Near-optimal Bootstrapping of Hitting Sets

Mrinal Kumar Simons Institute Ramprasad Saptharishi TIFR, Mumbai **Anamay Tengse** TIFR, Mumbai

Simons Institute December 2018

Algebraic Circuits

 \blacktriangleright A tree, made up of + and \times gates. Leaves containing variables or constants

A tree, made up of + and \times gates. Leaves containing variables or constants. Size = number of leaves

- A tree, made up of + and \times gates. Leaves containing variables or constants. Size = number of leaves
- ► Size $(f(g_1,...,g_n)) \le \text{Size}(f) \cdot \max_i (\text{Size}(g_i))$

- A tree, made up of + and \times gates. Leaves containing variables or constants. Size = number of leaves
- ► Size $(f(g_1,...,g_n)) \le \text{Size}(f) \cdot \max_i (\text{Size}(g_i))$
- Formula(n, d, s): n-variate, degree $\leq d$ polynomials computable by size s formulas. (note: $d \leq s$)

Polynomial Identity Testing

Blackbox Polynomial Identity Testing

Blackbox Polynomial Identity Testing

Only have evaluation access to the circuit.

Blackbox Polynomial Identity Testing

Only have evaluation access to the circuit.

Equivalent to constructing a hitting set H:

For every nonzero $P \in \mathcal{C}(n,d,s)$, there is some $\overline{a} \in H$ such that $P(\overline{a}) \neq 0$.

Counting argument

There are non-explicit hitting sets of poly(s) size for $\mathscr{C}(n,d,s)$.

Counting argument

There are non-explicit hitting sets of poly(s) size for $\mathscr{C}(n,d,s)$.

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])

If $S \subseteq \mathbb{F}$ with $|S| \ge d+1$, then S^n is a hitting set for $\mathscr{C}(n,d,s)$.

That is, we have an explicit, but trivial, hitting set of $(d+1)^n$ size.

Counting argument

There are non-explicit hitting sets of poly(s) size for $\mathscr{C}(n,d,s)$.

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])

If $S \subseteq \mathbb{F}$ with $|S| \ge d+1$, then S^n is a hitting set for $\mathscr{C}(n,d,s)$.

That is, we have an explicit, but trivial, hitting set of $(d+1)^n$ size.

Question: Are there small explicit hitting sets for $\mathcal{C}(n,d,s)$?

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each $s \ge n$, there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n^{0.49}}$$
. (Trivial hitting set size: $(s+1)^n$)

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each $s \ge n$, there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n^{0.49}}$$
. (Trivial hitting set size: $(s+1)^n$)

$$s^{tiny(s)}$$
.

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each $s \ge n$, there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n^{0.49}}$$
. (Trivial hitting set size: $(s+1)^n$)

$$s^{\exp(\exp(O(\log^* s)))}$$
.

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each $s \ge n$, there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n^{0.49}}$$
. (Trivial hitting set size: $(s+1)^n$)

$$s^{tiny(s)}$$
.

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])

Say n large enough.

Suppose, for each $s \ge n$, there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n-0.01}$$
. (Trivial hitting set size: $(s+1)^n$)

$$s^{tiny(s)}$$
.

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])

Say n large enough.

Suppose, for each $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$(s+1)^{n-0.01}$$
. (Trivial hitting set size: $(s+1)^n$)

Then there is an explicit hitting set for Formula(s, s, s) of size at most $s^{tiny(s)}$

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])

Say n large enough.

Suppose, for each $s \ge n$, there is an explicit hitting set for $\mathscr{C}(n,s,s)$ of size at most

$$(s+1)^{n-0.01}$$
. (Trivial hitting set size: $(s+1)^n$)

Then there is an explicit hitting set for $\mathscr{C}(s,s,s)$ of size at most

$$s^{tiny(s)}$$

(where $\mathscr C$ is any class well-behaved under sums, projections and compositions)

Non-trivial Hitting Sets

Explicit Lower Bounds

From a non-trivial hitting set, get a lower bound. Use that to get a *better* hitting set. And so on ...

Preliminaries:

Hardness vs Randomness

for algebraic models

Lower bounds from hitting sets

H is a hitting set for $\mathscr{C}(n,d,s)$ if

for all $0 \neq P \in \mathcal{C}(n,d,s)$, there is some $\overline{a} \in H$ such that $P(\overline{a}) \neq 0$.

Lower bounds from hitting sets

H is a hitting set for $\mathscr{C}(n,d,s)$ if

for all $0 \neq P \in \mathcal{C}(n,d,s)$, there is some $\overline{a} \in H$ such that $P(\overline{a}) \neq 0$.

Observation

If P is a nonzero polynomial that vanishes on H, then P cannot be a member of $\mathscr{C}(n,d,s)$.

Lower bounds from hitting sets

H is a hitting set for $\mathscr{C}(n,d,s)$ if

for all $0 \neq P \in \mathcal{C}(n,d,s)$, there is some $\overline{a} \in H$ such that $P(\overline{a}) \neq 0$.

Observation

If P is a nonzero polynomial that vanishes on H, then P cannot be a member of $\mathcal{C}(n,d,s)$.

Theorem ([Heintz-Schnorr, Agrawal])

For any $k \le n$ such that $k |H|^{1/k} \le d$, we can find a nonzero k-variate polynomial Q of individual degree less than $|H|^{1/k}$ such that Q requires size more than s.

Theorem ([Kabanets-Impagliazzo] (Informal))

If Q is hard-enough, then for any small algebraic circuit computing P, we have

$$P(x_1,...,x_m) \neq 0 \iff P(Q(\overline{y}_1),...,Q(\overline{y}_m)) \neq 0$$

even if $\overline{y}_1, \dots, \overline{y}_m$ are almost disjoint.

Aside: Combinatorial Designs

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$$\{S_1, \ldots, S_m\} \subseteq [\ell]$$
 is an (ℓ, k, r) -design if $|S_i| = k$ and $|S_i \cap S_j| < r$.

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$$\{S_1,\ldots,S_m\}\subseteq [\ell\,] \text{ is an } (\ell,k,r)\text{-design if } |S_i|=k \text{ and } \left|S_i\cap S_j\right|< r.$$

Fact

For all*
$$\ell \geq k^2$$
 and $r \leq k$, we have explicit (ℓ,k,r) -designs with $m = \left(\frac{\ell}{k}\right)^r$.

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$$\{S_1, \ldots, S_m\} \subseteq [\ell]$$
 is an (ℓ, k, r) -design if $|S_i| = k$ and $|S_i \cap S_j| < r$.

Fact

For all* $\ell \geq k^2$ and $r \leq k$, we have explicit (ℓ,k,r) -designs with $m = \left(\frac{\ell}{k}\right)^r$.

$$|\mathbb{F}| = (\ell/k).$$

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$$\{S_1, \ldots, S_m\} \subseteq [\ell]$$
 is an (ℓ, k, r) -design if $|S_i| = k$ and $|S_i \cap S_j| < r$.

Fact

For all* $\ell \geq k^2$ and $r \leq k$, we have explicit (ℓ, k, r) -designs with $m = \left(\frac{\ell}{k}\right)^r$.

$$\begin{split} |\mathbb{F}| &= (\ell/k). \\ \text{For } p(z) \in \mathbb{F}[z] \text{ with } \deg(p) < r, \\ S_p &= \{(i, p(i)) : \ i \in [k]\}. \end{split}$$

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$$\{S_1,\ldots,S_m\}\subseteq [\ell\,] \text{ is an } (\ell,k,r)\text{-design if } |S_i|=k \text{ and } \left|S_i\cap S_j\right|< r.$$

Fact

For all* $\ell \geq k^2$ and $r \leq k$, we have explicit (ℓ, k, r) -designs with $m = \left(\frac{\ell}{k}\right)^r$.

$$\begin{split} |\mathbb{F}| &= (\ell/k). \\ \text{For } p(z) &\in \mathbb{F}[z] \text{ with } \deg(p) < r, \\ S_p &= \{(i, p(i)) \, : \, i \in [k]\}. \end{split}$$

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$$\{S_1,\ldots,S_m\}\subseteq [\ell\,] \text{ is an } (\ell,k,r)\text{-design if } |S_i|=k \text{ and } \left|S_i\cap S_j\right|< r.$$

Fact

For all* $\ell \geq k^2$ and $r \leq k$, we have explicit (ℓ, k, r) -designs with $m = \left(\frac{\ell}{k}\right)^r$.

$$\begin{split} |\mathbb{F}| &= (\ell/k). \\ \text{For } p(z) &\in \mathbb{F}[z] \text{ with } \deg(p) < r, \\ S_p &= \{(i, p(i)) \, : \, i \in [k]\}. \end{split}$$

 $Q\llbracket\ell,k,r\rrbracket := (Q(\overline{y}|_{S_1}),\ldots,Q(\overline{y}|_{S_m}))$

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}), \dots, Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

Then Q has small circuits.

 $S_1 \cap S_3$ $S_2 \cap S_3$

$$Q\llbracket\ell,k,r\rrbracket:=\left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket:=\left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

 $S_1 \cap S_3$ $S_2 \cap S_3$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$. Then Q has circuits of size $(s \cdot r \cdot d^r \cdot D)^{Q(1)}$.

 $=P'(x_3,\overline{y}\mid_{S_3}) \qquad \text{Size} \leq s \cdot \left(rd \cdot d^{r-1}\right)$ $\text{Degree} \leq D \cdot d \, r$ $x_3 \quad \alpha_4 \quad \cdots \quad \alpha_m \quad (x_3-Q) \text{ divides } P'.$

[Kaltofen, Bürgisser]: Factors have small circuits.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Suppose Q does not have circuits of size $(s \cdot r \cdot d^r \cdot D)^{O(1)}$. Then, for any nonzero polynomial $P(x_1, \ldots, x_m)$ of degree at most D and circuit size at most s, we have that $P(Q[\ell, k, r]) \neq 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

 $S_1 \cap S_3$ $S_2 \cap S_3$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$. Then Q has circuits of size $(s \cdot r \cdot d^r \cdot D)^{Q(1)}$.

 $=P'(x_3,\overline{y}\mid_{S_3}) \qquad \text{Size} \leq s \cdot \left(rd \cdot d^{r-1}\right)$ $\text{Degree} \leq D \cdot d \, r$ $x_3 \quad \alpha_4 \quad \cdots \quad \alpha_m \quad (x_3-Q) \text{ divides } P'.$

[Kaltofen, Bürgisser]: Factors have small circuits.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$. Then Q has circuits of size $(s \cdot r \cdot d^r \cdot D)^{Q(1)}$.

$$Q\llbracket\ell,k,r\rrbracket:=\left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

 $S_1 \cap S_3$ $S_2 \cap S_3$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$. Then Q has circuits of size $(s \cdot r \cdot d^r \cdot D)^{O(1)}$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kabanets-Impagliazzo])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$. Then Q has circuits of size $(s \cdot r \cdot d^r \cdot D)^{O(1)}$.

$$Q\llbracket\ell,k,r\rrbracket:=\left(Q(\overline{y}\mid_{S_1}),\ldots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kumar-S-Tengse])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s formula. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

Then a low-degree multiple of Q has formulas of size $(s \cdot r \cdot d^r \cdot (D+1))$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kumar-S-Tengse])

Let $P(x_1,\ldots,x_m)$ is a nonzero polynomial of degree at most D that is computable by a size s formula. Suppose Q is a k-variate polynomial of ind. degree < d such that $P(Q[\![\ell,k,r]\!]) = 0$.

Then a low-degree multiple of Q has formulas of size $(s \cdot r \cdot d^r \cdot (D+1))$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most $D \cdot dr$ has a formula of size $(s \cdot r \cdot d^r \cdot (D+1))$.

Then, for any nonzero polynomial $P(x_1,...,x_m)$ of degree at most D and formula size at most s, we have that $P(Q[\![\ell,k,r]\!]) \neq 0$.

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most $D \cdot dr$ has a formula of size $(s \cdot r \cdot d^r \cdot (D+1))$.

Then, for any nonzero polynomial $P(x_1,...,x_m)$ of degree at most D and formula size at most s, we have that $P(Q[\![\ell,k,r]\!]) \neq 0$.

Corollary

Suppose Q vanishes on a hitting set for Formula(k,d',s') with $d'=(D\cdot d\,r)$ and $s'=s\cdot r\cdot d^r\cdot (D+1)$. Then, if $P\in Formula(m,D,s)$, we have

$$P \neq 0 \iff P(Q[[\ell, k, r]]) \neq 0.$$

$$Q\llbracket\ell,k,r\rrbracket := \left(Q(\overline{y}\mid_{S_1}),\dots,Q(\overline{y}\mid_{S_m})\right)$$

Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most $D \cdot dr$ has a formula of size $(s \cdot r \cdot d^r \cdot (D+1))$.

Then, for any nonzero polynomial $P(x_1,...,x_m)$ of degree at most D and formula size at most s, we have that $P(Q[\![\ell,k,r]\!]) \neq 0$.

Corollary

Suppose Q vanishes on a hitting set for Formula(k,d',s') with $d'=(D\cdot d\,r)$ and $s'=s\cdot r\cdot d^r\cdot (D+1)$. Then, if $P\in Formula(m,D,s)$, we have

$$P \neq 0 \iff P(Q[[\ell, k, r]]) \neq 0.$$

From hitting sets for k-variate formulas, we obtain a hitting set for m-variate formulas.

Hyp: Given a k-variate polynomial Q that is s^c -hard. Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

Hyp: Given a k-variate polynomial Q that is s^c -hard. Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

► Construct an (ℓ, k, r) -design $S_1, ..., S_m \subseteq [\ell]$

Hyp: Given a k-variate polynomial Q that is s^c -hard. Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

▶ Construct an (ℓ, k, r) -design $S_1, ..., S_m \subseteq [\ell]$

▶ Use the hardness of Q to argue that

$$0 \neq P \in \mathcal{C}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Hyp: Given a k-variate polynomial Q that is s^c -hard. Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \ge m$

► Construct an (ℓ, k, r) -design $S_1, ..., S_m \subseteq [\ell]$

▶ Use the hardness of Q to argue that

$$0 \neq P \in \mathcal{C}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

▶ Brute-force on the polynomial $P(Q[[\ell,k,r]])$ to test if this is zero.

Hyp: Hitting sets for $\mathscr{C}(\ell, s, s)$ for all $s \ge \ell$. **Goal:** Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \ge m$

► Construct an (ℓ, k, r) -design $S_1, ..., S_m \subseteq [\ell]$

▶ Use the hardness of Q to argue that

$$0 \neq P \in \mathcal{C}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

▶ Brute-force on the polynomial $P(Q[[\ell, k, r]])$ to test if this is zero.

Hyp: Hitting sets for $\mathscr{C}(\ell, s, s)$ for all $s \ge \ell$. **Goal:** Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \ge m$

- ▶ Construct an (ℓ, k, r) -design $S_1, ..., S_m \subseteq [\ell]$
- ▶ Use Hyp to take a hitting set for $\mathscr{C}(\ell, s^c, s^c)$ to construct a hard k-variate polynomial Q.
- ▶ Use the hardness of Q to argue that

$$0 \neq P \in \mathcal{C}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

▶ Brute-force on the polynomial $P(Q[[\ell,k,r]])$ to test if this is zero.

Hyp: Hitting sets for $\mathscr{C}(\ell, s, s)$ for all $s \ge \ell$. **Goal:** Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \ge m$

- ▶ Construct an (ℓ, k, r) -design $S_1, ..., S_m \subseteq [\ell]$
- ▶ Use Hyp to take a hitting set for $\mathscr{C}(\ell, s^c, s^c)$ to construct a hard k-variate polynomial Q.
- ▶ Use the hardness of Q to argue that

$$0 \neq P \in \mathcal{C}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

▶ $P(Q[[\ell,k,r]]) \in \mathcal{C}(\ell,s',s')$ for a small-ish s'. Use Hyp on it.

Why does bootstrapping work?

 $0 \neq P \in \mathscr{C}(m, s, s)$ (think of $s = m^5$).

Why does bootstrapping work?

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of $s = m^5$).

If Q is a k-variate polynomial ($k=1000\log m$) that is s^5 -hard, then we can do a variable reduction from m to $\ell=O(\log^2 m)$ that preserves nonzeroness.

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of $s = m^5$).

If Q is a k-variate polynomial ($k=1000\log m$) that is s^5 -hard, then we can do a variable reduction from m to $\ell=O(\log^2 m)$ that preserves nonzeroness.

$$P' = P(Q[[\ell, k, r]]) \in \mathscr{C}(\ell, s', s')$$
 for a small-ish s' .

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of $s = m^5$).

If Q is a k-variate polynomial ($k=1000\log m$) that is s^5 -hard, then we can do a variable reduction from m to $\ell=O(\log^2 m)$ that preserves nonzeroness.

$$P' = P(Q[\![\ell, k, r]\!]) \in \mathscr{C}(\ell, s', s')$$
 for a small-ish s' .

Note: s' is already exponential in ℓ .

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of $s = m^5$).

If Q is a k-variate polynomial ($k=1000\log m$) that is s^5 -hard, then we can do a variable reduction from m to $\ell=O(\log^2 m)$ that preserves nonzeroness.

$$P' = P(Q[\![\ell, k, r]\!]) \in \mathscr{C}(\ell, s', s')$$
 for a small-ish s' .

Note: s' is already exponential in ℓ . Hence, to apply this once more, we $k = O(\log \ell)$ variate polynomial that is $(s')^5 = \exp(\exp(k))$ -hard.

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of $s = m^5$).

If Q is a k-variate polynomial ($k=1000\log m$) that is s^5 -hard, then we can do a variable reduction from m to $\ell=O(\log^2 m)$ that preserves nonzeroness.

$$P' = P(Q[\![\ell, k, r]\!]) \in \mathscr{C}(\ell, s', s')$$
 for a small-ish s' .

Note: s' is already exponential in ℓ . Hence, to apply this once more, we $k = O(\log \ell)$ variate polynomial that is $(s')^5 = \exp(\exp(k))$ -hard.

Unlike the boolean setting, we **can** find such polynomials of suitably large degree.

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of $s = m^5$).

If Q is a k-variate polynomial ($k=1000\log m$) that is s^5 -hard, then we can do a variable reduction from m to $\ell=O(\log^2 m)$ that preserves nonzeroness.

$$P' = P(Q[\![\ell, k, r]\!]) \in \mathscr{C}(\ell, s', s')$$
 for a small-ish s' .

Note: s' is already exponential in ℓ . Hence, to apply this once more, we $k = O(\log \ell)$ variate polynomial that is $(s')^5 = \exp(\exp(k))$ -hard.

Unlike the boolean setting, we **can** find such polynomials of suitably large degree.

Thus, there is nothing stopping you from doing this again and again.

```
For all s \ge n_0:
PIT(n_0, s, s): s^{n_0-0.01}
```

For all $s \ge n_0$: $PIT(n_0, s, s): s^{n_0-0.01}$ For all $s \ge n_1$: $PIT(n_1, s, s): s^{n_1/50}$

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, for $m = 2^{n^{1/4}}$ and all $s \ge m$, we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with $h(m) \leq 20(g(n))^2$

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$g^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, for $m = 2^{n^{1/4}}$ and all $s \ge m$, we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with $h(m) \le 20(g(n))^2 = 20(g(\log^4 m))^2$.

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, for $m = 2^{n^{1/4}}$ and all $s \ge m$, we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with $h(m) \leq 20(g(n))^2$

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, for $m=2^{2^{(1/4)n^{1/4}}}$ and all $s\geq m$, we have an explicit hitting set for Formula(m,s,s) of size at most

$$s^{h(m)}$$
, with $h(m) \le 20^{1+2} (g(n))^4$

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$g^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, for $m=2^{c^{n^{1/4}}}$ and all $s\geq m$, we have an explicit hitting set for Formula(m,s,s) of size at most

$$s^{h(m)}$$
, with $h(m) \le 20^{1+2} (g(n))^4$

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, for $m=2^{c^{c^{n^{1/4}}}}$ and all $s\geq m$, we have an explicit hitting set for Formula(m,s,s) of size at most

$$s^{h(m)}$$
, with $h(m) \le 20^{1+2+4} (g(n))^8$

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, for $m=2^{c^{c^{n^{1/4}}}}$ and all $s\geq m$, we have an explicit hitting set for Formula(m,s,s) of size at most

$$s^{h(m)}$$
, with $h(m) \le 20^{1+2+4+8} (g(n))^{16}$

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $(n > 10^{10})$. Suppose, for all $s \ge n$, there is an explicit hitting set for Formula(n, s, s) of size at most

$$g^{g(n)}$$
, with $g(n) \le \left(\frac{n^{1/4}}{10}\right)$.

Then, we have an explicit hitting set for Formula(s, s, s) of size

$$s^{\exp(\exp(O(\log^* s)))}.$$

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Let $k = \sqrt{n}$, $\ell = n$ and $r = n^{1/4}$. Let S_1, \ldots, S_m be an (ℓ, k, r) -design with $m = 2^{n^{1/4}}$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Let
$$k=\sqrt{n}$$
, $\ell=n$ and $r=n^{1/4}$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=2^{n^{1/4}}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Let
$$k=\sqrt{n}$$
, $\ell=n$ and $r=n^{1/4}$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=2^{n^{1/4}}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in Formula(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Let
$$k=\sqrt{n},$$
 $\ell=n$ and $r=n^{1/4}.$
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=2^{n^{1/4}}.$

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$
. Proof.

 $\begin{array}{l} \text{Q vanishes on a hitting set for Formula}(k,d',s') \text{ as} \\ d' = dDr = s^{5g(n)/k} \cdot s \cdot r \leq s^5, \\ s' = srd^r(D+1) \leq s^4 \cdot s^{5g(n) \cdot r/k} \leq s^5. \end{array}$

Use the previous corollary.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Let
$$k=\sqrt{n}$$
, $\ell=n$ and $r=n^{1/4}$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=2^{n^{1/4}}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in Formula(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Let
$$k=\sqrt{n}$$
, $\ell=n$ and $r=n^{1/4}$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=2^{n^{1/4}}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(\mathbb{Q}[[\ell, k, r]]) \neq 0.$$

 $P(Q[\![\ell,k,r]\!])$ is a formula of size,degree at most $s \cdot s^{10g(n)} \leq s^{20g(n)}$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1/4}}{10}$.

Let
$$k=\sqrt{n},$$
 $\ell=n$ and $r=n^{1/4}.$
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=2^{n^{1/4}}.$

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim:
$$0 \neq P \in Formula(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$$

$$P(Q[\![\ell,k,r]\!])$$
 is a formula of size,degree at most $s \cdot s^{10g(n)} \leq s^{20g(n)}$.

Using the hypothesis again, we get a hitting set of size $s^{20(g(n))^2}$ for Formula(m, s, s).

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.

Let k=n, $\ell=n^2$ and r=10. Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.

Let k=n, $\ell=n^2$ and r=10. Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for Formula (n,s^5,s^5) of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s\geq n$, with $g(n)\leq \frac{n}{50}$.

Let
$$k=n$$
, $\ell=n^2$ and $r=10$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.

Let
$$k=n$$
, $\ell=n^2$ and $r=10$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$. Proof.

 $\begin{array}{l} Q \text{ vanishes on a hitting set for Formula}(k,d',s') \text{ as} \\ d' = dDr = s^{5g(n)/k} \cdot s \cdot r \leq s^5, \\ s' = srd^r(D+1) \leq s^4 \cdot s^{5g(n) \cdot r/k} \leq s^5. \end{array}$

Use the previous corollary.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s\geq n$, with $g(n)\leq \frac{n}{50}$.

Let
$$k=n$$
, $\ell=n^2$ and $r=10$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s\geq n$, with $g(n)\leq \frac{n}{50}$.

Let
$$k=n$$
, $\ell=n^2$ and $r=10$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$.

 $P(Q[\![\ell,k,r]\!])$ is a formula on $\ell=n^2$ variables of degree $s\cdot k\cdot s^{g(n)/k}\leq s^3$.

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s\geq n$, with $g(n)\leq \frac{n}{50}$.

Let
$$k=n$$
, $\ell=n^2$ and $r=10$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$.

 $P(Q[[\ell,k,r]])$ is a formula on $\ell=n^2$ variables of degree $s \cdot k \cdot s^{g(n)/k} \le s^3$.

[O-DL-S-Z] lemma: hitting set of size $s^{3\ell}$

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.

Let
$$k=n$$
, $\ell=n^2$ and $r=10$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$.

 $P(Q[[\ell,k,r]])$ is a formula on $\ell=n^2$ variables of degree $s\cdot k\cdot s^{g(n)/k}\leq s^3$.

[O-DL-S-Z] lemma: hitting set of size $s^{3\ell} \le s^{(1/10) \cdot m^{1/4}}$

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.

Let
$$k=n$$
, $\ell=n^2$ and $r=10$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=k^{10}$.

Using the hitting set H for $Formula(n, s^5, s^5)$ of size $s^{5g(n)}$, find Q vanishing on H such that:

• Q is k-variate, and $ideg(Q) < d := s^{5g(n)/k}$.

Claim: $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$.

 $P(Q[\![\ell,k,r]\!])$ is a formula on $\ell=n^2$ variables of degree $s\cdot k\cdot s^{g(n)/k}\leq s^3$.

[O-DL-S-Z] lemma: hitting set of size $s^{3\ell} \le s^{(1/10) \cdot m^{1/4}}$

Plan

Plan

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s\geq n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \ge n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \ge n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot (rd) \leq s^{300n}$,

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s\cdot (rd)\leq s^{300n}$, computable by a formula of size

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n, \ell=n^5$$
 and $r=2$.
 Let S_1,\dots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

•
$$Q$$
 is k -variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s\cdot (rd)\leq s^{300n}$, computable by a formula of size

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

Complexity to compute an (r-1)-variate polynomial of $\operatorname{ideg} \operatorname{d}$

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

•
$$Q$$
 is k -variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s\cdot (rd)\leq s^{300n}$, computable by a formula of size

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

Complexity to compute an (r-1)-variate polynomial of $\operatorname{ideg} \operatorname{d}$

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n, \ell=n^5$$
 and $r=2$.
 Let S_1,\dots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s\cdot (rd)\leq s^{300n}$, computable by a formula of size

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

Complexity to compute an univariate polynomial of degree d

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s\cdot (rd)\leq s^{300n}$, computable by a formula of size

$$s \cdot 10d \cdot (s+1)$$

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n}, s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s\cdot (rd)\leq s^{300n}$, computable by a formula of size

$$s \cdot 10d \cdot (s+1) \le s^3 \cdot s^{300n-3}$$

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n, \ell=n^5$$
 and $r=2$.
 Let S_1,\dots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot (rd) \leq s^{300n}$, computable by a formula of size

$$s \cdot 10d \cdot (s+1) \le s^3 \cdot s^{300n-3} \le s^{300n}$$
 ...no way...

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n,s,s)$, for any $s \geq n$.

Let
$$k=n, \ell=n^5$$
 and $r=2$.
 Let S_1,\dots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

 $P(Q[\![\ell,k,r]\!])$ is a formula on $\ell=n^5$ variables.

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n, \ell=n^5$$
 and $r=2$.
 Let S_1,\dots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

 $P(Q[\![\ell,k,r]\!])$ is a formula on $\ell=n^5$ variables of degree $s\cdot k\cdot s^{300n-3}\leq s^{300n}$.

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \ge n$.

Let
$$k=n$$
, $\ell=n^5$ and $r=2$.
 Let S_1,\ldots,S_m be an (ℓ,k,r) -design with $m=\left(\frac{\ell}{k}\right)^r=n^8$.

Use the hitting set for Formula(n, s^{300n} , s^{300n}) to get

• Q is k-variate, and $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$.

Claim:
$$0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

 $P(Q[\![\ell,k,r]\!])$ is a formula on $\ell=n^5$ variables of degree $s\cdot k\cdot s^{300n-3}\leq s^{300n}.$

[O-DL-S-Z] lemma: a hitting set of size $s^{300n \cdot n^5} \le s^{m/50}$ for Formula(m, s, s).

A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- ▶ It is crucial that the exponent of *s* in the hypothesis is independent of *s*.

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

▶ To obtain the hitting set for $\mathscr{C}(s,s,s)$, the algorithm would use hitting sets for $\mathscr{C}(n_0,s',s')$ for various $s' \leq s^{\text{tiny}(s)}$.

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

▶ To obtain the hitting set for $\mathscr{C}(s, s, s)$, the algorithm would use hitting sets for $\mathscr{C}(n_0, s', s')$ for various $s' \leq s^{\text{tiny}(s)}$.

Question: Is there a hardness amplification (à la [CILM]) in this setting?

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

▶ To obtain the hitting set for $\mathscr{C}(s, s, s)$, the algorithm would use hitting sets for $\mathscr{C}(n_0, s', s')$ for various $s' \leq s^{\text{tiny}(s)}$.

Question: Is there a hardness amplification (à la [CILM]) in this setting?

\end{document}