Local Privacy and Statistical Minimax Rates

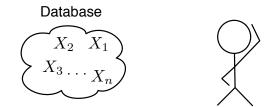
John C. Duchi, Michael I. Jordan, Martin J. Wainwright

University of California, Berkeley

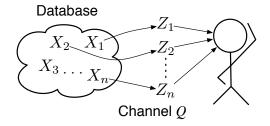
December 2013

Goals for this talk

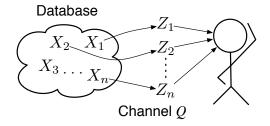
Bring together some classical concepts of decision theory and newer concepts of privacy



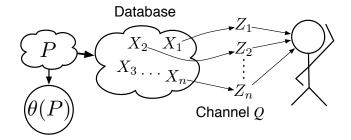
• Have data X_1, \ldots, X_n



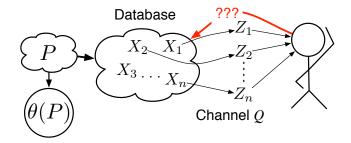
- Have data X_1, \ldots, X_n
- Private views Z_1, \ldots, Z_n constructed from X_i



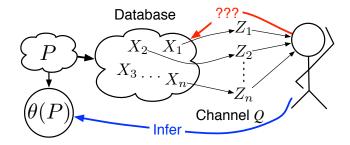
- Have data X_1, \ldots, X_n
- Private views Z_1, \ldots, Z_n constructed from X_i
 - Often: goal to get statistics of $\{X_1, \ldots, X_n\}$ (e.g. average salary)



- Have data X_1, \ldots, X_n
- Private views Z_1, \ldots, Z_n constructed from X_i
 - Often: goal to get statistics of $\{X_1, \ldots, X_n\}$ (e.g. average salary)
- Distribution P and parameter $\theta(P)$ generate data

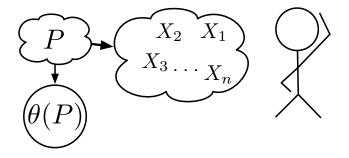


- Have data X_1, \ldots, X_n
- Private views Z_1, \ldots, Z_n constructed from X_i
 - Often: goal to get statistics of $\{X_1, \ldots, X_n\}$ (e.g. average salary)
- Distribution P and parameter $\theta(P)$ generate data
- Sample X_1, \ldots, X_n from *P* not observed (only Z_i)

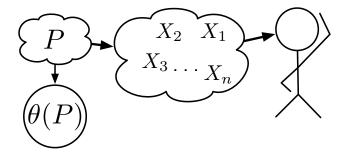


- Have data X_1, \ldots, X_n
- Private views Z_1, \ldots, Z_n constructed from X_i
 - Often: goal to get statistics of $\{X_1, \ldots, X_n\}$ (e.g. average salary)
- Distribution P and parameter $\theta(P)$ generate data
- Sample X_1, \ldots, X_n from *P* not observed (only Z_i)
- Goal: infer population parameter $\theta(P)$ based on Z_1, \ldots, Z_n

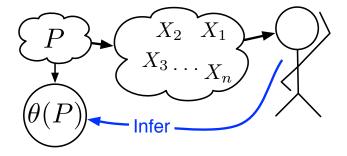
Primer on minimax rates of convergence and statistical inference



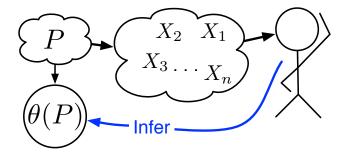
• Have distribution P and parameter $\theta(P)$ of P



- Have distribution P and parameter $\theta(P)$ of P
- Sample X_1, \ldots, X_n drawn from P and observed

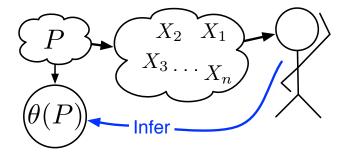


- Have distribution P and parameter $\theta(P)$ of P
- Sample X_1, \ldots, X_n drawn from P and observed
- Goal: infer population parameter $\theta(P)$



- Have distribution P and parameter $\theta(P)$ of P
- Sample X_1, \ldots, X_n drawn from P and observed
- Goal: infer population parameter $\theta(P)$

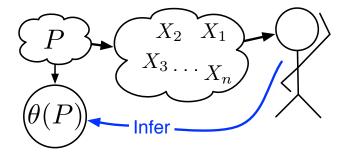
Why? Care about making future predictions



- Have distribution P and parameter $\theta(P)$ of P
- Sample X_1, \ldots, X_n drawn from P and observed
- Goal: infer population parameter $\theta(P)$

Why? Care about making future predictions

What is likelihood new resident of San Francisco needs food stamps



- Have distribution P and parameter $\theta(P)$ of P
- Sample X_1, \ldots, X_n drawn from P and observed
- Goal: infer population parameter $\theta(P)$

Why? Care about making future predictions

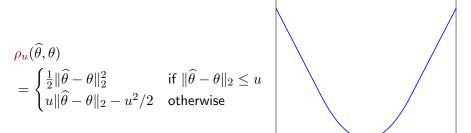
- What is likelihood new resident of San Francisco needs food stamps
- Biological prediction, web advertising, search, …

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
 - E.g. mean: $\theta(P) = \mathbb{E}_P[X]$

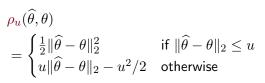
Central object of study: Minimax risk

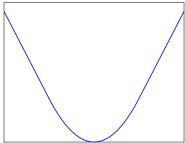
- Parameter $\theta(P)$ of distribution P
 - E.g. mean: $\theta(P) = \mathbb{E}_P[X]$
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$
 - ▶ E.g. $\rho(\hat{\theta}, \theta) = \|\hat{\theta} \theta\|_2^2$ or more esoteric/robust



Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
 - E.g. mean: $\theta(P) = \mathbb{E}_P[X]$
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$
 - $\blacktriangleright \text{ E.g. } \rho(\widehat{\theta},\theta) = \|\widehat{\theta} \theta\|_2^2 \text{ or more esoteric/robust}$





- Family of distributions *P* that we study
 - E.g. P such that $\mathbb{E}_P[X^2] \leq 1$

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\widehat{\theta}, \theta) = \|\widehat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\widehat{\theta}$ for θ : $\rho(\widehat{\theta}, \theta)$

• E.g.
$$\rho(\widehat{\theta}, \theta) = \|\widehat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\mathbb{E}_P\left[\rho(\widehat{\theta}(X_1,\ldots,X_n),\theta(P))\right]$$

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\widehat{\theta}$ for θ : $\rho(\widehat{\theta}, \theta)$

• E.g.
$$\rho(\widehat{\theta}, \theta) = \|\widehat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\rho(\widehat{\theta}(X_{1}, \dots, X_{n}), \theta(P)) \right]$$

• Worst case over distributions ${\cal P}$

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\widehat{\theta}$ for θ : $\rho(\widehat{\theta}, \theta)$

• E.g.
$$\rho(\widehat{\theta}, \theta) = \|\widehat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\rho(\widehat{\theta}(X_1, \dots, X_n), \theta(P)) \right]$$

- Worst case over distributions ${\cal P}$
- Best case over all estimators $\widehat{\theta} : \mathcal{Z}^n \to \Theta$

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\widehat{\theta}$ for θ : $\rho(\widehat{\theta}, \theta)$

• E.g.
$$\rho(\widehat{\theta}, \theta) = \|\widehat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho) := \underbrace{\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P}\left[\rho(\widehat{\theta}(X_{1},\ldots,X_{n}),\theta(P))\right]}_{\mathsf{Classical minimax risk}}$$

- Worst case over distributions ${\cal P}$
- Best case over all estimators $\widehat{\theta} : \mathcal{Z}^n \to \Theta$

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\widehat{\theta}$ for θ : $\rho(\widehat{\theta}, \theta)$

• E.g.
$$\rho(\widehat{\theta}, \theta) = \|\widehat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho) := \underbrace{\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P}\left[\rho(\widehat{\theta}(X_{1},\ldots,X_{n}),\theta(P))\right]}_{\mathsf{Classical minimax risk}}$$

- Worst case over distributions ${\cal P}$
- Best case over all estimators $\widehat{\theta} : \mathcal{Z}^n \to \Theta$

To study: rate of $\mathfrak{M}_n(\theta(\mathcal{P}), \rho) \to 0$ as n grows

This talk:

This talk:

Upper bounds will be ad-hoc

This talk:

- Upper bounds will be ad-hoc
- Lower bounds will be information theoretic [Hasminskii 78, Birge 83, Ibragimov and Hasminskii 81, Yang and Barron 99, Yu97]

This talk:

- Upper bounds will be ad-hoc
- Lower bounds will be information theoretic [Hasminskii 78, Birge 83, Ibragimov and Hasminskii 81, Yang and Barron 99, Yu97]
- ▶ **NB:** Many known information-theoretic upper bounds [Barron, Birge, Kivinen, ...]

Step 1: Reduce from estimation to testing

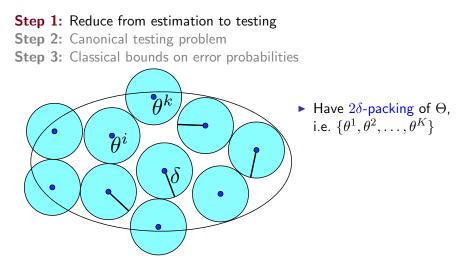
- Step 1: Reduce from estimation to testing
- Step 2: Canonical testing problem

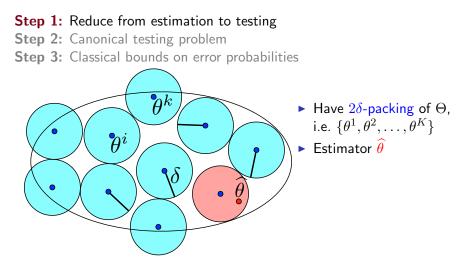
- Step 1: Reduce from estimation to testing
- Step 2: Canonical testing problem
- Step 3: Classical bounds on error probabilities

Step 1: Reduce from estimation to testing

Step 2: Canonical testing problem

Step 3: Classical bounds on error probabilities

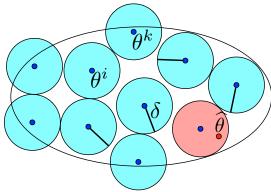




Step 1: Reduce from estimation to testing Step 2: Canonical testing problem Step 3: Classical bounds on error probabilities \mathbf{A}^k • Have 2δ -packing of Θ , i.e. $\{\theta^1, \theta^2, \dots, \theta^K\}$ θ^i • Estimator $\hat{\theta}$ At most one index close to $\hat{\theta}$

Step 1: Reduce from estimation to testing

Step 2: Canonical testing problemStep 3: Classical bounds on error probabilities

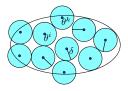


- ► Have 2δ-packing of Θ, i.e. {θ¹, θ²,...,θ^K}
- Estimator $\hat{\theta}$
- At most *one* index close to θ
- Can *test* index $i \in [K]$

Step 1: Reduce from estimation to testing

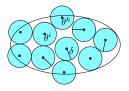
Step 2: Canonical testing problem

Step 3: Classical bounds on error probabilities



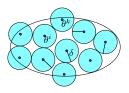
Step 1: Reduce from estimation to testingStep 2: Canonical testing problemStep 3: Classical bounds on error probabilities

• Nature chooses random index $V \in [K]$



Step 1: Reduce from estimation to testingStep 2: Canonical testing problemStep 3: Classical bounds on error probabilities

- Nature chooses random index $V \in [K]$
- Conditional on V = v, sample X_1, \ldots, X_n i.i.d. from P_v



Step 1: Reduce from estimation to testingStep 2: Canonical testing problemStep 3: Classical bounds on error probabilities

- Nature chooses random index $V \in [K]$
- Conditional on V = v, sample X_1, \ldots, X_n i.i.d. from P_v
- Lower bound minimax error:

$$\sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\rho(\widehat{\theta}, \theta(P)) \right] \geq \frac{1}{K} \sum_{v=1}^{K} \mathbb{E}_{v} \left[\rho(\widehat{\theta}, \theta_{v}) \right]$$
$$\geq \frac{1}{K} \sum_{v=1}^{K} \rho(\delta) P_{v}(\rho(\widehat{\theta}, \theta_{v}) \geq 2\delta)$$

Step 1: Reduce from estimation to testingStep 2: Canonical testing problemStep 3: Classical bounds on error probabilities

- Nature chooses random index $V \in [K]$
- Conditional on V = v, sample X_1, \ldots, X_n i.i.d. from P_v
- Lower bound minimax error:

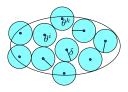
$$\sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\rho(\widehat{\theta}, \theta(P)) \right] \geq \frac{1}{K} \sum_{v=1}^{K} \mathbb{E}_{v} \left[\rho(\widehat{\theta}, \theta_{v}) \right]$$
$$\geq \frac{1}{K} \sum_{v=1}^{K} \rho(\delta) P_{v}(\rho(\widehat{\theta}, \theta_{v}) \geq 2\delta)$$

Final canonical testing problem:

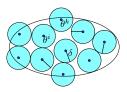
$$\mathfrak{M}_n(\theta(\mathcal{P}), \rho) \ge \rho(\delta) \min_{\widehat{v}} \mathbb{P}(\widehat{v}(X_1, \dots, X_n) \neq V).$$

Step 1: Reduce from estimation to testing

- Step 2: Canonical testing problem
- Step 3: Classical bounds on error probabilities



Step 1: Reduce from estimation to testingStep 2: Canonical testing problemStep 3: Classical bounds on error probabilities

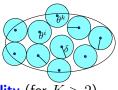


$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

$$\geq 1 - \|P_0 - P_1\|_{\mathrm{TV}}$$

Step 1: Reduce from estimation to testing **Step 2:** Canonical testing problem

Step 3: Classical bounds on error probabilities



Fano's inequality (for $\bar{K} > 2$)

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

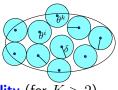
$$\geq 1 - \|P_0 - P_1\|_{\mathrm{TV}}$$

$$\mathbb{P}(\hat{v} \neq V)$$

$$\geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$

Step 1: Reduce from estimation to testingStep 2: Canonical testing problem

Step 3: Classical bounds on error probabilities



Fano's inequality (for K > 2)

Le Cam's method

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

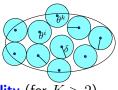
$$\geq 1 - \|P_0 - P_1\|_{\mathrm{TV}}$$

$$\mathbb{P}(\hat{v} \neq V)$$

$$\geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$

Step 1: Reduce from estimation to testingStep 2: Canonical testing problem

Step 3: Classical bounds on error probabilities



Fano's inequality (for $\bar{K} > 2$)

Le Cam's method

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

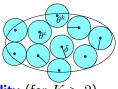
 $\geq 1 - \|P_0 - P_1\|_{\text{TV}}$

$$\mathbb{P}(\widehat{v} \neq V)$$

$$\geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$

Step 1: Reduce from estimation to testing
Step 2: Canonical testing problem

Step 3: Classical bounds on error probabilities



Fano's inequality (for $\overline{K} > 2$)

Le Cam's method

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

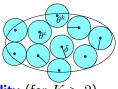
$$\geq 1 - \|P_0 - P_1\|_{\mathrm{TV}}$$

$$\mathbb{P}(\widehat{v} \neq V)$$

$$\geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$

Step 1: Reduce from estimation to testing
Step 2: Canonical testing problem

Step 3: Classical bounds on error probabilities



Fano's inequality (for K > 2)

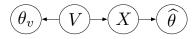
Le Cam's method

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

$$\geq 1 - \|P_0 - P_1\|_{\mathrm{TV}}$$

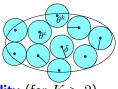
$$\mathbb{P}(\widehat{v} \neq V)$$

$$\geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$



Step 1: Reduce from estimation to testing **Step 2:** Canonical testing problem

Step 3: Classical bounds on error probabilities



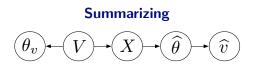
Fano's inequality (for $\overline{K} > 2$)

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

 $\geq 1 - \|P_0 - P_1\|_{\text{TV}}$

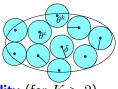
$$\mathbb{P}(\widehat{v} \neq V)$$

$$\geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$



Step 1: Reduce from estimation to testing
Step 2: Canonical testing problem

Step 3: Classical bounds on error probabilities



Fano's inequality (for $\overline{K} > 2$)

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

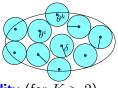
 $\geq 1 - ||P_0 - P_1||_{\text{TV}}$

$$\mathbb{P}(\hat{v} \neq V)$$

$$\geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$

Step 1: Reduce from estimation to testing **Step 2:** Canonical testing problem

Step 3: Classical bounds on error probabilities



Fano's inequality (for $\overline{K} > 2$)

$$P_0(\hat{v} \neq 0) + P_1(\hat{v} \neq 1)$$

 $\geq 1 - \|P_0 - P_1\|_{\text{TV}}$

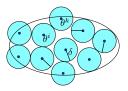
$$\mathbb{P}(\widehat{v} \neq V) \\ \geq 1 - \frac{I(X_1, \dots, X_n; V) + \log 2}{\log K}$$

Summarizing

$$(\theta_v) \leftarrow V \rightarrow X \rightarrow \widehat{\theta} \rightarrow \widehat{v}$$

 $\mathfrak{M}_n(\theta(\mathcal{P}), \rho) \ge \rho(\delta) \min \mathbb{P}(\widehat{v}(X_1, \dots, X_n) \neq V)$

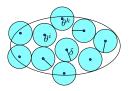
- Step 1: Reduce from estimation to testing
- Step 2: Canonical testing problem
- Step 3: Classical bounds on error probabilities



$$(\theta_v) \bullet V \bullet X \bullet (\widehat{\theta}) \bullet (\widehat{v})$$

$$\mathfrak{M}_n(\theta(\mathcal{P}),\rho) \ge \rho(\delta) \min_{\widehat{v}} \mathbb{P}\left(\widehat{v}(X_1,\ldots,X_n) \neq V\right)$$

- Step 1: Reduce from estimation to testing
- Step 2: Canonical testing problem
- Step 3: Classical bounds on error probabilities



Summarizing

$$(\theta_v) \bullet V \bullet X \bullet (\widehat{\theta}) \bullet (\widehat{v})$$

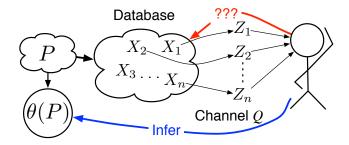
$$\mathfrak{M}_n(\theta(\mathcal{P}), \rho) \ge \rho(\delta) \min_{\widehat{v}} \mathbb{P}(\widehat{v}(X_1, \dots, X_n) \ne V)$$

Key idea: Control information-theoretic divergences

$$||P_0 - P_1||_{\text{TV}}$$
 or $I(X_1, \dots, X_n; V)$

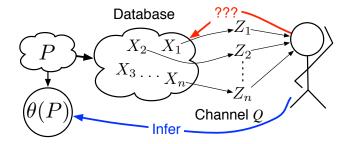
to attain minimax rate

Inference under privacy constraints



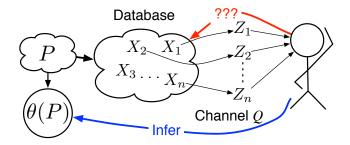
- Have distribution P and parameter $\theta(P)$
- Sample X_1, \ldots, X_n drawn from P and *not* observed
- Private views Z_1, \ldots, Z_n constructed from X_i

Inference under privacy constraints

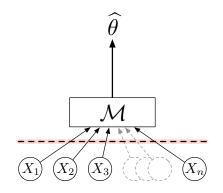


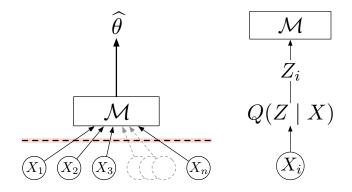
- Have distribution P and parameter $\theta(P)$
- Sample X_1, \ldots, X_n drawn from P and *not* observed
- Private views Z_1, \ldots, Z_n constructed from X_i
- Goal: infer population parameter $\theta(P)$

Inference under privacy constraints

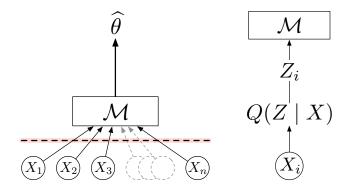


- Have distribution P and parameter $\theta(P)$
- Sample X_1, \ldots, X_n drawn from P and *not* observed
- Private views Z_1, \ldots, Z_n constructed from X_i
- ▶ Goal: infer population parameter $\theta(P)$ based on X_1, \ldots, X_n

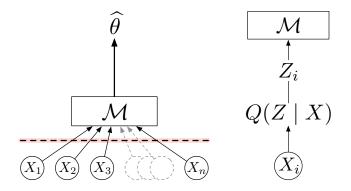




Local Privacy: Don't trust collector of data (Evfimievski et al. 2003, Warner 1965)



• Individuals $i \in \{1, \ldots, n\}$ have personal data $X_i \sim P_{\theta}$

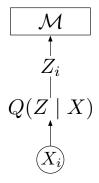


- ► Individuals $i \in \{1, ..., n\}$ have personal data $X_i \sim P_\theta$
- Estimator $Z_1^n \mapsto \widehat{\theta}(Z_{1:n})$

Definition: The channel Q is α -differentially private if

$$\max_{z,x,x'} \frac{Q(Z=z \mid x)}{Q(Z=z \mid x')} \le e^{\alpha}.$$

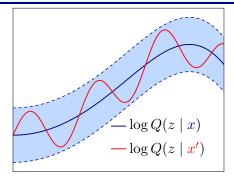
[Dwork, McSherry, Nissim, Smith 2006]

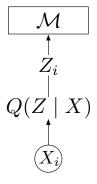


Definition: The channel Q is α -differentially private if

$$\max_{z,x,x'} \frac{Q(Z=z \mid x)}{Q(Z=z \mid x')} \le e^{\alpha}.$$

[Dwork, McSherry, Nissim, Smith 2006]





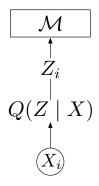
Definition: The channel Q is α -differentially private if

$$\max_{z,x,x'} \frac{Q(Z=z \mid x)}{Q(Z=z \mid x')} \le e^{\alpha}.$$

[Dwork, McSherry, Nissim, Smith 2006]

What does this mean?

• Given Z, cannot tell what x gave Z



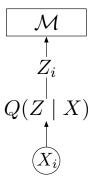
Definition: The channel Q is α -differentially private if

$$\max_{z,x,x'} \frac{Q(Z=z \mid x)}{Q(Z=z \mid x')} \le e^{\alpha}.$$

[Dwork, McSherry, Nissim, Smith 2006]

What does this mean?

- Given Z, cannot tell what x gave Z
- Testing argument: based on Z, adversary must distinguish between x and x':



[Wasserman and Zhou 2011]

Definition: The channel Q is α -differentially private if

$$\max_{z,x,x'} \frac{Q(Z=z \mid x)}{Q(Z=z \mid x')} \le e^{\alpha}.$$

[Dwork, McSherry, Nissim, Smith 2006]

What does this mean?

- Given Z, cannot tell what x gave Z
- Testing argument: based on Z, adversary must distinguish between x and x':

$$\mathsf{FNR} + \mathsf{FPR} \geq \frac{2}{1 + e^\alpha}$$

$\begin{array}{c|c} \mathcal{M} \\ \uparrow \\ Z_i \\ Q(Z \mid X) \\ \uparrow \\ X_i \end{array}$

[Wasserman and Zhou 2011]

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\widehat{\theta}, \theta) = \|\widehat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\mathbb{E}_P\left[\rho(\widehat{\theta}(Z_1,\ldots,Z_n),\theta(P))\right]$$

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\sup_{P \in \mathcal{P}} \mathbb{E}_P\left[\rho(\widehat{\theta}(Z_1, \dots, Z_n), \theta(P))\right]$$

• Worst case over distributions \mathcal{P}

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\rho(\widehat{\theta}(Z_1, \dots, Z_n), \theta(P)) \right]$$

- Worst case over distributions \mathcal{P}
- Best case over all estimators $\widehat{\theta} : \mathcal{Z}^n \to \Theta$

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\underbrace{\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\rho(\widehat{\theta}(Z_{1}, \dots, Z_{n}), \theta(P)) \right]}_{\text{Classical minimax risk}}$$

- Worst case over distributions \mathcal{P}
- Best case over all estimators $\widehat{\theta} : \mathcal{Z}^n \to \Theta$

Minimax risk

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_1, \dots, Z_n), \theta(P)) \right]$$

- Worst case over distributions P
- Best case over all estimators $\widehat{\theta} : \mathcal{Z}^n \to \Theta$
- ▶ Best case over all α -private channels $Q \in Q_{\alpha}$ from X to Z

Minimax risk

Central object of study: Minimax risk

- Parameter $\theta(P)$ of distribution P
- Loss ρ that measures error in estimate of $\hat{\theta}$ for θ : $\rho(\hat{\theta}, \theta)$

• E.g.
$$\rho(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|_2^2$$

 \blacktriangleright Family of distributions ${\cal P}$ that we study

Look at expected loss

$$\underbrace{\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho,\alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_{1},\ldots,Z_{n}),\theta(P)) \right]}_{\mathsf{Private minimax risk}}$$

- Worst case over distributions \mathcal{P}
- Best case over all estimators $\widehat{\theta} : \mathcal{Z}^n \to \Theta$
- ▶ Best case over all α -private channels $Q \in \mathcal{Q}_{\alpha}$ from X to Z

How does the minimax risk

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho,\alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_{1},\ldots,Z_{n}),\theta(P)) \right]$$

change with privacy parameter α and number of samples n?

How does the minimax risk

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho,\alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_{1},\ldots,Z_{n}),\theta(P)) \right]$$

change with privacy parameter α and number of samples n?

How does the minimax risk

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho,\alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_{1},\ldots,Z_{n}),\theta(P)) \right]$$

change with privacy parameter α and number of samples n?

Many related results

 Non-population lower bounds [Hardt and Talwar 10, Nikkolov, Talwar, Zhang 13; Hall, Rinaldo, Wasserman 11, Chaudhuri, Monteleoni, Sarwate 12]

How does the minimax risk

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho,\alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_{1},\ldots,Z_{n}),\theta(P)) \right]$$

change with privacy parameter α and number of samples n?

- Non-population lower bounds [Hardt and Talwar 10, Nikkolov, Talwar, Zhang 13; Hall, Rinaldo, Wasserman 11, Chaudhuri, Monteleoni, Sarwate 12]
- Related population bounds:

How does the minimax risk

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho,\alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_{1},\ldots,Z_{n}),\theta(P)) \right]$$

change with privacy parameter α and number of samples n?

- Non-population lower bounds [Hardt and Talwar 10, Nikkolov, Talwar, Zhang 13; Hall, Rinaldo, Wasserman 11, Chaudhuri, Monteleoni, Sarwate 12]
- Related population bounds:
 - ► Two point hypotheses [Chaudhuri & Hsu 12, Beimel, Nissim, Omri 08] (e.g. for 1-dimensional bias estimation, get 1/(nα)² error)

How does the minimax risk

$$\mathfrak{M}_{n}(\theta(\mathcal{P}),\rho,\alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P,Q} \left[\rho(\widehat{\theta}(Z_{1},\ldots,Z_{n}),\theta(P)) \right]$$

change with privacy parameter α and number of samples n?

- Non-population lower bounds [Hardt and Talwar 10, Nikkolov, Talwar, Zhang 13; Hall, Rinaldo, Wasserman 11, Chaudhuri, Monteleoni, Sarwate 12]
- Related population bounds:
 - ► Two point hypotheses [Chaudhuri & Hsu 12, Beimel, Nissim, Omri 08] (e.g. for 1-dimensional bias estimation, get 1/(nα)² error)
 - PAC learning results [Beimel, Brenner, Kasiviswanathan, Nissim 13]

Examples

- Mean estimation
- Fixed-design regression
- Convex risk minimization (i.e. online learning)
- Multinomial (probability) estimation
- Nonparametric density estimation

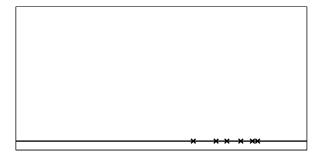
Examples

- Mean estimation
- Fixed-design regression
- Convex risk minimization (i.e. online learning)
- Multinomial (probability) estimation
- Nonparametric density estimation

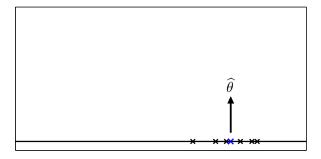
Problem: Estimate mean of distributions P with $k \ge 2$ nd moment:

 $\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$

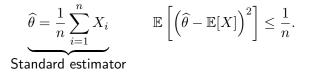
$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$



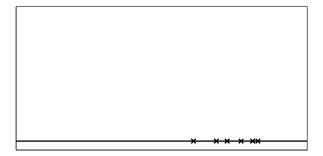
$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$



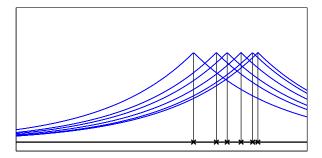
$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$



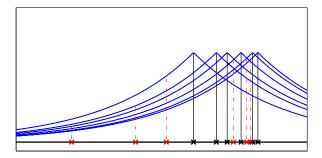
$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$



$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$



$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$

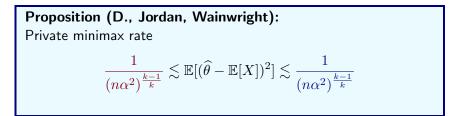


Problem: Estimate mean of distributions P with $k \ge 2$ nd moment:

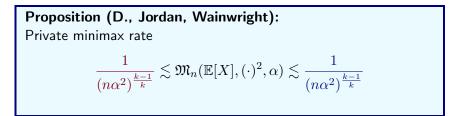
$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$

Proposition (D., Jordan, Wainwright): Non-private minimax rate $\frac{1}{n}\lesssim \mathbb{E}[(\widehat{\theta}-\mathbb{E}[X])^2]\lesssim \frac{1}{n}$

$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$

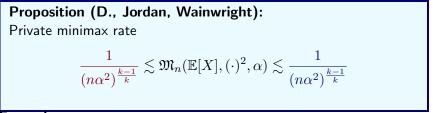


$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$



Problem: Estimate mean of distributions P with $k \ge 2$ nd moment:

$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$

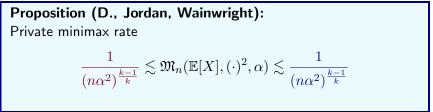


Examples:

For two moments k = 2, rate goes from parametric 1/n to $1/\sqrt{n\alpha^2}$

Problem: Estimate mean of distributions P with $k \ge 2$ nd moment:

$$\theta(P) := \mathbb{E}_P[X], \quad \mathbb{E}_P[|X|^k] \le 1.$$



Examples:

- For two moments k = 2, rate goes from parametric 1/n to $1/\sqrt{n\alpha^2}$
- For $k \to \infty$ (bounded random variables) parametric decrease

 $n\mapsto n\alpha^2$

$$\theta_j := P(X = j)$$

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

Example:

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

Example:

- ▶ _____ \$0-\$10,000
- \$10,001-\$20,000
- \$20,001-\$40,000
- \$40,001-\$80,000
- \$80,001-\$160,000
- \$160,001-\$320,000

\$320,001+

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

Example:

\$0-\$10,000	$\theta_1 = .05$
\$10,001-\$20,000	$\theta_1 = .05$ $\theta_2 = .1$
\$20,001–\$40,000	$\theta_2 = .1$ $\theta_3 = .2$
\$40,001-\$80,000	$ heta_3 = .2$ $ heta_4 = .4$
\$80,001-\$160,000	$\theta_4 = .4$ $\theta_5 = .2$
\$160,001-\$320,000	$\theta_5 = .2$ $\theta_6 = .04$
\$320,001+	$\theta_6 = .04$ $\theta_7 = .01$
	0701

$$\theta_j := P(X = j)$$

$$\theta_j := P(X = j)$$

$$\widehat{\theta}_{j} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left\{ X_{i} = j \right\} = \widehat{P}(X = j)$$
Standard estimator

$$\theta_j := P(X = j)$$

$$\widehat{\theta}_{j} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{X_{i} = j\} = \widehat{P}(X = j)$$
Standard estimator (counts)

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

$$\widehat{\theta}_{j} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{X_{i} = j\} = \widehat{P}(X = j)$$
Standard estimator (counts)

Usual rate:

$$\mathbb{E}\left[\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}\|_2^2\right] \le \frac{1}{n}.$$

$$\theta_j := P(X = j)$$

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

Proposition: Non-private minimax rate

$$\frac{1}{n} \lesssim \mathbb{E}\left[\|\widehat{\theta} - \theta\|_2^2\right] \lesssim \frac{1}{n}$$

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

Proposition: Private minimax rate

$$\frac{d}{(n\alpha^2)} \lesssim \mathbb{E}\left[\|\widehat{\theta} - \theta\|_2^2\right] \lesssim \frac{d}{(n\alpha^2)}$$

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

Proposition: Private minimax rate

$$\frac{d}{(n\alpha^2)} \lesssim \mathfrak{M}_n([P(X=j)]_{j=1}^d, \|\cdot\|_2^2, \alpha) \lesssim \frac{d}{(n\alpha^2)}$$

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

Proposition: Private minimax rate $\frac{d}{(n\alpha^2)} \lesssim \mathfrak{M}_n([P(X=j)]_{j=1}^d, \|\cdot\|_2^2, \alpha) \lesssim \frac{d}{(n\alpha^2)}$

Take away: Sample size reduction

$$n\mapsto rac{nlpha^2}{d}$$

$$\theta_j := P(X=j)$$

Example 2: multinomial estimation

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

 Optimal mechanism: randomized response. Resample each coordinate by Bernoulli coin flips

Example 2: multinomial estimation

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

- Optimal mechanism: randomized response. Resample each coordinate by Bernoulli coin flips
 - \$0-\$10,000
 - \$10,001-\$20,000
 - X \$20,001-\$40,000
 - \$40,001-\$80,000
 - \$80,001-\$160,000
 - \$160,001-\$320,000
 - \$320,001+

Example 2: multinomial estimation

Problem: Get observations $X \in [d]$ and wish to estimate

$$\theta_j := P(X = j)$$

- Optimal mechanism: randomized response. Resample each coordinate by Bernoulli coin flips
 - \$0-\$10,000
 - \$10,001-\$20,000
 - X \$20,001-\$40,000
 - \$40,001-\$80,000
 - \$80,001-\$160,000
 - \$160,001-\$320,000
 - \$320,001+

- \$0-\$10,000
- ▶ <u>X</u> \$10,001-\$20,000
- X \$20,001-\$40,000
- \$40,001-\$80,000
- ▶ ____ \$80,001-\$160,000
- \$160,001-\$320,000
- ▶ <u>X</u> \$320,001+

Main consequences

Goal: Understand tradeoff between differential privacy bound α and sample size n

"Theorem 1" Effective sample size for *essentially any*¹ problem is made worse by at least

 $n \mapsto n\alpha^2$

Main consequences

Goal: Understand tradeoff between differential privacy bound α and sample size n

"Theorem 1" Effective sample size for essentially any 1 problem is made worse by at least

 $n \mapsto n\alpha^2$

¹ essentially any: any problem whose minimax rate can be controlled by information-theoretic techniques

Main consequences

Goal: Understand tradeoff between differential privacy bound α and sample size n

"Theorem 1" Effective sample size for essentially any 1 problem is made worse by at least

 $n \mapsto n\alpha^2$

¹ essentially any: any problem whose minimax rate can be controlled by information-theoretic techniques

"Theorem 2" Effective sample size for *d*-dimensional problems scales as

$$n \mapsto \frac{n\alpha^2}{d}$$

General theory

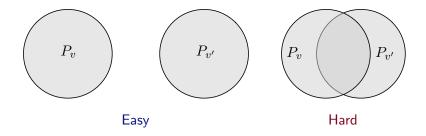
Showing minimax bounds:

- Have possible "true" parameters $\{\theta_v\}$ we want to find
- Distribution P_v associated with each parameter
- Problem is *hard* when $P_v \approx P_{v'}$

General theory

Showing minimax bounds:

- Have possible "true" parameters $\{\theta_v\}$ we want to find
- Distribution P_v associated with each parameter
- Problem is *hard* when $P_v \approx P_{v'}$



Differential privacy and probability distributions

Samples: Z_i are drawn $X_i \to Q \to Z_i$ from marginal $M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$

Differential privacy and probability distributions

Samples: Z_i are drawn $X_i \rightarrow Q \rightarrow Z_i$ from marginal

$$M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$$

Strong data processing: If $Q(Z \mid x)/Q(Z \mid x') \le e^{\alpha}$, $D_{kl}(M_1 \| M_2) + D_{kl}(M_2 \| M_1) \le 4(e^{\alpha} - 1)^2 \| P_1 - P_2 \|_{TV}^2$

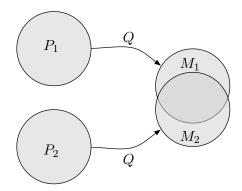
Differential privacy and probability distributions

Samples: Z_i are drawn $X_i \rightarrow Q \rightarrow Z_i$ from *marginal*

$$M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$$

Strong data processing: If $Q(Z \mid x)/Q(Z \mid x') \leq e^{\alpha}$,

 $D_{\mathrm{kl}}(M_1 \| M_2) + D_{\mathrm{kl}}(M_2 \| M_1) \le 4(e^{\alpha} - 1)^2 \| P_1 - P_2 \|_{\mathrm{TV}}^2$

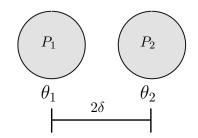


Samples: Z_i are drawn $X_i \to Q \to Z_i$ from marginal $M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$

Samples:
$$Z_i$$
 are drawn $X_i \to Q \to Z_i$ from marginal
$$M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$$

Le Cam's Method

 \blacktriangleright θ_1 and θ_2 are 2δ separated

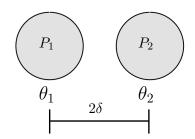


Samples:
$$Z_i$$
 are drawn $X_i \to Q \to Z_i$ from marginal
$$M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$$

Le Cam's Method

- θ_1 and θ_2 are 2δ separated
- Non-private version:

$$\begin{aligned} \mathfrak{M}_{n}(\Theta, (\cdot)^{2}) \\ \geq \delta^{2} \left(1 - \sqrt{nD_{\mathrm{kl}}\left(P_{1} \| P_{2}\right)} \right) \end{aligned}$$



Samples:
$$Z_i$$
 are drawn $X_i \to Q \to Z_i$ from marginal
 $M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$

Le Cam's Method

- θ_1 and θ_2 are 2δ separated
- Non-private version:

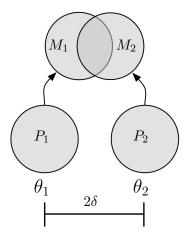
$$\begin{aligned} \mathfrak{M}_{n}(\Theta, (\cdot)^{2}) \\ \geq \delta^{2} \left(1 - \sqrt{nD_{\mathrm{kl}}\left(P_{1} \| P_{2}\right)} \right) \end{aligned}$$

Private version:

1

$$\mathfrak{M}_{n}\left(\Theta, (\cdot)^{2}, \alpha\right)$$

$$\geq \delta^{2}\left(1 - \sqrt{n\alpha^{2} \left\|P_{1} - P_{2}\right\|_{\mathrm{TV}}^{2}}\right)$$

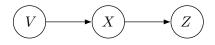


Samples: Z_i are drawn $X_i \rightarrow Q \rightarrow Z_i$ from *marginal*

$$M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$$

Canonical problem: Nature samples V uniformly from v = 1, ..., K and draws

$$X_i \stackrel{\text{i.i.d.}}{\sim} P_v$$
 when $V = v$



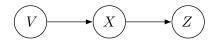
Goal: Find V based on Z_1, \ldots, Z_n

Samples: Z_i are drawn $X_i \rightarrow Q \rightarrow Z_i$ from *marginal*

$$M_v(Z) := \int Q(Z \mid X = x) dP_v(x)$$

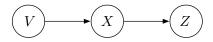
Canonical problem: Nature samples V uniformly from v = 1, ..., K and draws

$$X_i \stackrel{\text{i.i.d.}}{\sim} P_v$$
 when $V = v$

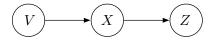


Goal: Find V based on Z_1, \ldots, Z_n **Difficulty of problem:** Saw earlier *mutual information*

$$I(X_1, \ldots, X_n; V) \mapsto I(Z_1, \ldots, Z_n; V)$$

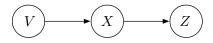


- Have parameters $\theta_1, \ldots, \theta_K$, choose randomly $V \in [K]$
- ▶ Sample X_i according to θ_v when V = v
- Sample Z_i according to $Q(\cdot \mid X_i)$



- Have parameters $\theta_1, \ldots, \theta_K$, choose randomly $V \in [K]$
- ▶ Sample X_i according to θ_v when V = v
- Sample Z_i according to $Q(\cdot \mid X_i)$
- Non-private Fano inequality:

$$\mathbb{P}(\mathsf{Error}) \ge 1 - \frac{I(X_1, \dots, X_n; V)}{\log K} - o(1)$$

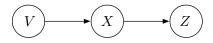


- ▶ Have parameters $\theta_1, \ldots, \theta_K$, choose randomly $V \in [K]$
- ▶ Sample X_i according to θ_v when V = v
- Sample Z_i according to $Q(\cdot \mid X_i)$
- Non-private Fano inequality:

$$\mathbb{P}(\mathsf{Error}) \ge 1 - \frac{I(X_1, \dots, X_n; V)}{\log K} - o(1)$$

Private Fano inequality:

$$\mathbb{P}(\mathsf{Error}) \ge 1 - \frac{I(Z_1, \dots, Z_n; V)}{\log K} - o(1)$$

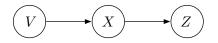


- ▶ Have parameters $\theta_1, \ldots, \theta_K$, choose randomly $V \in [K]$
- ▶ Sample X_i according to θ_v when V = v
- Sample Z_i according to $Q(\cdot \mid X_i)$
- Non-private Fano inequality:

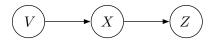
$$\mathbb{P}(\mathsf{Error}) \ge 1 - \frac{I(X_1, \dots, X_n; V)}{\log K} - o(1)$$

Private Fano inequality:

$$\mathbb{P}(\mathsf{Error}) \ge 1 - \frac{\alpha^2 I(X_1, \dots, X_n; V)}{d \log K} - o(1)$$



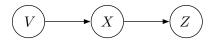
• Define mixture $\overline{P} = \frac{1}{K} \sum_{v=1}^{K} P_v$



• Define mixture
$$\overline{P} = \frac{1}{K} \sum_{v=1}^{K} P_v$$

Mutual information contraction: For any non-interactive α -locally private channel Q,

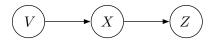
$$I(Z_1, \dots, Z_n; V) \le n(e^{\alpha} - 1)^2 \sup_{S} \frac{1}{K} \sum_{v=1}^{K} (P_v(S) - \overline{P}(S))^2$$



• Define mixture
$$\overline{P} = \frac{1}{K} \sum_{v=1}^{K} P_v$$

Mutual information contraction: For any non-interactive α -locally private channel Q,

$$I(Z_1, \dots, Z_n; V) \le n(e^{\alpha} - 1)^2 \qquad \underbrace{\sup_{S} \frac{1}{K} \sum_{v=1}^{K} (P_v(S) - \overline{P}(S))^2}_{\text{Dimension-dependent total variation}}$$



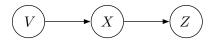
• Define mixture
$$\overline{P} = \frac{1}{K} \sum_{v=1}^{K} P_v$$

Mutual information contraction: For any non-interactive α -locally private channel Q,

$$I(Z_1, \dots, Z_n; V) \le n(e^{\alpha} - 1)^2 \qquad \underbrace{\sup_{S} \frac{1}{K} \sum_{v=1}^{K} (P_v(S) - \overline{P}(S))^2}_{\text{Dimension-dependent total variation}}$$

What happens? Roughly

$$n \sup_{S} \frac{1}{K} \sum_{v=1}^{K} \left(P_v(S) - \overline{P}(S) \right)^2 \approx \frac{1}{d} I(X_1, \dots, X_n; V)$$



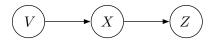
• Define mixture
$$\overline{P} = \frac{1}{K} \sum_{v=1}^{K} P_v$$

Mutual information contraction: For any non-interactive α -locally private channel Q,

$$I(Z_1, \dots, Z_n; V) \le n(e^{\alpha} - 1)^2 \qquad \underbrace{\sup_{S} \frac{1}{K} \sum_{v=1}^{K} (P_v(S) - \overline{P}(S))^2}_{\text{Dimension-dependent total variation}}$$

What happens? Roughly

$$n \sup_{S} \frac{1}{K} \sum_{v=1}^{K} \left(P_{v}(S) - \overline{P}(S) \right)^{2} \approx \frac{1}{d} \underbrace{I(X_{1}, \dots, X_{n}; V)}_{\mathsf{Classical}}$$



• Define mixture
$$\overline{P} = \frac{1}{K} \sum_{v=1}^{K} P_v$$

Mutual information contraction: For any non-interactive α -locally private channel Q,

$$I(Z_1, \dots, Z_n; V) \le n(e^{\alpha} - 1)^2 \qquad \underbrace{\sup_{S} \frac{1}{K} \sum_{v=1}^{K} (P_v(S) - \overline{P}(S))^2}_{\text{Dimension-dependent total variation}}$$

What happens? Roughly

$$I(Z_1, \dots, Z_n; V) \le \frac{\alpha^2}{d} \underbrace{I(X_1, \dots, X_n; V)}_{\text{Classical}}$$

High level results:

► Formal minimax framework for *local* differential privacy

- Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy

- Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method

High level results:

- ► Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method

Extensions and other conclusions:

In essentially any problem, effective number of samples

$$n \mapsto n\alpha^2$$

▶ In *d*-dimensional problems, effective number of samples

$$n\mapsto \frac{n\alpha^2}{d}$$

High level results:

- ► Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method

Extensions and other conclusions:

In essentially any problem, effective number of samples

$$n \mapsto n\alpha^2$$

► In *d*-dimensional problems, effective number of samples

$$n\mapsto \frac{n\alpha^2}{d}$$

- ► Rates for regression, multinomial estimation, convex optimization
- Dimension-dependent effects: High-dimensional problems impossible (no logarithmic dependence on dimension)

High level results:

- ► Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method

Extensions and other conclusions:

In essentially any problem, effective number of samples

$$n \mapsto n\alpha^2$$

► In *d*-dimensional problems, effective number of samples

$$n\mapsto \frac{n\alpha^2}{d}$$

- Rates for regression, multinomial estimation, convex optimization
- Dimension-dependent effects: High-dimensional problems impossible (no logarithmic dependence on dimension)
- Identification of optimal mechanism requires geometric understanding

- Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method

- Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method
- Trade-offs between privacy and statistical utility

- Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method
- Trade-offs between privacy and statistical utility
- Many open problems:

- Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method
- Trade-offs between privacy and statistical utility
- Many open problems:
 - Other models of privacy?
 - Non-local notions of privacy?
 - Privacy without knowing statistical objective?

High level results:

- Formal minimax framework for *local* differential privacy
- Two main theorems bound distances between probability distributions as function of privacy
 - Pairwise contraction: Le Cam's method
 - Mutual information contraction: Fano's method
- Trade-offs between privacy and statistical utility
- Many open problems:
 - Other models of privacy?
 - Non-local notions of privacy?
 - Privacy without knowing statistical objective?

Pre/post-print online: "Local privacy and statistical minimax rates." D., Jordan, & Wainwright (2013). *arXiv:1302.3203 [stat.TH]*