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Algebraic Formulas

J (15 %9, X3, %4)

> A tree, made up of + and X gates. Leaves containing variables or
constants. Size = number of leaves

> Size(f(g,---58,)) < Size(f)-max, (Size(g;))

» Formula(n,d,s): n-variate, degree < d polynomials computable
by size s formulas. (note: d <)
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Blackbox Polynomial Identity Testing

s this zero?

This box contains a polynomial from 6 (n,d, s)

Only have evaluation access to the circuit.

Equivalent to constructing a hitting set H:

For every nonzero P € 6 (n,d,s), there is some a € H such

that P(a) # 0.
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Hitting Sets

Counting argument

There are non-explicit hitting sets of poly(s) size for 6 (n,d,s).

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If S CF with |S| > d + 1, then §” is a hitting set for 6 (n,d,s).

That is, we have an explicit, but trivial, hitting set of (d + 1)” size.

Question: Are there small explicit hitting sets for €' (n,d,s)?
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s exp(exp(O(log's))).
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Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])
Say n large enough.
Suppose, for each s > n, there is an explicit hitting set for ¢ (n,s,s)

of size at most

(s + 1) 200 (Trivial hitting set size: (s +1)")
Then there is an explicit hitting set for (s, s, s) of size at most
Stiny(s).

(where 6 is any class well-behaved under sums, projections and compositions)
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A very high-level overview

Non-trivial Hitting Sets

[Kabanets-lmpagliazzo] [Heintz-Schnorr, Agrawal]

Explicit Lower Bounds

From a non-trivial hitting set, get a lower bound. Use that to get a better
hitting set. And so on ...




Preliminaries:

Hardness vs Randomness

for algebraic models
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Lower bounds from hitting sets

H is a hitting set for 6(n,d, s) if

forall 0 P € 6(n,d,s), there is some @ € H such that P(z) # 0.

Observation
If P is a nonzero polynomial that vanishes on H, then P cannot be a

member of € (n,d,s).

Theorem ([Heintz-Schnorr, Agrawal])

For any k < 1 such that k |H|'/* < d, we can find a nonzero k-variate

1/k

polynomial Q of individual degree less than |H|"/* such that Q requires

size more than s.




Hitting sets from lower bounds

Theorem ([Kabanets-Impagliazzo] (Informal))

If Q is hard-enough, then for any small algebraic circuit computing P, we
have

P(xp,..5%,) 0 <= P(Q())---»Q(3,,)) #0

evenify,...,y,, are almost disjoint.
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Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.

Then Q has small circuits.
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.

Then Q has small circuits.

ZP/(x3»7|53)
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.
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I [ I
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.

Then Q has small circuits.
:P/(x3,y|53) Size§$-<7d~dy_1)
P Degree< D -dr

I [ I
A A X3 ay e Ay (%3 — Q) divides P’

[Kaltofen, Biirgisser]:

508 08 5 Factors have small circuits.
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.
Then Q has circuits of size (s - v - d” -D)O(U,

:P’(x3,y|53) Sizeﬁs-(rd-d’_l)
P Degree<D-dr

[ [ [
A A X3 A e Ay (%3 — Q) divides P’

[Kaltofen, Biirgisser]:

508 S,NS S Factors have small circuits.
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Lemma ([Kabanets-Impagliazzo])

Suppose Q does not have circuits of size (s - 7 -d” - D)W
Then, for any nonzero polynomial P(x, ..., x,,) of degree at most D and

circuit size at most s, we have that P(Q[[{,k, r]) #0.
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Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.
Then Q has circuits of size (s - v - d” -D)O(U,

:P’(x3,y|53) Sizeﬁs-(rd-d’_l)
P Degree<D-dr

[ [ [
A A X3 A e Ay (%3 — Q) divides P’

$1NS; $,NS8; S
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Lemma ([Kabanets-Impagliazzo])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.
Then Q has circuits of size (s - v - d” -D)O(U,

:P’(x3,y|53) Sizeﬁs-(rd-d’_l)
P Degree<D-dr

[ [ [
A A X3 A e Ay (%3 — Q) divides P’
; P'(0,y |,) is @ multiple of Q.

§5iNSy §N8 S (after dividing by x3; interpolation)
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Lemma ([Kumar-S-Tengse])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s formula. Suppose Q is a k-variate polynomial of ind.

degree < d such that P(Q[{,k,r])=0.
Then a low-degree multiple of Q has formulas of size (s - -d” - (D +1)).

:P’(x3,y|53) Sizeﬁs-(rd-d’_l)
P Degree<D-dr

[ [ [
A A X3 A e Ay (%3 — Q) divides P’
; P'(0,y |,) is @ multiple of Q.

§5iNSy §N8 S (after dividing by x3; interpolation)
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Lemma ([Kumar-S-Tengse])

Let P(xy,...,x,,) is a nonzero polynomial of degree at most D that is
computable by a size s formula. Suppose Q is a k-variate polynomial of ind.
degree < d such that P(Q[{,k,r])=0.

Then a low-degree multiple of Q has formulas of size (s - - d” - (D + 1)).
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Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most D - d r
has a formula of size (s - v -d” - (D + 1)).

Then, for any nonzero polynomial P(x, ..., x,,) of degree at most D and
formula size at most s, we have that P(Q[[¢,k,r]) #0.
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Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most D - d r
has a formula of size (s - v -d” - (D + 1)).

Then, for any nonzero polynomial P(x, ..., x,,) of degree at most D and
formula size at most s, we have that P(Q[[¢,k,r]) #0.

Corollary

Suppose Q vanishes on a hitting set for Formula(k,d’, s") with
d'=(D-dr)ands’=s-7-d"-(D+1). Then, if

P € Formula(m, D, s), we have

P #0 <= P(Q[{,k, 1) #0.
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Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most D - d r
has a formula of size (s - v -d” - (D + 1)).

Then, for any nonzero polynomial P(x, ..., x,,) of degree at most D and
formula size at most s, we have that P(Q[[¢,k,r]) #0.

Corollary

Suppose Q vanishes on a hitting set for Formula(k,d’, s") with
d'=(D-dr)ands’=s-7-d"-(D+1). Then, if

P € Formula(m, D, s), we have

P #0 <= P(Q[{,k, 1) #0.

From hitting sets for k-variate formulas, we obtain a hitting set for
m-variate formulas.
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» Construct an (¢, k, r)-design S,,...,S,, C[{]
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» Use Hyp to take a hitting set for 6 (¢, s, s) to construct a hard
k-variate polynomial Q.
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Template for “Hardness to Randomness”

Hyp: Hitting sets for 6({,s,s) forall s > ¢.
Goal: Construct “better” hitting sets for € (m,s,s) forall s > m

v

Construct an (¢, k, r)-design S,...,S,, C[{]

m

v

Use Hyp to take a hitting set for 6 (¢,s¢,s¢) to construct a hard
k-variate polynomial Q.

v

Use the hardness of Q) to argue that

0#£P € 6(m,s,s)=> P(Q[{,k,r])#0

v

P(Q[l,k,7]) € 6€({,s',s") for a small-ish s". Use Hyp onit.
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Why does bootstrapping work?

0#£ P € €(m,s,s) (think of s = m>).

If Q is a k-variate polynomial (& = 1000 log 72) that is s°-hard, then we
can do a variable reduction from 2 to { = O(log” m) that preserves
nonzeroness.

P'=P(Q[l,k,r]) € E({,s',s") for asmall-ish s”.
Note: s’ is already exponential in £. Hence, to apply this once more, we

k = O(log{) variate polynomial that is (s")° = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.
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Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough ¢~ 10). Suppose, for all s > n, there is an explicit
hitting set for Formula(, s, s) of size at most

1/4
8(n) ith <(Z2).
s&, wi g(n)_< 0

Then, we have an explicit hitting set for Formula(s, s, s) of size

Sexp(exp(O(log* 5))) .




Proof of the bootstrapping lemma

n1/4

Hyp: s&(*) hitting sets for € (n, s, s), for any s > n, with g(n) < =5




Proof of the bootstrapping lemma

n1/4

Hyp: s&(*) hitting sets for € (n, s, s), for any s > n, with g(n) < =5

Letk=4/n,{ =nand r=nl/*
LetS,,...,S,, bean (¢, k, r)-design with m = ',




Proof of the bootstrapping lemma

n1/4

Hyp: s&(*) hitting sets for € (n, s, s), for any s > n, with g(n) < =5

Letk=4/n,{ =nand r=nl/*
LetS,,...,S,, bean (¢, k, r)-design with m = ',

Using the hitting set H for Formula(z, 5%, s%) of size s°¢("), find Q
vanishing on H such that:

> Qis k-variate, and ideg(Q) < d := s78(")/k,




Proof of the bootstrapping lemma

n1/4

Hyp: s&(*) hitting sets for € (n, s, s), for any s > n, with g(n) < =5

Letk=4/n,{ =nand r=nl/*
LetS,,...,S,, bean (¢, k, r)-design with m = ',

Using the hitting set H for Formula(z, 5%, s%) of size s°¢("), find Q
vanishing on H such that:

> Qis k-variate, and ideg(Q) < d := s78(")/k,

Claim: 0# P € Formula(m,s,s) = P(Q[{,k, r]) #0.




Proof of the bootstrapping lemma

n1/4

Hyp: s&(*) hitting sets for € (n, s, s), for any s > n, with g(n) < =5

Letk=4/n,{ =nand r=nl/*
LetS,,...,S,, bean (¢, k, r)-design with m = ',

Using the hitting set H for Formula(z, 5%, s%) of size s°¢("), find Q
vanishing on H such that:

> Qis k-variate, and ideg(Q) < d := s78(")/k,

Claim: 0# P € Formula(m,s,s) = P(Q[{,k, r]) #0.

Proof.
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Use the previous corollary.
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n1/4

Hyp: s&(*) hitting sets for € (n, s, s), for any s > n, with g(n) < =5

Letk=4/n,{ =nand r=nl/*
LetS,,...,S,, bean (¢, k, r)-design with m = ',

Using the hitting set H for Formula(z, 5%, s%) of size s°¢("), find Q
vanishing on H such that:

> Qis k-variate, and ideg(Q) < d := s78(")/k,
Claim: 0# P € Formula(m,s,s) = P(Q[{,k, r]) #0.
P(Q[{,k,r])is a formula of size,degree at most s - 5 108(7) < §208(n),

Using the hypothesis again, we get a hitting set of size s20(e(m) for
Formula(m,s,s). L
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Déja vu
Hyp: s7~%1 hitting sets for 6 (,s,s), for any s > n.

Letbk=n,¢{=n’and r =2. .
LetS,,...,S,, bean (¢, k, r)-design with m = (%) =n.

Use the hitting set for Formula(z, s39%7, s3997)

> Qs k-variate, and ideg(Q) < d := 53%0("=001) — {30003,

to get

Claim: 0 # P € Formula(m,s,s) = P(Q[{,k,7])#0

P(Q[{,k,r])is a formula on £ = n° variables of degree
s . g300n—3 < (300m

[O-DL-5-Z] lemma: a hitting set of size $3%077” < s/50 for
Formula(m,s,s).
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