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Proof Complexity and Expansion

General goal: Prove that concrete proof systems cannot
efficiently certify unsatisfiability of concrete CNF formulas

General theme:

CNF formula F “expanding”

⇓
Large proofs needed to refute F

Paradigm implemented for
resolution: well-developed machinery
polynomial calculus: very much less so

(Will define these proof systems shortly)

What “expanding” means is usually a formula-specific hack

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 2/35



Lower Bounds by Playing Games on Graphs

Given CNF formula F over variables V, build bipartite graph

Left vertex set partition of clauses into F =
⋃m
i=1 Fi

Right vertex set division of variables V =
⋃n
j=1 Vj

Edge (Fi, Vj) if Vars(Fi) ∩ Vj 6= ∅
Lower bound on proof size if

1 Bipartite graph is an expander (very well-connected)

2 We can win the edge game on every edge (Fi, Vj)

Edge game on (Fi, Vj)

Adversary assigns all variables V \ Vj
We assign Vj

We win if Fi true
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Main Message

Edge game on (Fi, Vj)

Adversary assigns all variables V \ Vj
We assign Vj

We win if Fi true

Who goes first?

Adversary has to start ⇒ resolution lower bound

We have to start ⇒ polynomial calculus lower bound

Consequences

Extends techniques in [BW01] and [AR03]

Unifies many previous lower bounds

And yields some new ones
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Outline

1 Proof Complexity Overview
Preliminaries
Resolution and Polynomial Calculus
Width and Degree

2 Lower Bounds from Expansion
Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

3 Open Problems
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

Just To Make Sure We’re on the Same Page. . .

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: CNF formula with clauses of size ≤ k
k = O(1) constant in this talk

true = 1; false = 0
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation ends when empty clause ⊥
derived

Can represent refutation as

annotated list or

directed acyclic graph

Tree-like resolution if DAG is tree

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

Resolution Size/Length and Width

Size/length = # clauses in refutation [9 in our example]

Most fundamental measure in proof complexity
Never worse than exp(O(#variables))
Matching exp(Ω(formula size)) lower bounds known

Width = size of largest clause in refutation [3 in our example]

Always ≤ #variables
Helpful measure to get a handle on size (as we shall soon see)
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

Polynomial Calculus (PC)

From [CEI96]; with adjustment in [ABRW02]

Clauses interpreted as polynomials over field F
(Evaluate to true ≡ vanish)

Example: x ∨ y ∨ z gets translated to xyz

Derivation rules

Boolean axioms
x2 − x Negation

x+ x− 1

Linear combination
p q

αp+ βq
Multiplication

p
xp

Goal: Derive 1 ⇔ no common root ⇔ formula unsatisfiable

Formalizes Gröbner basis computations
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

Polynomial Calculus (PC)

From [CEI96]; with adjustment in [ABRW02]

Clauses interpreted as polynomials over field F
(Evaluate to true ≡ vanish)

Example: x ∨ y ∨ z gets translated to xyz

Derivation rules

Boolean axioms
x2 − x Negation

x+ x− 1

Linear combination
p q

αp+ βq
Multiplication

p
xp

Goal: Derive 1 ⇔ no common root ⇔ formula unsatisfiable
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

Polynomial Calculus Size and Degree

Clauses turn into monomials
Write out all polynomials as sums of monomials
W.l.o.g. all polynomials multilinear (because of Boolean axioms)

Size — analogue of resolution length/size
total # monomials in refutation counted with repetitions

Degree — analogue of resolution width
largest degree of monomial in refutation
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

Polynomial Calculus Stronger than Resolution

Polynomial calculus can simulate resolution proofs efficiently with
respect to both size and width/degree

Can mimic resolution refutation step by step

Hence worst-case upper bounds for resolution carry over

Example: Resolution step:

x ∨ y ∨ z y ∨ z
x ∨ y

simulated by polynomial calculus derivation:

xyz

yz

xyz

z + z − 1

yz + yz − y
xyz + xyz − xy
−xyz + xy

xy
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xyz

yz

xyz

z + z − 1

yz + yz − y
xyz + xyz − xy
−xyz + xy

xy
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Preliminaries
Resolution and Polynomial Calculus
Width and Degree

Examples of Some Hard Formulas (1/3)

Random k-CNF formulas
∆n randomly sampled k-clauses over n variables

(∆ & 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Exponential size lower bounds for for

resolution [CS88, BKPS02]

polynomial calculus over fields of characteristic 6= 2 [BI99]

polynomial calculus over any field [AR03]
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Examples of Some Hard Formulas (2/3)

Pigeonhole principle (PHP)
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i goes into hole j”

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i 6= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j 6= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

All PHP versions exponentially hard for resolution [Hak85]

“Vanilla PHP” exponentially hard for PC [AR03]

Onto functional PHP easy for PC (over any field) [Rii93]

What about functional PHP and onto PHP for PC?
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Examples of Some Hard Formulas (3/3)

Tseitin formulas
“Sum of degrees of vertices in graph is even”

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

0 0

x y

z

(x ∨ y) ∧ (x ∨ z)
∧ (x ∨ y) ∧ (y ∨ z)
∧ (x ∨ z) ∧ (y ∨ z)

Exponentially hard for resolution on expanders [Urq87]

And for polynomial calculus in characteristic 6= 2 [BGIP01]

But PC over GF(2) can do Gaussian elimination
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Lower Bounds from Expansion
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Preliminaries
Resolution and Polynomial Calculus
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Upper Bounds from Resolution Width and PC Degree

Width/degree upper bound ⇒ size upper bound

Resolution: At most (2 ·#variables)width distinct clauses

Polynomial calculus: Essentially same bound; more careful
argument [CEI96]

These simple upper bounds are essentially tight [ALN16]

Width/degree lower bound ⇒ size lower bound

Much less obvious. . .
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Width/Degree Lower Bounds Imply Size Lower Bounds

Theorem ([IPS99, BW01])

For k-CNF formula over N variables

proof size ≥ exp

(
Ω

(
(proof width/degree)2

N

))
Yields superpolynomial bounds for width/degree ω

(√
N logN

)
(and no implications for smaller width/degree [BG01, GL10])

Resolution

Well-developed machinery for width lower bounds
One of many available tools

Polynomial calculus

Degree lower bound machinery way less developed
And pretty much only tool?!
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Conversion to k-CNF “Graph Versions” of Formulas

Need bounded width to use lower bound in [IPS99, BW01]

But PHP formulas have wide clauses

Solution: Restrict formulas to bounded-degree graphs

For graph (onto functional) PHP, pigeons can fly only to
neighbour holes:∨

j∈N (i) pi,j pigeon i goes into hole in N (i)∨
i∈N (j) pi,j hole j gets pigeon from N (j)

Now strong width lower bounds ⇒ strong size lower bounds

And size lower bounds hold for original, unrestricted formulas

Lower bounds for graph PHP also of independent interest
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Lower Bounds via Graph Expansion

Standard approach:
Lower bounds from expansion

Simplest example is the clause-
variable incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have
many unique right neighbours

Problem:
CVIG often loses expansion of
combinatorial problem

Need graph capturing
combinatorial structure!
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x3 ∨ x5 ∨ x9

x1 ∨ x8 ∨ x10

x1 ∨ x4 ∨ x9

x3 ∨ x8 ∨ x10

x3 ∨ x6 ∨ x9

x2 ∨ x5 ∨ x7

x4 ∨ x5 ∨ x9

x2 ∨ x7 ∨ x10

x1 ∨ x3 ∨ x6

x2 ∨ x4 ∨ x8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Clauses Variables

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 18/35



Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Lower Bounds via Graph Expansion

Standard approach:
Lower bounds from expansion

Simplest example is the clause-
variable incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have
many unique right neighbours

Problem:
CVIG often loses expansion of
combinatorial problem

Need graph capturing
combinatorial structure!

x3 ∨ x5 ∨ x9

x1 ∨ x8 ∨ x10

x1 ∨ x4 ∨ x9

x3 ∨ x8 ∨ x10

x3 ∨ x6 ∨ x9

x2 ∨ x5 ∨ x7

x4 ∨ x5 ∨ x9

x2 ∨ x7 ∨ x10

x1 ∨ x3 ∨ x6

x2 ∨ x4 ∨ x8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Clauses Variables

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 18/35



Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Lower Bounds via Graph Expansion

Standard approach:
Lower bounds from expansion

Simplest example is the clause-
variable incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have
many unique right neighbours

Problem:
CVIG often loses expansion of
combinatorial problem

Need graph capturing
combinatorial structure!

x3 ∨ x5 ∨ x9

x1 ∨ x8 ∨ x10

x1 ∨ x4 ∨ x9

x3 ∨ x8 ∨ x10

x3 ∨ x6 ∨ x9

x2 ∨ x5 ∨ x7

x4 ∨ x5 ∨ x9

x2 ∨ x7 ∨ x10

x1 ∨ x3 ∨ x6

x2 ∨ x4 ∨ x8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Clauses Variables

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 18/35



Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Lower Bounds via Graph Expansion

Standard approach:
Lower bounds from expansion

Simplest example is the clause-
variable incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have
many unique right neighbours

Problem:
CVIG often loses expansion of
combinatorial problem

Need graph capturing
combinatorial structure!

x3 ∨ x5 ∨ x9

x1 ∨ x8 ∨ x10

x1 ∨ x4 ∨ x9

x3 ∨ x8 ∨ x10

x3 ∨ x6 ∨ x9

x2 ∨ x5 ∨ x7

x4 ∨ x5 ∨ x9

x2 ∨ x7 ∨ x10

x1 ∨ x3 ∨ x6

x2 ∨ x4 ∨ x8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Clauses Variables

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 18/35



Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Lower Bounds via Graph Expansion

Standard approach:
Lower bounds from expansion

Simplest example is the clause-
variable incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have
many unique right neighbours

Problem:
CVIG often loses expansion of
combinatorial problem

Need graph capturing
combinatorial structure!

x3 ∨ x5 ∨ x9

x1 ∨ x8 ∨ x10

x1 ∨ x4 ∨ x9

x3 ∨ x8 ∨ x10

x3 ∨ x6 ∨ x9

x2 ∨ x5 ∨ x7

x4 ∨ x5 ∨ x9

x2 ∨ x7 ∨ x10

x1 ∨ x3 ∨ x6

x2 ∨ x4 ∨ x8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Clauses Variables

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 18/35



Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Lower Bounds via Graph Expansion

Standard approach:
Lower bounds from expansion

Simplest example is the clause-
variable incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have
many unique right neighbours

Problem:
CVIG often loses expansion of
combinatorial problem

Need graph capturing
combinatorial structure!

x3 ∨ x5 ∨ x9

x1 ∨ x8 ∨ x10

x1 ∨ x4 ∨ x9

x3 ∨ x8 ∨ x10

x3 ∨ x6 ∨ x9

x2 ∨ x5 ∨ x7

x4 ∨ x5 ∨ x9

x2 ∨ x7 ∨ x10

x1 ∨ x3 ∨ x6

x2 ∨ x4 ∨ x8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Clauses Variables

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 18/35



Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Lower Bounds via Graph Expansion

Standard approach:
Lower bounds from expansion

Simplest example is the clause-
variable incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have
many unique right neighbours

Problem:
CVIG often loses expansion of
combinatorial problem

Need graph capturing
combinatorial structure!

x3 ∨ x5 ∨ x9

x1 ∨ x8 ∨ x10

x1 ∨ x4 ∨ x9

x3 ∨ x8 ∨ x10

x3 ∨ x6 ∨ x9

x2 ∨ x5 ∨ x7

x4 ∨ x5 ∨ x9

x2 ∨ x7 ∨ x10

x1 ∨ x3 ∨ x6

x2 ∨ x4 ∨ x8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Clauses Variables

Jakob Nordström (KTH) Proof Complexity Lower Bounds from Graph Expansion Simons Dec ’18 18/35
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Resolution Width Lower Bounds
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Some New Results

Generalized Incidence Graphs for CNF Formulas

Given CNF formula F over variables V
Partition clauses into F = E ∪⋃m

i=1 Fi (for E satisifiable)

Divide variables into V =
⋃n
j=1 Vj — not always partition

Overlap `: Any x appears in ≤ ` different Vj

Build bipartite (U ,V)E-graph G
Left vertices U = {F1, . . . , Fm}
Right vertices V = {V1, . . . , Vn}
Edge (Fi, Vj) if Vars(Fi) ∩ Vj 6= ∅

E not part of graph, but “filters” which assignments to consider
(E.g., partial matchings for pigeonhole principle formulas)
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Resolution Width Lower Bounds
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The Resolution Edge Game

Resolution edge game on (Fi, Vj) w.r.t. “filtering set” E

Adversary choses any total assignment α such that α(E) = 1

We can modify α on Vj to get α′

We win if α′(Fi ∧ E) = 1

F1

F2

F3

V1

V2

V3

w ∨ x ∨ y
x ∨ z
x ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z

{w, y}

{x, y}

{w, z}

E = {y ∨ z}
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The Resolution Edge Game

Resolution edge game on (Fi, Vj) w.r.t. “filtering set” E

Adversary choses any total assignment α such that α(E) = 1

We can modify α on Vj to get α′

We win if α′(Fi ∧ E) = 1

F1

F2

F3

V1

V2

V3

w ∨ x ∨ y
x ∨ z
x ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z

{w, y}

{x, y}

{w, z}

E = {y ∨ z}

Edge game on (F1, V1) w.r.t. E

Take α1 = {w = y = z = 0, x = 1}
Can’t win, since

α1(x ∨ z) = 0

can’t flip x or z (not in V1)
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The Resolution Edge Game

Resolution edge game on (Fi, Vj) w.r.t. “filtering set” E

Adversary choses any total assignment α such that α(E) = 1
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w ∨ x ∨ y
x ∨ z
x ∨ z
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x ∨ z

x ∨ y ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z

{w, y}

{x, y}

{w, z}

E = {y ∨ z}

Edge game on (F1, V2) w.r.t. E

Take α2 = {w = y = z = 0, x = ∗}
Again can’t win, since

can’t flip w or z (not in V2)

flipping y ∈ V2 falsifies E

F1�{w=y=z=0}= {x, x}
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We win if α′(Fi ∧ E) = 1

F1

F2

F3

V1

V2

V3

w ∨ x ∨ y
x ∨ z
x ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z

{w, y}

{x, y}

{w, z}

E = {y ∨ z}

Edge game on (F1, V2) w.r.t. E

Take α2 = {w = y = z = 0, x = ∗}
Again can’t win, since

can’t flip w or z (not in V2)

flipping y ∈ V2 falsifies E

F1�{w=y=z=0}= {x, x}
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E = {y ∨ z}

Edge game on (F2, V2) w.r.t. E

Now we can win!

Given any α3 s.t. α3(E) = 1:

assign α′(x) = α3(y ∨ z)
E still OK — didn’t touch y, z

F2 OK — encodes x↔ (y ∨ z)
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Edge Game, Expansion, and Width Lower Bounds

Recall boundary ∂
(
U ′) =

{
V ∈ N

(
U ′) ∣∣N (V ) ∩ U ′={F} unique

}
Resolution expander

Say that an (U ,V)E-graph is an (s, δ, E)-resolution expander if

For all U ′ ⊆ U ,
∣∣U ′∣∣ ≤ s it holds that

∣∣∂(U ′)∣∣ ≥ δ∣∣U ′∣∣
For all edges (Fi, Vj) we can win the resolution edge game
with respect to E

Theorem (essentially [BW01])

If the CNF formula F admits an (s, δ, E)-resolution expander with
overlap `, then

resolution proof width >
δs

2`
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Ben-Sasson–Wigderson à la Alekhnovich–Razborov

Theorem (essentially [BW01])

If F admits an (s, δ, E)-resolution expander with overlap `, then

resolution proof width >
δs

2`

Proof sketch (in the style of [AR03]):

Let π = (C1, C2, C3, . . .) be derivation from F in width ≤ δs
2`

For every Ci ∈ π, define “support” Sups(Ci) ⊆ F \ E such that

1 |Sups(Ci)| ≤ s/2
2 Sups(Ci) ∪ E � Ci
⇒
∣∣Sups(Ci)∣∣ so small that Sups(Ci) ∪ E satisfiable

⇒ Sups(Ci) ∪ E � Ci means that Ci satisfiable (hence not ⊥) �
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Support

Clause neighbourhood N (C) = {V ∈ V | Vars(C) ∩ V 6= ∅}
Left-side set U ′ ⊆ U in (U ,V)E-graph is (s, C)-contained if∣∣U ′∣∣ ≤ s

∂
(
U ′) ⊆ N (C)

s-support Sups(C) of C = largest (s, C)-contained subset
(Intuition: “largest clause set possibly used to derive C”)

Need to argue:

Sups(Ci) well-defined — by expansion

|Sups(Ci)| ≤ s/2 — also by expansion

Sups(Ci) ∪ E � Ci — by resolution edge game and induction
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Applications: Tseitin and Onto-FPHP

Tseitin formulas

Fi = clauses encoding parity constraint for ith vertex

Vj = singleton set with jth edge (so overlap ` = 1)

E = ∅
If underlying graph edge expander, then (U ,V)E-graph is
resolution expander with same parameters

Onto functional PHP formulas

Fi = singleton set with pigeon axiom for pigeon i

Vj = all variables pi,j mentioning hole j (again overlap ` = 1)

E = all hole, functional, and onto axioms

If onto FPHP restricted to bipartite graph, then
(U ,V)E-graph is resolution expander with same parameters
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From Resolution to Polynomial Calculus

So far: Obtain resolution width lower bounds from expander
graphs where we can win following game on all edges

Resolution edge game on (F, V ) with respect to E

1 Adversary provides total assignment α such that α(E) = 1

2 Choose ρV : V → {0, 1} so that α[ρV /V ](F ∧ E) = 1

But Tseitin and onto FPHP both easy for polynomial calculus!

Polynomial calculus degree lower bounds require harder game

Polynomial calculus edge game on (F, V ) with respect to E

1 Commit to partial assignment ρV :V →{0, 1}
2 Adversary provides total assignment α such that α(E) = 1

3 Substituting ρV for V should yield α[ρV /V ](F ∧ E) = 1
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The Polynomial Calculus Edge Game

To win PC edge game on (F, V ), need to find ρV : V →{0, 1} s.t.

ρV (F ) = 1

ρV (C) = 1 for all clauses C ∈ E with V ∩Vars(C) 6= ∅

F1

F2

F3

V1

V2

V3

w ∨ x ∨ y
x ∨ z
x ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z

{w, y}

{x, y}

{w, z}

E = {y ∨ z}
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E = {y ∨ z}

Recall that for resolution edge game
we:

Lose on (F1, V1)

Lose on (F1, V2)

Win on (F2, V2)
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PC edge game on (F2, V2) w.r.t. E

Now we can’t win

E = {y ∨ z} needs ρV (y) = 0

But F2�{y=0}= {x ∨ z, x ∨ z}
Adversary sets αV (z)=1− ρV (x)
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The Polynomial Calculus Edge Game

To win PC edge game on (F, V ), need to find ρV : V →{0, 1} s.t.

ρV (F ) = 1

ρV (C) = 1 for all clauses C ∈ E with V ∩Vars(C) 6= ∅

F1

F2

F3

V1

V2

V3

w ∨ x ∨ y
x ∨ z
x ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z
x ∨ y
x ∨ z

x ∨ y ∨ z

{w, y}

{x, y}

{w, z}

E = {y ∨ z}

PC edge game on (F2, V2) w.r.t. E

Now we can’t win

E = {y ∨ z} needs ρV (y) = 0

But F2�{y=0}= {x ∨ z, x ∨ z}
Adversary sets αV (z)=1− ρV (x)
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PC edge game on (F3, V2) w.r.t. E

On this edge we can win!

Choose ρV = {x = 1, y = 0}
ρV (F3) = 1

ρV (E) = 1
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A Generalized Method for PC Degree Lower Bounds

Polynomial calculus expander

Say that an (U ,V)E-graph is an (s, δ, E)-PC expander if

For all U ′ ⊆ U ,
∣∣U ′∣∣ ≤ s it holds that

∣∣∂(U ′)∣∣ ≥ δ∣∣U ′∣∣
For all edges (Fi, Vj) we can win the PC edge game with
respect to E

Theorem ([MN15] building on [AR03])

If F admits an (s, δ, E)-PC expander with overlap `, then

PC proof degree >
δs

2`

Also holds for sets of polynomials not obtained from CNFs
Proof by carefully adapting [AR03] (fairly involved — can’t say much)
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Consequences

Common framework for previous lower bounds

Random k-CNF formulas [AR03]

CNF formulas with expanding CVIGs [AR03]

“Vanilla” PHP formulas [AR03]

Ordering principle formulas [GL10]

Subset cardinality formulas [MN14]

New lower bounds

Functional pigeonhole principle [MN15]

Graph colouring [LN17]
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Hardness of Different Flavours of PHP

Variant Resolution Polynomial calculus

PHP hard [Hak85] hard [AR03]
FPHP hard [Hak85]
Onto-PHP hard [Hak85]
Onto-FPHP hard [Hak85] easy! [Rii93]

Joint work with Mladen Mikša [MN15]:

Observe that [AR03] proves hardness of Onto-PHP

Prove that functional PHP is hard for polynomial calculus
(answering open question in [Raz02, Raz14])
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Degree Lower Bound for Functional PHP

Theorem ([MN15])

If G is a (standard) bipartite (s, δ)-boundary expander with left
degree ≤ d, then FPHPG requires PC degree > δs/(2d)

Proof: Just need to build expanding (U ,V)E-graph

Fi = pigeon axiom for pigeon i

E = all hole and functional axioms

Vj =
{
pi′,j′

∣∣i′ ∈ N (j) and j′ ∈ N (i′)
}

“All holes pigeons incident to hole j can go to”

Can prove (straightforward exercise):

Overlap ` satisfies 1 < ` ≤ d
Can win PC edge game on all edges (Fi, Vj)
Original graph G and (U ,V)E are isomorphic

So get same expansion parameters, and theorem follows �
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Graph Colouring

Graph k-colouring formulas
“G = (V,E) is k-colourable”

Variables xv,c = “vertex v gets colour c”

xv,1 ∨ xv,2 ∨ · · · ∨ xv,k every vertex v gets a colour

xv,c ∨ xv,c′ every vertex v is uniquely coloured

xu,c ∨ xv,c neighbours (u, v) ∈ E get different colours

Average-case exponential lower bounds for resolution [BCMM05]

No lower bounds for polynomial calculus

On the contrary, [DLMM08, DLMO09, DLMM11, DMP+15] claim
very efficient algorithms based on Nullstellensatz (“static PC”)
for slightly different encoding using primitive kth roots of unity
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Polynomial Calculus Lower Bound for Colouring

Joint work with Massimo Lauria [LN17]:

Theorem ([LN17])

For any k ≥ 3 ∃ constant-degree graphs which require linear PC
degree, and hence exponential size, to be proven non-k-colourable

Proof idea:

Reduce functional PHP instance to graph colouring instance

Show that polynomial calculus “can compute this reduction”

Hence these graph colouring instances must be hard

Lower bound applies also to kth-root-of-unity encoding

Answers open question raised in [DLMO09, LLO16]
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Resolution Width Lower Bounds
PC Degree Lower Bounds
Some New Results

Sketch of Reduction

Given FPHP instance for bipartite graph of left degree k

Order available holes N (i) = {ji,1, . . . , ji,c} for every pigeon i

Vertex i coloured with colour c ⇔ pigeon i flies to hole ji,c

ji,c = ji′,c′ ⇒ can’t colour i by c and i′ by c′ simultaneously

Almost colouring, except forbidding specific colour pair (c, c′)
instead of arbitrary but same colour — fix with gadgets!

not i and i′ both green

Colouring i green use all
other colours making
rightmost node green

Symmetric argument in right
subgadget
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Sketch of Reduction

Given FPHP instance for bipartite graph of left degree k

Order available holes N (i) = {ji,1, . . . , ji,c} for every pigeon i

Vertex i coloured with colour c ⇔ pigeon i flies to hole ji,c

ji,c = ji′,c′ ⇒ can’t colour i by c and i′ by c′ simultaneously

Almost colouring, except forbidding specific colour pair (c, c′)
instead of arbitrary but same colour — fix with gadgets!

E

i i′

not i and i′ both green

Colouring i green forces left
4-clique use all other colours
making rightmost node green

Symmetric argument in right
subgadget ⇒ contradiction
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not i green and i′ red
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Proof Complexity Overview
Lower Bounds from Expansion

Open Problems

Open Problems

Prove PC degree lower bounds for other formulas

independent set formulas
average-case for graph colouring formulas
dense linear ordering formulas

Prove size lower bounds via technique that doesn’t use degree

k-clique formulas
weak pigeonhole principle formulas (≥ n2 pigeons)

Find truly general framework capturing all PC degree bounds

We generalize only part of [AR03]
Cannot handle characteristic-dependent bounds à la [BGIP01]
Combination of [AR03] and [MN15] might give lower bounds
for even colouring formulas [Mar06, VEG+18]
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Take-away Message

Generalized method for width and degree lower bounds

Unified framework for most previous lower bounds

Highlights similarities and differences between resolution and
polynomial calculus

Exponential polynomial calculus size lower bound for
functional PHP
graph colouring

Future directions

Extend techniques further to other tricky formulas

Develop non-degree-based size lower bound techniques

Thank you for your attention!
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