely many m.

I The Orbit Closure Conjecture implies Valiant’s Conjecture
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Splitting into irreps
I Action of group G = GL(V ) on Sym

nV ⇤ induces action on its
graded coordinate ring C[SymnV ⇤] = �d2NSym

d
Sym

nV

I The plethysms Symd
Sym

nV splits into irreducible G -representations
W� (Weyl modules), labeled by partitions � ` dn into at most
dimV = n2 parts

I Visualize partition as Young diagram: (5, 3, 1) ` 9 write as

I Size |(5, 3, 1)| := 9 is number of boxes; length `(5, 3, 1) = 3 is
number of parts

I C[⌦n] denotes coordinate ring of ⌦n

I Restriction of polynomial maps to ⌦n gives surjective G -equivariant
linear map:

Sym

d
Sym

nV = C[SymnV ⇤] ⇣ C[⌦n]d

I Say � occurs in C[⌦n]d if it contains a copy of W�
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Obstructions

I Zn,m denotes orbit closure of the padded permanent (n > m):

Zn,m := GLn2 · X n�m
11 perm ✓ Sym

n(Cn⇥n)⇤. (1)

I Suppose X n�m
11 perm 2 ⌦n

I Then Zn,m ✓ ⌦n and restriction gives C[⌦n] ⇣ C[Zn,m]

I Schur’s lemma: if � occurs in C[Zn,m], then � occurs in C[⌦n]

I Partition � violating this condition is called occurrence obstruction.

I Its existence would prove Zn,m 6✓ ⌦n

I Schur’s lemma also gives inequality of multiplicities:

mult�C[⌦n] � mult�C[Zn,m]

I Partition � violating this inequality is called multiplicity obstruction.
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Main Result
M-S suggested the following conjecture

Occurrence Obstruction Conjecture (M-S 2001)

For all c 2 N�1, for infinitely many m, there exists a partition �
occurring in C[Zmc ,m] but not in C[⌦mc ].

Occurrence Obstruction Conjecture implies Orbit Closure Conjecture

Unfortunately, the Occurrence Obstruction Conjecture is false!

Thm. (B, Ikenmeyer, Panova, FOCS 16, J. AMS ’18)

Let n, d ,m be positive integers with n � m25 and � ` nd . If �
occurs in C[Zn,m], then � also occurs in C[⌦n]. In particular, the
Occurrence Obstruction Conjecture is false.

Before this, [IP16] (Ikenmeyer, Panova FOCS 16) had a similar result
showing that the Orbit Closure Conjecture cannot be resolved via
Kronecker coe�cients
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No occurrence obstructions for Waring rank

I Waring rank (symmetric tensor rank) of p 2 Sym

nV ⇤: minimum r
s.t. p = 'n

1 + . . .+ 'n
r for linear forms 'i 2 V ⇤

I Can prove exponential lower bound on Waring rank of detn, pern
I May think of proving lower bounds on Waring rank by studying orbit

closure

PSn := GLn2 · (X n
1 + · · ·+ X n

n2) ✓ Sym

n(Cn2)⇤.

Corollary

Let n, d ,m be positive integers with n � m25 and � ` nd . If �
occurs in C[Zn,m], then � also occurs in C[PSn]. Moreover, the
permanent can be replaced by any homogeneous polynomial p of
degree m in m2 variables.

Hence strategy of occurrence obstructions cannot even be used in weak
model of PSn against padded polynomials!
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Kadish & Landsberg’s observation

I body �̄ of �: obtained by removing the first row of �,

Kadish & Landsberg ’14

If � ` nd occurs in C[Zn,m]d , then `(�)  m2 and |�̄|  md .

I |�̄|  md is equivalent to �1 � (n �m)d : � must have a very long
first row if n is substantially larger than m

I This is the only information we exploit about the orbit closure Zn,m

of the padded permanent

I Can replace the permanent by any homogeneous polynomial p of
degree m in m2 variables

I Kadish & Landsberg also crucially used in [IP16]
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Semigroup property

I Need to show that many partitions � occur in C[⌦n]

I For this establish the occurrence of certain basic shapes in C[⌦n]

I Then get more shapes by

Semigroup Property

If � occurs in C[⌦n] and µ occurs in C[⌦n],
then �+ µ occurs in C[⌦n].

I Also crucially used in [IP16]
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Basic building blocks
I Denote by (k ⇥ `)]nk the rectangular diagram k ⇥ ` with k rows of

length `, to which a row has been appended s.t. we ge nk boxes

I
(3⇥ 4)]18 =

I Prop. RER (Row Extended Rectangles)

Let n � k` and ` be even. Then (k ⇥ `)]nk occurs in C[⌦n]k .

I The only property of ⌦n used in the proof is that ⌦n contains many
padded power sums (follows from universality of determinant)

I
Prop. PPS (Padded Power Sums)

Let X ,'1, . . . ,'k be linear forms on Cn⇥n and assume
n � sk . Then the power sum X n�s('s

1 + · · ·+ 's
k) of

k terms of degree s, padded to degree n, is contained in ⌦n.
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Strategy of proof of main result

I Suppose have even � ` nd such that n � m25 and � occurs in
C[Zn,m]. Want to show that � occurs in C[⌦n].

I By [KL14] we have `(�)  m2 and |�̄|  md .

I Distinguish two cases

I CASE 1: If the degree d is large (say d � 24m6), we proceed as in
[IP16]: we decompose body �̄ into a sum of even rectangles

I Since n and d are su�ciently large in comparison with m, can
write (!) � as a sum of row extended rectangles (k ⇥ `)]nk , where
n � k`.

I By Prop. RER the row extended rectangles occur in C[⌦n]k . The
semigroup property implies that � occurs in C[⌦n]d .
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Case of small degree
I CASE 2: If the degree d is small, we rely on the following crucial

result. Recall V = Cn⇥n.

Prop. ALL

Let � ` nd be such that |�̄|  md and md2  n for some m.

Then every highest weight vector of weight � in Sym

d
Sym

nV ,
viewed as a degree d polynomial function on Sym

nV ⇤, does not
vanish on ⌦n.

In particular, if � occurs in Sym

d
Sym

nV , then � occurs in C[⌦n]d .

I The proof relies on new insights on “lifting highest weight vectors”
in plethysms

I This is related to known stability property of plethysms, for which
we obtain new proofs

I For treating noneven partitions, need more bulding blocks (row and
column extended rectangles) and more tricks
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Highest weight vectors
I How to show that � occurs in C[⌦n]?

I F 2 Sym

d
Sym

nCN called highest weight vector of weight � if

0

BBB@

t1 ⇤ ⇤ ⇤
t2 ⇤ ⇤

. . .
...
tN

1

CCCA
· F = t�1

1 · · · t�N
N F for all ti 2 C⇤

I F is invariant under SLN i↵ � is rectangular: �1 = . . . = �N

I View F as homogeneous degree d polynomial function

F : Symn(CN)⇤ ! C, F (p) = hF , pni

I Essential observation:

If F (p) 6= 0, then � occurs in C[GLN · p]
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Fundamental invariants
I Suppose n is even. Howe (’87) showed:
I If d < N, then Sym

d
Sym

nCN doesn’t have a nonzero SLN -invariant
I If d = N, then Sym

d
Sym

nCN has exactly one SLN -invariant Fn,N ,
up to scaling, the fundamental invariant, already known to Cayley as
a “hyperdeterminant”

I View Fn,N as a homogeneous degree N polynomial map

Fn,N : Symn(CN)⇤ ! C
I For p =

P
1j1,...,jnN v(j1, . . . , jn)Xj1 · · ·Xjn with symmetric

coe�cients

Fn,N(p) =
X

�1,...,�n2SN

sgn(�1) · · · sgn(�n)
NY

i=1

v(�1(i), . . . ,�n(i))

I For g 2 GLN

Fn,N(g · p) = det(g)nFn,N(p)

I Ex. n = 2: F2,N(p) = N! det(v) where v is symmetric matrix
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Evaluating fundamental invariants

I [B, Ikenmeyer ’17]: systematic investigation of fundamental invariants

I Fn,N is a highest weight vector (weight N ⇥ n)

I It is not easy to prove Fn,N(p) 6= 0

I Seemingly simple example (n even)

Fn,n(X1 · · ·Xn) =
1

n!

�
#{col. even latin squares}�#{col. odd latin squares}

� ?
= 0

I This is unknown: Alon-Tarsi Conjecture!

I Essential for basic building blocks: prove Fn,N(X n
1 + . . .+ X n

N) 6= 0
by writing it as sum of squares [B, Christandl, Ikenmeyer ’11]
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Lifiting in plethysms

I Construct explicit injective linear lifting map for n � m

d
m,n : Sym

d
Sym

mV ! Sym

d
Sym

nV

I d
m,n defined as d-fold symmetric power of linear map

M : SymmV ! Sym

nV , p 7! p en�m
1

multiplication with en�m
1 , 1st standard basis vector e1 2 V = CN

I Use duality to show for f 2 Sym

d
Sym

mV , q 2 Sym

nV ⇤,

⌦
d
m,n(f ), q

d
↵
=

⌦
f ,M⇤(q)d

↵

Here M⇤ : SymnV ⇤ ! Sym

mV ⇤ denotes dual map of M.

I M⇤(q) is (n � m)-fold partial derivative of q in direction e1 (times m!/n!)
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Highest weight vectors in plethysms

I Proved that lifting

d
m,n : Sym

d
Sym

mV ! Sym

d
Sym

nV ,

maps highest weight vectors of weight µ ` md to highest weight
vectors of weight µ]dn (µ with extended 1st row)

I Constructed system of generators vT of space of highest weight
vectors of weight µ, labelled by tableaux T of shape µ ` dm with d
letters, each occuring m times (no letter appears more than once in
a column)

I Proved: d
m,n maps generator vT to generator vT 0 where T 0 arises

from T by adding in the first row n �m copies of each of the d
letters

I Side result: new proof of known stability property of plethysms
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Corollary on lifting

Cor. Lift

Suppose � ` nd satisfies �2  m and �2 + |�̄|  md . Then every
highest weight vector of weight � is obtained as a lifting.

Proof.
I �2 + |�̄|  md is number of boxes of � that appear in non-singleton

columns
I Hence � is obtained by extending the 1st row of some µ ` md

I Let T 0 be a tableau of shape � with d letters, each occuring m
times. Since no letter appears more than once in a column, each of
the d letters appears at least n � �2 � n �m times in singleton
columns. Hence T 0 is obtained from a tableau T of shape µ as
before

I From before: d
m,n(vT ) = vT 0

I Moreover, the vT 0 generate space of hwv of weight �
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Proof of Prop. ALL

Prop. ALL

� ` nd s.t. |�̄|  md and md2  n. Then every highest weight
vector of weight � in Sym

d
Sym

nV does not vanish on ⌦n.

Proof.
I Let h 2 Sym

d
Sym

nV be hwv of weight �
I �2  |�̄|  md and �2 + |�̄|  2|�̄|  2md  md · d
I Cor. Lift applied to Sym

d
Sym

mdV ! Sym

d
Sym

nV shows
h = d

md,n(f ) for some hwv f 2 Sym

d
Sym

mdV of weight �
I Can show that for almost all power sums p = 'md

1 + · · ·+ 'md
d we

have hf , pdi 6= 0 and with q := X n�md
1 p,

hf ,M⇤(q)di 6= 0

I Using duality

hh, qdi = hd
m,n(f ), q

di = hf ,M⇤(q)di 6= 0.

By Prop. PPS, we have q 2 ⌦n since n � md · d .
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Thank you for your attention!


