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Introduction
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Some results in the non-commutative setting

For ABPs (Algebraic Branching Programs) :

= (Nisan 1991) Exact characterization of complexity and lower bounds
= (Limaye,M.,Srinivasan 2016) Exponential lower bounds for skew circuits

= (Lagarde, M., Perifel 2016) Generalization of Nisan's characterization
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Some results in the non-commutative setting

For ABPs (Algebraic Branching Programs) :

(Nisan 1991) Exact characterization of complexity and lower bounds
(Limaye,M.,Srinivasan 2016) Exponential lower bounds for skew circuits
(Lagarde, M., Perifel 2016) Generalization of Nisan's characterization
(Fijalkow, Lagarde, Ohlmann, Serre 2018) Show how to get those
extensions from known results on formal series...
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Nisan's results
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ABP (Branching programs)
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ABP (Branching programs)
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= DAG : source s, sink t, edges with linear forms
= Weight of a path : product of edge weights
= Computed polynomial : sum of path weights from s to t.

= Layered
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Measure: coefficient matrices
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= Define matrix M"(f)

= Complexity measure : rank(M"(f)).

6/31



Nisan’s beautiful result

s N=({1,2,...,k,{k+1,k+2,...,d})

Theorem (Nisan, 1991)

For any homogeneous polynomial f of degree d, the size of a smallest
homogeneous algebraic branching program for f is equal to

Zrank(Mk(f))

k=0

Corollary

Any homogeneous ABP computing the permanent has size > 2"
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Formal series on words
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Basic definitions (Berstel & Reutenauer)

= Fix a field K and a finite alphabet A

= A formal series S is a function A* — K
= Denote by (S, w) the image of w by S
5= Yn (Sww

= Set of formal series: K(({A))

= Support of S: {we A* | (S, w) # 0}

= Finite support: polynomials, K(A)
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Recognizable series

Definition

A formal series S is recognizable if there exists:
= aninteger n > 1
= a morphism of monoids p : A* — K"™*"

= two matrices A € K'*" and v € K™**

such that, for all words w, (S, w) = Au(w)y.

= It is enough to define p(a) for all a € A
= (A, p,7y) is called a linear representation

n is called the dimension

= [t is an automaton
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Characterizing recognizable series

= K((A)) is a vector space over K
= Ifue A" and S€ K((A), u'S=3", 4 (S, uw)wor (u™'S, w) = (S, uw)
= M C K((A)) is called stable if Yu € A*,YS€ M, u"*'Se M

Theorem (Fliess, Carlyle & Paz )
A formal series S is recognizable iff there exists a linear subspace of K{{A))
which:

= contains S

= js stable

= has finite dimension
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= Suppose (A, i,7y) is a linear representation of S
= Define S; by: (Sj, w) = (u(w)y);, fori=1,...,n
= Let M be the subspace generated by the S; (finite dimension)

= It contains S:

(S, w) = Ap(w ZA u(w)7)i = M(Si w)
. It is stable: |

(1St w) = (Siyxw) = (u(xw)y)i = (R(x)u(w))i

= Z(M(X))i,j(u(W)W)j = (1(x)ii(Sw)

j
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= Let M be a stable linear subspace, containing S, generated by S1,...,S,
= 5=3"\S
= forac A i€ [n]:
a 'S =) a;S=> (u2)isS;
j j
= =(5,1)
= Then:

(Si,w) = (W715,-, 1)

) w))ii (S5, 1)

Z w(w))ijy = (u(w)y)i

I
/\

= Finally:

(S,w) = Z Ai(Si, w) = (Au(w)y)
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Consequences

= Representation of dimension n — linear subspace of dimension < n
= Linear subspace of dimension n — representation of dimension n

= Hadamard products (Lemma by Arvind, Joglekar and Srinivasan)

Definition
The hadamard product of two formal series S and T is
(SeT,w) = (S, w)(T, w)

Theorem (Schiitzenberger 1962)
If S and T are recognizable, then S® T also

Proof.

If S1,...,Sm generate a stable subspace containing S and respectively
Ti,..., T, for T, then the S; ® T; generate a stable subspace for S® T O
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Hankel matrix

= Consider the smallest stable linear subspace containing S

= It is generated by the u™'S for u € A*

= S is recognizable iff this has finite dimension

= This dimension is the smallest dimension of a linear representation of S
= (The size of a smallest automaton)

= This is the rank of the Hankel matrix
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Hankel matrix
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Hankel matrix
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Back to ABPs

= Automata can be seen as a computational model
= For this model we have an exact characterization of the complexity

May be different from ABPs (cycles)

= (Fijalkow, Lagarde, Ohlmann, Serre 2018) If the polynomial S is
homogeneous of degree d, the minimal automaton is an ABP (acyclic)
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Back to ABPs

= Suppose Si,...,S, is a basis of a stable subspace containing S

= The transition matrix u is given by:
a’'s= Z(N(a)) iS5
Jj

= Here we have a basis u1_15, ..., u; 'S of the minimal stable subspace
containing S

= Each u; 'S is a homogeneous polynomial of degree d — |uj|

= Now:

al(u'8) = Z(u(a))uu S

» d— (Ju—il+1) = d— |uj] implies \uj| = |u] +1
= The “states” can be layered by length of words, transition can only go
from one layer to the next

= — Nisan's homogeneous ABPs

19/31



Hankel matrix
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What about non-homogenous polynomials?

= For an homogeneous polynomial, all minimal automata obtained from the
Hankel matrix are ABPs
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What about non-homogenous polynomials?

= For an homogeneous polynomial, all minimal automata obtained from the
Hankel matrix are ABPs

= Challenge 1: find the smallest ABP for a+ ab+ bb
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What about non-homogenous polynomials?

= For an homogeneous polynomial, all minimal automata obtained from the
Hankel matrix are ABPs

= Challenge 1: find the smallest ABP for a+ ab+ bb

= Challenge 2: find a smallest automaton with cycles
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What about non-homogenous polynomials?

= For an homogeneous polynomial, all minimal automata obtained from the
Hankel matrix are ABPs

= Challenge 1: find the smallest ABP for a+ ab+ bb
= Challenge 2: find a smallest automaton with cycles

= There exists a minimal automaton defined from the Hankel matrix which is
acyclic.

= Slight generalization of Nisan's result: in general, the ABP-complexity of a
polynomial is the rank of the Hankel matrix
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Formal series on trees
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Basic definitions (Berstel & Reutenauer)

= Fix a field K and a finite ranked alphabet X (symbols with arities:
T = U):k)

= We consider trees over ¥, Ty (the free magma over X)
= A formal series S is a function Tx — K

= Denote by (S, t) the image of t by S

5= Y. p (S0t

= Set of formal series: K{{A}}

= Support of S: {t€ Tz | (5, t) # 0}

= Finite support: polynomials, K{A}
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Recognizable tree series

Definition
A formal tree series S is recognizable if there exists:
= aninteger n >1
= for each a € X, a vector u(a) € K"
= for each € ¥4, a k-linear map pu(f) : (K")K — K"
= a vector A € K"
such that, for any tree t, (S,t) = Au(t), where p is extended to a mapping
from Tx to K™: u(f(ty, ..., t)) = pw(N(p(tr), ..., pu(te)

= (A, p) is called a linear representation
= nis called the dimension

= |t is a weighted tree automaton
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Characterizing recognizable tree series

= K{{A}} is a vector space over K
= A context is a tree with one leaf labelled [J

= If cis a context and S € K{{A}}, c*S= Dery (S clt])tor
(<718, t) = (S, c[t])

= M C K{{A}} is called stable if, for all context c and for all S € M,
c'Sem

Theorem

A formal tree series S is recognizable iff there exists a linear subspace of
K{{A}} which:

= contains S
= s stable

= has finite dimension
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Hankel matrices

= OK for =
= | don't have a direct proof of < ®
= Suppose there is a stable linear subspace of finite dimension containing S

= The smallest such subspace V (generated by the c™*S) also has finite
dimension

= Consider the space U generated by the t7'S, where t is a tree (in the
space of formal context series)

= It is a linear subspace of formal context series over A
= U and V have the same dimension (Hankel matrix)
= From the fact that U has finite dimension, define a representation of S

= Size of the smallest automaton is the rank of the Hankel matrix
(Bozapalidis & Louscou-Bozapalidou)
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Hankel matrix

27/31



Hankel matrix
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Back to circuits

= Y, is the set of variables, there is only one other symbol, of arity 2

= Binary tree over the variables — non-commutative non-associative
monomial

= non-commutative, non-associative series and polynomials

= Automata can be seen as a (non-commutative, non-associative)
computational model

= For this model we have an exact characterization of the complexity
= May be different from circuits (cycles)

= (Fijalkow, Lagarde, Ohlmann, Serre 2018) If the polynomial S is
homogeneous of degree d, all minimal automata are acyclic (circuit)

= (M) In general, there is always a minimal automaton which is acyclic
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Non-commutative Hadamard product of an ABP and a circuit

= Formal tree series: if S and T have small linear representations, so does
SoOT

= (Arvind & Srinivasan 2009) If f has a small circuit and g has a small ABP,
then f® g has a small circuit (non-commutative, but associative setting)

= Follows from simple observation: there is a small circuit computing all the
monomials of g with all possible associative structures: g

= Then f® g as a non-associative polynomial projects down to f® g
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Conclusion

= Exact characterization of circuit complexity for non-associative,
non-commutative polynomials

= Showing lower bounds in the associative setting means considering all the
possible Hankel matrices which can define a given associative polynomial

= We can express this as linear constraints on the coefficients of the matrix
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Conclusion

= Exact characterization of circuit complexity for non-associative,
non-commutative polynomials

= Showing lower bounds in the associative setting means considering all the
possible Hankel matrices which can define a given associative polynomial

= We can express this as linear constraints on the coefficients of the matrix

= Exact characterization of circuit complexity for non-associative polynomials
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