An instance of symbolic determinant identity
testing via x-algebras

Géabor Ivanyos'  Youming Qiao?

4 Dec 2018, Algebraic Methods Workshop @ Simons Institute
LInstitute for Computer Science and Control, Hungarian Academy of Sciences

2Centre for Quantum Software and Information, University of Technology Sydney



Table of Contents

The e-symmetrization problem for matrix tuples

Motivation: singularity witnesses for singular matrix spaces

Tackling the e-symmetrization problem

Concluding remarks



The e-symmetrization problem for
matrix tuples



e-symmetrizable matrix tuples

= [ is of characteristic # 2 and large enough.
= M,(FF): the linear space of n X n matrices.

= A matrix space is a linear subspace of M,(F).



e-symmetrizable matrix tuples

= [ is of characteristic # 2 and large enough.

M, (FF): the linear space of n x n matrices.

= A matrix space is a linear subspace of M,(F).

e € {1,—1}. An n x n matrix A is e-symmetric, if A® = €A.

S¢(IF): the linear space of n x n e-symmetric matrices.



e-symmetrizable matrix tuples

= [ is of characteristic # 2 and large enough.

M, (FF): the linear space of n x n matrices.

= A matrix space is a linear subspace of M,(F).

e € {1,—1}. An n x n matrix A is e-symmetric, if A® = €A.

S¢(IF): the linear space of n x n e-symmetric matrices.

GL,(F): the general linear group of degree n.

M, (IF)™: the linear space of m-tuples of n x n matrices.



e-symmetrizable matrix tuples

= [ is of characteristic # 2 and large enough.

M, (FF): the linear space of n x n matrices.

= A matrix space is a linear subspace of M,(F).

e € {1,—1}. An n x n matrix A is e-symmetric, if A® = €A.

S¢(IF): the linear space of n x n e-symmetric matrices.

GL,(F): the general linear group of degree n.

M, (IF)™: the linear space of m-tuples of n x n matrices.

Definition

A= (A1,...,An) € M,(F)™ is e-symmetrizable, if
3C, D € GL,(F), such that every CA;D is e-symmetric.



The e-symmetrization problem and polynomial identity testing

Recall: given A = (A1,...,Ap) € Mp(F)™, decide whether
3C, D € GL,(F), such that every CA;D is e-symmetric.

1. Enough to search for E € GL,(TF), such that every EA; is
e-symmetric.
= As D iCA; = D t(CA;D)D~! is also e-symmetric.

2. Let L(A) := {E € M(n,F) : EA; = eA'Et}. Then L(A) is a

matrix space.

-

3. The problem reduces to decide whether L(A) contains a
full-rank matrix. This is an instance of the symbolic
determinant identity testing (SDIT) problem.

= As F is large enough, this problem admits a randomized
efficient algorithm.



Main result

Theorem
There exists a deterministic efficient algorithm that:

= Given n X n matrices A1, ..., Am;

= Decide whether there exist invertible matrices C, D, such that

every CA;D is e-symmetric.

= Inspired by the x-algebra technique [Wilson'09] and the
module isomoprhism techniques [Chistov-lvanyos-Karpinski'97,
Brooksbank-Luks'08, Ivanyos-Karpinski-Saxena'10].

= Our original motivation was from understanding singularity
witnesses for matrix spaces beyond shrunk subspaces.
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Singularity witnesses for singular matrix spaces

= By Kabanets-Impagliazzo, putting SDIT in NP already implies
strong arithmetic circuit lower bounds.
= This amounts to finding small witnesses responsible for the

singularity of a singularity matrix space.

The non-commutative rank problem is concerned about one type

of singularity witnesses, namely shrunk subspaces.

= U< TF"is a shrunk subspace for A < M,(F)™, if
dim(A(U)) < dim(U), where A(U) = (UacaA(U)).
Matrix tuples with shrunk subspaces are the points in the nullcone

of the left-right action by SL,(F) x SL,(F) on M,(F)™ [King,BD].

= Mulmuley conjectured that this problem could be put in P in
GCT 5. Now it admits deterministic polynomial-time
algorithms by [GGOW, 1QS].



Singularity witnesses: shrunk subspaces are not enough

There are singular matrix spaces without shrunk subspaces:
consider the space of 3 x 3 skew-symmetric matrices. That is, the
analogue of Hall's marriage theorem does not hold.

All bipartite graphs All matrix spaces

|l Has Hall obstructions M Has neither
[ Has perfect matchings M Has shrinking subspaces

[ Has nonsingular matrices




Singularity witnesses beyond shrunk subspaces

Two classical examples from [Eisenbud-Harris, Lovasz, Atkinson]:

1. Subspaces of the space of odd-size skew-symmetric matrices.
2. Skew-symmetric induced matrix spaces.
= Given n x n skew-symmetric matrices Ay, ..., A,, for i € [n],
construct B; = [Asej, ..., Aqel, € the ith standard basis vector.
= Then B=(By,...,B,) issingular: B=a1B; + -+ a,B, has
(a1,...,ap) in the left kernel.

..and those spaces equivalent to them.



Singularity witnesses beyond shrunk subspaces

Two classical examples from [Eisenbud-Harris, Lovasz, Atkinson]:

1. Subspaces of the space of odd-size skew-symmetric matrices.
2. Skew-symmetric induced matrix spaces.
= Given n x n skew-symmetric matrices Ay, ..., A,, for i € [n],
construct B; = [Asej, ..., Aqel, € the ith standard basis vector.
= Then B=(By,...,B,) issingular: B=a1B; + -+ a,B, has
(a1,...,ap) in the left kernel.

..and those spaces equivalent to them.

Corollary

Given B = (B, ..., Bm) < M,(F), there exists a deterministic
efficient algorithm that decides whether B is equivalent to either
a subspace of a skew-symmetric matrix space, or a

skew-symmetric induced matrix space.



Tackling the e-symmetrization
problem
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The strategy

Given A= (A1,...,Am ) € M,(F)™, decide whether there is a
full-rank matrix in L(A) = {De M, (F) : Vi, D'A; = €AlD}.
Compute a linear basis of L(A). Given D € L¢(A), we want to

= either conclude that D is of maximal rank;
= or find another D' € L(A) of higher rank.

One simple rank increasing setting is the following.
= If C, D € My(F), C(ker(D)) € im(D).
= Then rk(C+ AD) > rk(D) for all but at most ¢ A € F.

Essentially, we will show that, if D is not of maximal rank, then
any linear basis of L(A) contains a matrix that can be used as C.
..But not in the usual action!
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The adjoint algebra of an e-symmetric matrix tuple

Let A= (Ay,...,Am) € S5(F)™. We assume that A is
non-degenerate, e.g. the common kernel of A;'s is trivial, and the
union of images of A;'s spans the full space.

Definition

Let A= (Ay,...,An) € S5(F)™. The adjoint algebra of A is
Adj(A) = {D € M,(F) : 31C € M,(F),Vi, C'A; = AiD} C M,(F).
Adj(A) admits an anti-automorphism x of order 2, i.e. D* = C.

Algebras with anti-automorphisms of order 2 are termed as
involutive algebras or x-algebras.

= Consider the transpose on M,(F).



The x-symmetric elements of the adjoint algebra

Recall that for A € S¢(IF)™, we defined the adjoint algebra Adj(A).

Definition
The linear space of x-symmetric elements in Adj(/z) is
Sym*(A) = {De Adj(A): D" = D}
= {De M,(F):Vi D'A; = A;D}.
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The x-symmetric elements of the adjoint algebra

Recall that for A € S¢(IF)™, we defined the adjoint algebra Adj(A).

Definition

The linear space of x-symmetric elements in Adj(/z) is
Sym*(A) = {De Adj(A): D" = D}
= {D e M,(F):Vi,D'A; = A;D}.
Recall that for A € M,(F)™, we defined
L(A) = {D € M,(F) : Vi, D'A; = €AD}.

So for A € S (F), L(A) = Sym*(A).
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The key lemma

Let A € S(F)™, D € Sym*(A) C Adj(A), and dim(Adj(A)) = ¢.
Key idea
Consider D's action on Adj(A), e.g. D sends E € Adj(A) to DE.
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The key lemma

Let A € S(F)™, D € Sym*(A) C Adj(A), and dim(Adj(A)) = ¢.

Key idea

Consider D's action on Adj(A), e.g. D sends E € Adj(A) to DE.
= As a vector space, Adj(A) = F!, so D € My(F).

= ker(D) = Ann/(D), the space of right annihilators of D.

= im(D) = DAdj(A), the right ideal generated by D.
= Dis full-rank if and only if D is full-rank.

Lemma (Key lemma)

If Adj(A) is semisimple, then for any non-full-rank D € Sym*(A),
there exists C € Sym*(A) s.t. C(Ann,(D)) ¢ DAdj(A).

In other words, C(ker(D)) € im(D). (Simple rank increasing!)

And any linear basis of Sym*(A) contains (at least) one such C.
11



The algorithm: without a mask

Suppose A € S¢(F)™. Let Cp,..., Cy be a basis of Sym*(A). Let
F={\,..., es1} CF, where ¢ = dim(Adj(A)).
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The algorithm: without a mask

Suppose A € S¢(F)™. Let Cp,..., Cy be a basis of Sym*(A). Let
F={\,..., es1} CF, where ¢ = dim(Adj(A)).

If Adj(A) is semisimple, for a non-full-rank D € Sym*(A), we can

choose D' = Cj+ \;D s.t. dim((C;+ A\;D)Adj(A)) is larger than
dim(DAdj(A)).

— —

When Adj(A) is not semisimple, but Rad(Adj(A)) is efficiently
computable, the same strategy works after modulo the radical.

= This new assumption holds for fields of characteristic 0
[Dickson] and finite fields [Rényail.
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The algorithm: with a mask

= Given A € M,(F)™, A = EB for some B € S(F)™ and

E € GL,(F).
= Let De L(A). D= D'E! for some D' € L(B) = Sym*(
= Goal: compute YAdj(B).

B

).
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The algorithm: with a mask

This means that we can work with [ Adj(B) without knowing the

Given A € M,(F)™, A = EB for some B € S§5(F)™ and
E € GL,(F).

Let D € LY(A). D= D'E"! for some [/ € L¢(B) = Sym*(B).

Goal: compute D'Adj(B).

Adj(A) = Adj(B) because of the non-degeneracy condition
and the projection to the second component.

« CY(EA)) = (EA)D if and only if (E:CE~t)A; = A:D.
DL(eAt) = D'L<(B).

s L°(eAt) = L(e(EB)Y) = L(¢BtEY) = LS(BEY) = EL(B).
DL (eA")Adj(A) = D'L*(B)Adj(B) = D'Adj(B).

mask E!

13



Concluding remarks




Concluding remarks

We also have algorithms when

= [F is large enough without computing the radical;
= [Fis small.

Open questions:

= characteristic 2 fields?
= More examples of singular matrix spaces with no shrunk
subspaces?
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Structure of algebras

Let A be a finite dimensional associative algebra over F. By
Wedderburn et al., we have:

= Rad(A): the radical, e.g. the
largest nilpotent ideal.

= A/Rad(A): semisimple, that is, e & ’ & e
isomorphic to a direct sum of
simple algebras.

= 5% M(n;, D;): a full matrix Rad(A)
algebra over D;, a division algebra
over IF.

15



Structure of x-algebras

Let x : A — A be an involution, e.g. an anti-automorphism such
that Va € A, (a*)* = a. By Albert et al., we have:

= Rad(\A) is invariant under *: x
induces an involution on .A/Rad(.A).

= Recall that S; = M(n;, D;). g + ‘ + @
1. (Exchange type) S; =S, i # j.
Then S; = S;, and (a, b)* = (b, a),
(a,b) € S;® §;.
2. (Classical type) St = S;. There is Rad(A)

a classical form F € M(n;, D)),
such that A* = F~LAtF.
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