Formal Series and Non-Commutative Computations

Algebraic Methods, Simons Institute

Guillaume Malod December 6, 2018

Introduction

Nisan's results

Formal series on words

Formal series on trees

For ABPs (Algebraic Branching Programs) :

- (Nisan 1991) Exact characterization of complexity and lower bounds
- (Limaye, M., Srinivasan 2016) Exponential lower bounds for *skew* circuits
- (Lagarde, M., Perifel 2016) Generalization of Nisan's characterization

For ABPs (Algebraic Branching Programs) :

- (Nisan 1991) Exact characterization of complexity and lower bounds
- (Limaye, M., Srinivasan 2016) Exponential lower bounds for *skew* circuits
- (Lagarde, M., Perifel 2016) Generalization of Nisan's characterization
- (Fijalkow, Lagarde, Ohlmann, Serre 2018) Show how to get those extensions from known results on formal series...

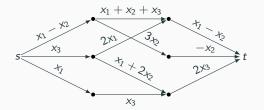
Introduction

Nisan's results

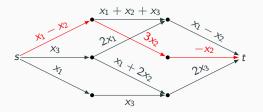
Formal series on words

Formal series on trees

ABP (Branching programs)



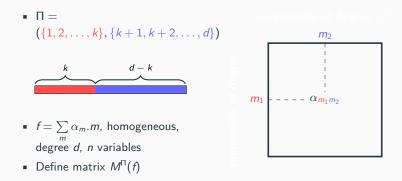
ABP (Branching programs)



$$(x_1 - x_2)(3x_2)(-x_2)$$

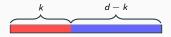
- DAG : source s, sink t, edges with linear forms
- Weight of a path : product of edge weights
- Computed polynomial : sum of path weights from s to t.
- Layered

Measure: coefficient matrices



• Complexity measure : $rank(M^{\Pi}(f))$.

• $\Pi = (\{1, 2, \dots, k\}, \{k+1, k+2, \dots, d\})$



Theorem (Nisan, 1991)

For any homogeneous polynomial f of degree d, the size of a smallest homogeneous algebraic branching program for f is equal to

 $\sum_{k=0}^{d} \operatorname{rank}(M_k(f))$

Corollary

Any homogeneous ABP computing the permanent has size $\geq 2^n$

Introduction

Nisan's results

Formal series on words

Formal series on trees

- Fix a field K and a finite alphabet A
- A formal series S is a function $A^* \to K$
- Denote by (S, w) the image of w by S
- $S = \sum_{w \in A^*} (S, w) w$
- Set of formal series: $K\langle\langle A\rangle\rangle$
- Support of S: $\{w \in A^* \mid (S, w) \neq 0\}$
- Finite support: polynomials, $K\langle A \rangle$

Definition

A formal series S is recognizable if there exists:

- an integer $n \ge 1$
- a morphism of monoids $\mu: A^* \to K^{n \times n}$
- two matrices $\lambda \in K^{1 \times n}$ and $\gamma \in K^{n \times 1}$

such that, for all words w, $(S, w) = \lambda \mu(w) \gamma$.

- It is enough to define $\mu(a)$ for all $a \in A$
- (λ, μ, γ) is called a linear representation
- *n* is called the dimension
- It is an automaton

- $K\langle\langle A\rangle\rangle$ is a vector space over K
- If $u \in A^*$ and $S \in K(\langle A \rangle)$, $u^{-1}S = \sum_{w \in A^*} (S, uw)w$ or $(u^{-1}S, w) = (S, uw)$
- $M \subseteq K\langle\langle A \rangle\rangle$ is called *stable* if $\forall u \in A^*, \forall S \in M, u^{-1}S \in M$

Theorem (Fliess, Carlyle & Paz)

A formal series S is recognizable iff there exists a linear subspace of $K\langle\langle A \rangle\rangle$ which:

- contains S
- is stable
- has finite dimension

- Suppose (λ, μ, γ) is a linear representation of S
- Define S_i by: $(S_i, w) = (\mu(w)\gamma)_i$, for $i = 1, \dots, n$
- Let *M* be the subspace generated by the *S_i* (finite dimension)
- It contains S:

$$(S, w) = \lambda \mu(w) \gamma = \sum_{i} \lambda_{i} (\mu(w) \gamma)_{i} = \sum_{i} \lambda_{i} (S_{i}, w)$$

It is stable:

$$egin{aligned} &(x^{-1}\mathcal{S}_i,w) = (\mathcal{S}_i,xw) = (\mu(xw)\gamma)_i = (\mu(x)\mu(w)\gamma)_i \ &= \sum_j (\mu(x))_{i,j} (\mu(w)\gamma)_j = \sum_j (\mu(x))_{i,j} (\mathcal{S}_j,w) \end{aligned}$$

$\textbf{Proof of} \Leftarrow$

- Let M be a stable linear subspace, containing S, generated by S_1, \ldots, S_n
- $S = \sum_i \lambda_i S_i$
- for $a \in A, i \in [n]$:

$$a^{-1}S_i = \sum_j lpha_j S_j = \sum_j (\mu(a))_{i,j} S_j$$

- $\gamma_j = (S_j, 1)$
- Then:

$$(S_{i}, w) = (w^{-1}S_{i}, 1) = \left(\sum_{j} (\mu(w))_{i,j}S_{j}, 1\right) = \sum_{j} (\mu(w))_{i,j}(S_{j}, 1)$$
$$= \sum_{j} (\mu(w))_{i,j}\gamma_{j} = (\mu(w)\gamma)_{i}$$

Finally:

$$(S, w) = \sum_{i} \lambda_i(S_i, w) = (\lambda \mu(w) \gamma)$$

- Representation of dimension $n \rightarrow$ linear subspace of dimension $\leq n$
- Linear subspace of dimension $n \rightarrow$ representation of dimension n
- Hadamard products (Lemma by Arvind, Joglekar and Srinivasan)

Definition

The hadamard product of two formal series S and T is $(S \odot T, w) = (S, w)(T, w)$

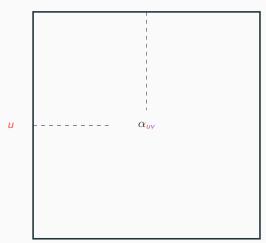
Theorem (Schützenberger 1962)

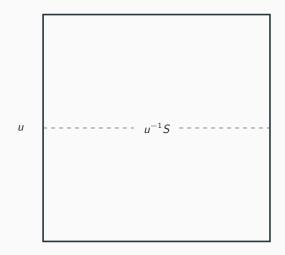
If S and T are recognizable, then $S \odot T$ also

Proof.

If S_1, \ldots, S_m generate a stable subspace containing S and respectively T_1, \ldots, T_n for T, then the $S_i \odot T_j$ generate a stable subspace for $S \odot T$

- Consider the smallest stable linear subspace containing S
- It is generated by the $u^{-1}S$ for $u \in A^*$
- S is recognizable iff this has finite dimension
- This dimension is the smallest dimension of a linear representation of S
- (The size of a smallest automaton)
- This is the rank of the Hankel matrix





- Automata can be seen as a computational model
- For this model we have an exact characterization of the complexity
- May be different from ABPs (cycles)
- (Fijalkow, Lagarde, Ohlmann, Serre 2018) If the polynomial *S* is homogeneous of degree *d*, the minimal automaton is an ABP (acyclic)

Back to ABPs

- Suppose S₁,..., S_n is a basis of a stable subspace containing S
- The transition matrix µ is given by:

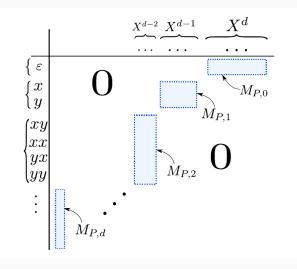
$$a^{-1}S_i = \sum_j (\mu(a))_{i,j}S_j$$

- Here we have a basis u₁⁻¹S,..., u_n⁻¹S of the minimal stable subspace containing S
- Each $u_i^{-1}S$ is a homogeneous polynomial of degree $d |u_i|$
- Now:

$$a^{-1}(u_i^{-1}S) = \sum_j (\mu(a))_{i,j} u_j^{-1}S$$

- $d (|u i| + 1) = d |u_j|$ implies $|u_j| = |u_i| + 1$
- The "states" can be layered by length of words, transition can only go from one layer to the next
- $\bullet \ \rightarrow {\sf Nisan's \ homogeneous \ ABPs}$

Hankel matrix



• For an homogeneous polynomial, all minimal automata obtained from the Hankel matrix are ABPs

- For an homogeneous polynomial, all minimal automata obtained from the Hankel matrix are ABPs
- Challenge 1: find the smallest ABP for a + ab + bb

- For an homogeneous polynomial, all minimal automata obtained from the Hankel matrix are ABPs
- Challenge 1: find the smallest ABP for a + ab + bb
- Challenge 2: find a smallest automaton with cycles

- For an homogeneous polynomial, all minimal automata obtained from the Hankel matrix are ABPs
- Challenge 1: find the smallest ABP for a + ab + bb
- Challenge 2: find a smallest automaton with cycles
- There exists a minimal automaton defined from the Hankel matrix which is acyclic.
- Slight generalization of Nisan's result: in general, the ABP-complexity of a polynomial is the rank of the Hankel matrix

Introduction

Nisan's results

Formal series on words

Formal series on trees

- Fix a field K and a finite ranked alphabet Σ (symbols with arities: $\Sigma = \cup \Sigma_k)$
- We consider trees over Σ , T_{Σ} (the free magma over Σ)
- A formal series S is a function $T_{\Sigma} \rightarrow K$
- Denote by (S, t) the image of t by S
- $S = \sum_{t \in T_{\Sigma}} (S, t) t$
- Set of formal series: K{{A}}
- Support of S: $\{t \in T_{\Sigma} \mid (S, t) \neq 0\}$
- Finite support: polynomials, K{A}

Definition

A formal tree series S is recognizable if there exists:

- an integer $n \ge 1$
- for each $a \in \Sigma_0$, a vector $\mu(a) \in K^n$
- for each $f \in \Sigma_k$, a k-linear map $\mu(f) : (K^n)^k \to K^n$
- a vector $\lambda \in K^n$

such that, for any tree t, $(S, t) = \lambda \mu(t)$, where μ is extended to a mapping from T_{Σ} to K^n : $\mu(f(t_1, \ldots, t_k)) = \mu(f)(\mu(t_1), \ldots, \mu(t_k))$

- (λ,μ) is called a linear representation
- n is called the dimension
- It is a weighted tree automaton

Characterizing recognizable tree series

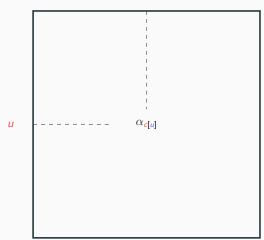
- K{{A}} is a vector space over K
- A context is a tree with one leaf labelled \Box
- If c is a context and $S \in K\{\{A\}\}, c^{-1}S = \sum_{t \in T_{\Sigma}} (S, c[t])t$ or $(c^{-1}S, t) = (S, c[t])$
- $M \subseteq K\{\{A\}\}$ is called *stable* if, for all context *c* and for all $S \in M$, $c^{-1}S \in M$

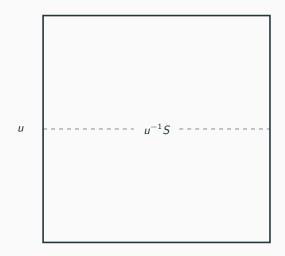
Theorem

A formal tree series S is recognizable iff there exists a linear subspace of $K\{\{A\}\}$ which:

- contains S
- is stable
- has finite dimension

- OK for \Rightarrow
- I don't have a direct proof of $\Leftarrow \ensuremath{\textcircled{\ensuremath{\square}}}$
- Suppose there is a stable linear subspace of finite dimension containing S
- The smallest such subspace V (generated by the c⁻¹S) also has finite dimension
- Consider the space U generated by the t⁻¹S, where t is a tree (in the space of formal context series)
- It is a linear subspace of formal context series over A
- *U* and *V* have the same dimension (Hankel matrix)
- From the fact that U has finite dimension, define a representation of S
- Size of the smallest automaton is the rank of the Hankel matrix (Bozapalidis & Louscou-Bozapalidou)





- Σ_0 is the set of variables, there is only one other symbol, of arity 2
- Binary tree over the variables \rightarrow non-commutative non-associative monomial
- non-commutative, non-associative series and polynomials
- Automata can be seen as a (non-commutative, non-associative) computational model
- For this model we have an exact characterization of the complexity
- May be different from circuits (cycles)
- (Fijalkow, Lagarde, Ohlmann, Serre 2018) If the polynomial *S* is homogeneous of degree *d*, all minimal automata are acyclic (circuit)
- (M) In general, there is always a minimal automaton which is acyclic

- Formal tree series: if S and T have small linear representations, so does S \odot T
- (Arvind & Srinivasan 2009) If f has a small circuit and g has a small ABP, then f ⊙ g has a small circuit (non-commutative, but associative setting)
- Follows from simple observation: there is a small circuit computing all the monomials of g with all possible associative structures: g̃
- Then $f \odot \tilde{g}$ as a non-associative polynomial projects down to $f \odot g$

- Exact characterization of circuit complexity for non-associative, non-commutative polynomials
- Showing lower bounds in the associative setting means considering all the possible Hankel matrices which can define a given associative polynomial
- · We can express this as linear constraints on the coefficients of the matrix

- Exact characterization of circuit complexity for non-associative, non-commutative polynomials
- Showing lower bounds in the associative setting means considering all the possible Hankel matrices which can define a given associative polynomial
- We can express this as linear constraints on the coefficients of the matrix
- Exact characterization of circuit complexity for non-associative polynomials