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Some results in the non-commutative setting

For ABPs (Algebraic Branching Programs) :

• (Nisan 1991) Exact characterization of complexity and lower bounds
• (Limaye,M.,Srinivasan 2016) Exponential lower bounds for skew circuits
• (Lagarde, M., Perifel 2016) Generalization of Nisan’s characterization

• (Fijalkow, Lagarde, Ohlmann, Serre 2018) Show how to get those
extensions from known results on formal series...
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ABP (Branching programs)
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ABP (Branching programs)
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• DAG : source s, sink t, edges with linear forms
• Weight of a path : product of edge weights
• Computed polynomial : sum of path weights from s to t.
• Layered
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Measure: coefficient matrices

• Π =

({1, 2, . . . , k}, {k + 1, k + 2, . . . , d})

k d − k

• f =
∑
m
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degree d, n variables
• Define matrix MΠ(f)

αm1m2m1

m2

monomials of degree |Z|

m
on

om
ia

ls
of

de
gr

ee
|Y
|

• Complexity measure : rank(MΠ(f)).
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Nisan’s beautiful result

• Π = ({1, 2, . . . , k}, {k + 1, k + 2, . . . , d})

k d − k

Theorem (Nisan, 1991)
For any homogeneous polynomial f of degree d, the size of a smallest
homogeneous algebraic branching program for f is equal to

d∑
k=0

rank(Mk(f))

Corollary
Any homogeneous ABP computing the permanent has size ≥ 2n
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Basic definitions (Berstel & Reutenauer)

• Fix a field K and a finite alphabet A
• A formal series S is a function A∗ → K
• Denote by (S,w) the image of w by S
• S =

∑
w∈A∗(S,w)w

• Set of formal series: K⟨⟨A⟩⟩
• Support of S: {w ∈ A∗ | (S,w) ̸= 0}
• Finite support: polynomials, K⟨A⟩
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Recognizable series

Definition
A formal series S is recognizable if there exists:

• an integer n ≥ 1
• a morphism of monoids µ : A∗ → Kn×n

• two matrices λ ∈ K1×n and γ ∈ Kn×1

such that, for all words w, (S,w) = λµ(w)γ.

• It is enough to define µ(a) for all a ∈ A
• (λ, µ, γ) is called a linear representation
• n is called the dimension
• It is an automaton
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Characterizing recognizable series

• K⟨⟨A⟩⟩ is a vector space over K
• If u ∈ A∗ and S ∈ K⟨⟨A⟩⟩, u−1S =

∑
w∈A∗(S, uw)w or (u−1S,w) = (S, uw)

• M ⊆ K⟨⟨A⟩⟩ is called stable if ∀u ∈ A∗, ∀S ∈ M, u−1S ∈ M

Theorem (Fliess, Carlyle & Paz )
A formal series S is recognizable iff there exists a linear subspace of K⟨⟨A⟩⟩
which:

• contains S
• is stable
• has finite dimension

11/31



Proof of ⇒

• Suppose (λ, µ, γ) is a linear representation of S
• Define Si by: (Si,w) = (µ(w)γ)i, for i = 1, . . . , n
• Let M be the subspace generated by the Si (finite dimension)
• It contains S:

(S,w) = λµ(w)γ =
∑

i
λi(µ(w)γ)i =

∑
i
λi(Si,w)

• It is stable:

(x−1Si,w) = (Si, xw) = (µ(xw)γ)i = (µ(x)µ(w)γ)i

=
∑

j
(µ(x))i,j(µ(w)γ)j =

∑
j
(µ(x))i,j(Sj,w)
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Proof of ⇐

• Let M be a stable linear subspace, containing S, generated by S1, . . . , Sn

• S =
∑

i λiSi

• for a ∈ A, i ∈ [n]:

a−1Si =
∑

j
αjSj =

∑
j
(µ(a))i,jSj

• γj = (Sj, 1)
• Then:

(Si,w) = (w−1Si, 1) =
(∑

j
(µ(w))i,jSj, 1

)
=
∑

j
(µ(w))i,j (Sj, 1)

=
∑

j
(µ(w))i,jγj = (µ(w)γ)i

• Finally:
(S,w) =

∑
i
λi(Si,w) = (λµ(w)γ)
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Consequences

• Representation of dimension n → linear subspace of dimension ≤ n
• Linear subspace of dimension n → representation of dimension n
• Hadamard products (Lemma by Arvind, Joglekar and Srinivasan)

Definition
The hadamard product of two formal series S and T is
(S ⊙ T,w) = (S,w)(T,w)

Theorem (Schützenberger 1962)
If S and T are recognizable, then S ⊙ T also

Proof.
If S1, . . . , Sm generate a stable subspace containing S and respectively
T1, . . . ,Tn for T, then the Si ⊙ Tj generate a stable subspace for S ⊙ T
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Hankel matrix

• Consider the smallest stable linear subspace containing S
• It is generated by the u−1S for u ∈ A∗

• S is recognizable iff this has finite dimension
• This dimension is the smallest dimension of a linear representation of S
• (The size of a smallest automaton)
• This is the rank of the Hankel matrix
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Hankel matrix

αuvu

v

16/31



Hankel matrix

u−1Su
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Back to ABPs

• Automata can be seen as a computational model
• For this model we have an exact characterization of the complexity
• May be different from ABPs (cycles)
• (Fijalkow, Lagarde, Ohlmann, Serre 2018) If the polynomial S is

homogeneous of degree d, the minimal automaton is an ABP (acyclic)
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Back to ABPs

• Suppose S1, . . . , Sn is a basis of a stable subspace containing S
• The transition matrix µ is given by:

a−1Si =
∑

j
(µ(a))i,jSj

• Here we have a basis u−1
1 S, . . . , u−1

n S of the minimal stable subspace
containing S

• Each u−1
i S is a homogeneous polynomial of degree d − |ui|

• Now:
a−1(u−1

i S) =
∑

j
(µ(a))i,ju−1

j S

• d − (|u − i|+ 1) = d − |uj| implies |uj| = |ui|+ 1
• The “states” can be layered by length of words, transition can only go

from one layer to the next
• → Nisan’s homogeneous ABPs
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Hankel matrix
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What about non-homogenous polynomials?

• For an homogeneous polynomial, all minimal automata obtained from the
Hankel matrix are ABPs

• Challenge 1: find the smallest ABP for a + ab + bb
• Challenge 2: find a smallest automaton with cycles
• There exists a minimal automaton defined from the Hankel matrix which is

acyclic.
• Slight generalization of Nisan’s result: in general, the ABP-complexity of a

polynomial is the rank of the Hankel matrix
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Basic definitions (Berstel & Reutenauer)

• Fix a field K and a finite ranked alphabet Σ (symbols with arities:
Σ = ∪Σk)

• We consider trees over Σ, TΣ (the free magma over Σ)
• A formal series S is a function TΣ → K
• Denote by (S, t) the image of t by S
• S =

∑
t∈TΣ

(S, t)t
• Set of formal series: K{{A}}
• Support of S: {t ∈ TΣ | (S, t) ̸= 0}
• Finite support: polynomials, K{A}
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Recognizable tree series

Definition
A formal tree series S is recognizable if there exists:

• an integer n ≥ 1
• for each a ∈ Σ0, a vector µ(a) ∈ Kn

• for each f ∈ Σk, a k-linear map µ(f) : (Kn)k → Kn

• a vector λ ∈ Kn

such that, for any tree t, (S, t) = λµ(t), where µ is extended to a mapping
from TΣ to Kn: µ(f(t1, . . . , tk)) = µ(f)(µ(t1), . . . , µ(tk)

• (λ, µ) is called a linear representation
• n is called the dimension
• It is a weighted tree automaton
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Characterizing recognizable tree series

• K{{A}} is a vector space over K
• A context is a tree with one leaf labelled □
• If c is a context and S ∈ K{{A}}, c−1S =

∑
t∈TΣ

(S, c[t])t or
(c−1S, t) = (S, c[t])

• M ⊆ K{{A}} is called stable if, for all context c and for all S ∈ M,
c−1S ∈ M

Theorem
A formal tree series S is recognizable iff there exists a linear subspace of
K{{A}} which:

• contains S
• is stable
• has finite dimension
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Hankel matrices

• OK for ⇒
• I don’t have a direct proof of ⇐
• Suppose there is a stable linear subspace of finite dimension containing S
• The smallest such subspace V (generated by the c−1S) also has finite

dimension
• Consider the space U generated by the t−1S, where t is a tree (in the

space of formal context series)
• It is a linear subspace of formal context series over A
• U and V have the same dimension (Hankel matrix)
• From the fact that U has finite dimension, define a representation of S
• Size of the smallest automaton is the rank of the Hankel matrix

(Bozapalidis & Louscou-Bozapalidou)
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Hankel matrix

αc[u]u

c
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Hankel matrix

u−1Su
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Back to circuits

• Σ0 is the set of variables, there is only one other symbol, of arity 2
• Binary tree over the variables → non-commutative non-associative

monomial
• non-commutative, non-associative series and polynomials
• Automata can be seen as a (non-commutative, non-associative)

computational model
• For this model we have an exact characterization of the complexity
• May be different from circuits (cycles)
• (Fijalkow, Lagarde, Ohlmann, Serre 2018) If the polynomial S is

homogeneous of degree d, all minimal automata are acyclic (circuit)
• (M) In general, there is always a minimal automaton which is acyclic
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Non-commutative Hadamard product of an ABP and a circuit

• Formal tree series: if S and T have small linear representations, so does
S ⊙ T

• (Arvind & Srinivasan 2009) If f has a small circuit and g has a small ABP,
then f ⊙ g has a small circuit (non-commutative, but associative setting)

• Follows from simple observation: there is a small circuit computing all the
monomials of g with all possible associative structures: g̃

• Then f ⊙ g̃ as a non-associative polynomial projects down to f ⊙ g
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Conclusion

• Exact characterization of circuit complexity for non-associative,
non-commutative polynomials

• Showing lower bounds in the associative setting means considering all the
possible Hankel matrices which can define a given associative polynomial

• We can express this as linear constraints on the coefficients of the matrix

• Exact characterization of circuit complexity for non-associative polynomials
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