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Goals for this talk

Bring together some classical concepts of decision theory
and newer concepts of privacy



Illustration of problem

I Have data X1, . . . , Xn

I Private views Z1, . . . , Zn constructed from Xi

I Often: goal to get statistics of {X1, . . . , Xn} (e.g. average salary)

I Distribution P and parameter θ(P ) generate data

I Sample X1, . . . , Xn from P not observed (only Zi)

I Goal: infer population parameter θ(P ) based on Z1, . . . , Zn
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Primer on minimax rates of convergence and statistical
inference
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Why? Care about making future predictions

I What is likelihood new resident of San Francisco needs food stamps

I Biological prediction, web advertising, search, ...
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Minimax risk

Central object of study: Minimax risk
I Parameter θ(P ) of distribution P

I E.g. mean: θ(P ) = EP [X]

I Loss ρ that measures error in estimate of θ̂ for θ: ρ(θ̂, θ)

I E.g. ρ(θ̂, θ) = ‖θ̂ − θ‖22 or more esoteric/robust

ρu(θ̂, θ)

=

{
1
2‖θ̂ − θ‖22 if ‖θ̂ − θ‖2 ≤ u
u‖θ̂ − θ‖2 − u2/2 otherwise

I Family of distributions P that we study
I E.g. P such that EP [X2] ≤ 1
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Proving minimax bounds

This talk:

I Upper bounds will be ad-hoc

I Lower bounds will be information theoretic [Hasminskii 78, Birge 83,
Ibragimov and Hasminskii 81, Yang and Barron 99, Yu97]

I NB: Many known information-theoretic upper bounds [Barron, Birge,
Kivinen, ...]
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I Nature chooses random index V ∈ [K]
I Conditional on V = v, sample X1, . . . , Xn i.i.d. from Pv
I Lower bound minimax error:

sup
P∈P

EP
[
ρ(θ̂, θ(P ))

]
≥ 1

K

K∑

v=1

Ev
[
ρ(θ̂, θv)

]

≥ 1

K

K∑

v=1

ρ(δ)Pv(ρ(θ̂, θv) ≥ 2δ)

I Final canonical testing problem:

Mn(θ(P), ρ) ≥ ρ(δ) min
v̂

P(v̂(X1, . . . , Xn) 6= V ).
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Summarizing

V X✓v b✓ bvV X

Mn(θ(P), ρ) ≥ ρ(δ) min
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Model of privacy

Local Privacy: Don’t trust collector of data (Evfimievski et al. 2003,
Warner 1965)
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Differential privacy

Definition: The channel Q is α-differentially
private if

max
z,x,x′

Q(Z = z | x)

Q(Z = z | x′) ≤ e
α.

[Dwork, McSherry, Nissim, Smith 2006]
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What does this mean?

I Given Z, cannot tell what x gave Z

I Testing argument: based on Z, adversary must
distinguish between x and x′:

FNR + FPR ≥ 2

1 + eα

[Wasserman and Zhou 2011]
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Minimax risk

Central object of study: Minimax risk

I Parameter θ(P ) of distribution P

I Loss ρ that measures error in estimate of θ̂ for θ: ρ(θ̂, θ)

I E.g. ρ(θ̂, θ) = ‖θ̂ − θ‖22
I Family of distributions P that we study

Look at expected loss

I Worst case over distributions P
I Best case over all estimators θ̂ : Zn → Θ

I Best case over all α-private channels Q ∈ Qα from X to Z
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Goal for the rest of the talk

How does the minimax risk

Mn(θ(P), ρ, α) := inf
Q∈Qα

inf
θ̂
sup
P∈P

EP ,Q
[
ρ(θ̂(Z1, . . . , Zn), θ(P ))

]

change with privacy parameter α and number of samples n?

Many related results

I Non-population lower bounds [Hardt and Talwar 10, Nikkolov,
Talwar, Zhang 13; Hall, Rinaldo, Wasserman 11, Chaudhuri,
Monteleoni, Sarwate 12]

I Related population bounds:

I Two point hypotheses [Chaudhuri & Hsu 12, Beimel, Nissim, Omri 08]
(e.g. for 1-dimensional bias estimation, get 1/(nα)2 error)

I PAC learning results [Beimel, Brenner, Kasiviswanathan, Nissim 13]
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Example 1: Mean estimation

Problem: Estimate mean of distributions P with k ≥ 2nd moment:

θ(P ) := EP [X], EP [|X|k] ≤ 1.

Examples:

I For two moments k = 2, rate goes from parametric 1/n to 1/
√
nα2

I For k →∞ (bounded random variables) parametric decrease

n 7→ nα2
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Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

Example:

I $0–$10,000

I $10,001–$20,000

I $20,001–$40,000

I $40,001–$80,000

I $80,001–$160,000

I $160,001–$320,000

I $320,001+

θ1 = .05

θ2 = .1

θ3 = .2

θ4 = .4

θ5 = .2

θ6 = .04

θ7 = .01
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Usual rate:

E
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‖θ̂ − θ‖22

]
≤ 1

n
.



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

θ̂j =
1

n

n∑

i=1

1 {Xi = j} = P̂ (X = j)

︸ ︷︷ ︸
Standard estimator

Usual rate:

E
[
‖θ̂ − θ‖22

]
≤ 1

n
.



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

θ̂j =
1

n

n∑

i=1

1 {Xi = j} = P̂ (X = j)

︸ ︷︷ ︸
Standard estimator (counts)

Usual rate:

E
[
‖θ̂ − θ‖22

]
≤ 1

n
.



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

θ̂j =
1

n

n∑

i=1

1 {Xi = j} = P̂ (X = j)

︸ ︷︷ ︸
Standard estimator (counts)

Usual rate:

E
[
‖θ̂ − θ‖22

]
≤ 1

n
.



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

Take away: Sample size reduction

n 7→
nα2

d



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

Proposition: Non-private minimax rate

1

n
. E

[
‖θ̂ − θ‖22

]
.

1

n

Take away: Sample size reduction

n 7→
nα2

d



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

Proposition: Private minimax rate

d

(nα2)
. E

[
‖θ̂ − θ‖22

]
.

d

(nα2)

Take away: Sample size reduction

n 7→
nα2

d



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

Proposition: Private minimax rate

d

(nα2)
. Mn([P (X = j)]dj=1, ‖·‖22 , α) .

d

(nα2)

Take away: Sample size reduction

n 7→
nα2

d



Example 2: multinomial estimation

Problem: Get observations X ∈ [d] and wish to estimate

θj := P (X = j)

Proposition: Private minimax rate

d

(nα2)
. Mn([P (X = j)]dj=1, ‖·‖22 , α) .

d

(nα2)

Take away: Sample size reduction

n 7→
nα2

d
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Showing minimax bounds:

I Have possible “true” parameters {θv} we want to find

I Distribution Pv associated with each parameter

I Problem is hard when Pv ≈ Pv′
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Differential privacy and probability distributions

Samples: Zi are drawn Xi → Q→ Zi from marginal

Mv(Z) :=

∫
Q(Z | X = x)dPv(x)

Strong data processing: If Q(Z | x)/Q(Z | x′) ≤ eα,

Dkl (M1||M2) +Dkl (M2||M1) ≤ 4(eα − 1)2 ‖P1 − P2‖2TV
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Contraction and lower bounds

Samples: Zi are drawn Xi → Q→ Zi from marginal

Mv(Z) :=
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Q(Z | X = x)dPv(x)

Le Cam’s Method

I θ1 and θ2 are 2δ separated

I Non-private version:

Mn(Θ, (·)2)
≥ δ2
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√
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Variational results on privacy and probability distributions

Samples: Zi are drawn Xi → Q→ Zi from marginal

Mv(Z) :=

∫
Q(Z | X = x)dPv(x)

Canonical problem: Nature samples V uniformly from v = 1, . . . ,K and
draws

Xi
i.i.d.∼ Pv when V = v

V X Z

Goal: Find V based on Z1, . . . , Zn

Difficulty of problem: Saw earlier mutual information

I(X1, . . . , Xn;V ) 7→ I(Z1, . . . , Zn;V )
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Fano inequality, lower bounds, contraction

V X Z

I Have parameters θ1, . . . , θK , choose randomly V ∈ [K]

I Sample Xi according to θv when V = v

I Sample Zi according to Q(· | Xi)

I Non-private Fano inequality:

P(Error) ≥ 1− I(X1, . . . , Xn;V )

logK
− o(1)
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High level results:

I Formal minimax framework for local differential privacy

I Two main theorems bound distances between probability
distributions as function of privacy

I Pairwise contraction: Le Cam’s method
I Mutual information contraction: Fano’s method

Extensions and other conclusions:

I In essentially any problem, effective number of samples
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I Rates for regression, multinomial estimation, convex optimization
I Dimension-dependent effects: High-dimensional problems impossible

(no logarithmic dependence on dimension)
I Identification of optimal mechanism requires geometric understanding
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