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Sparsity

Given, f ∈ F[x1, x2, . . . , xn] and ∀ i , degxi f ≤ d .

• Sparsity of f (denoted by ‖f ‖) := number of monomials in f (with

non-zero coeff.).

• Example, f = x1 + x32 + x3x4 + 20 then ‖f ‖=4.

• ‖f ‖ can be as high as (d + 1)n. Polynomials that contain much less

monomials are considered sparse polynomials.

• Sparsity is natural complexity measure and was studied in [GK85,

KS01, Zip79, SW05, SSS13 and ....many more].
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Are factors of sparse polynomials sparse?

Example (von zur Gathen-Kaltofen’85 )

Let

f (x) =
n∏

i=1

(xdi − 1),

g(x) =
n∏

i=1

(1 + xi + . . .+ xd−1i )

‖f ‖ = 2n and ‖g‖ = dn =⇒ ‖g‖ = ‖f ‖log d .

Conjecture [von zur Gathen-Kaltofen’85]

Whether a quasi-polynomial bound holds for the sparsity of factors of

sparse polynomials?
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Are factors of sparse polynomials sparse?

Example (Volkovich’15, Dvir-Oliveira’15)

Let f ∈ Fp[x1, . . . xn], p-prime and let 0 < d < p.

f (x) =xp1 + xp2 + . . .+ xpn ,

g(x) =
(
x1 + x2 + . . . xn

)d
‖f ‖ = n and ‖g‖ =

(
n+d−1

d

)
≈ nd =⇒ ‖g‖ = ‖f ‖d .
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Previous works

Are factors of sparse polynomials of low sparsity?

• multilinear and multi-quadratic polynomials (d=1 and d=2) [SV’10,

Vol’17]

• an attempt by [Dvir-Oliveira’15].
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Are factors of “low complexity” polynomials of low complexity?

Yes, in these cases.

• VP [Kaltofen’87, Kaltofen’89]

• Constant depth circuits [Oliviera’15] (small individual degree)

• VNP [DSS’18, CKS’18]

• ABP/Formulas [DSS’18, CKS’18] (quasi-polynomial blowup)
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Our Result

Factor Sparsity Bound

Let F be an arbitrary field and let f ∈ F[x1, x2, . . . , xn] be a polynomial

of sparsity s and individual degrees at most d , then the sparsity of every

factor of f is bounded by sO(d2 log n).

Remark: This is the first nontrivial bound on factor sparsity for any

d > 2.

Remark: Our bound is field oblivious and thus “somewhat tight”.
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Proof of Sparsity Bound

Suppose that f , g , h ∈ F[x1, x2, . . . , xn] such that

f = g · h.
Want to show, f is s-sparse and with bounded individual degree d , then

g and h are both at most s ′ sparse, where s ′ = sO(d2 log n).

We instead show the following slightly more general result.

Suppose that g is any polynomial of individual degree d such that

‖g‖ = s, and suppose that f = g · h (with no assumptions on the

degrees of f and h), then

‖f ‖ ≥ s
1

O(d2 log n) .

In particular, there is no polynomial h that one can multiply g with, so

that the product g · h has an overwhelming cancellation of monomials.
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Newton Polytopes

Let,

f =
∑

ai1i2...inx
i1
1 x

i2
2 · · · x

in
n .

Consider the set,

Supp(f ) = {(i1, i2, . . . , in) | ai1i2...in 6= 0} ⊆ Rn

of exponent vectors of f .

One can then associate a polytope Pf ⊆ Rn, called the Newton polytope

of f , which is the convex hull of points in Supp(f ).
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Newton Polytope: Example

Let, f = 1 + x21 + x22 + x21 x
2
2

Pf =

(0, 0)

(0, 2) (2, 2)

(2, 0)
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Newton Polytope: Properties

Fact 1 [Ostrowski’21]

If f = g · h, then Pf = Pg + Ph. (+ represents Minkowski sum)

Fact 2 (Folklore)

let V (P) denote the set of vertices (equivalently corner points) of a

polytope P, then

|V (A + B)| ≥ max {|V (A)| , |V (B)|}.

Notice,

‖f ‖ ≥ |V (Pf )| = |V (Pg + Ph)| ≥ max {|V (Pg )| , |V (Ph)|}.
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Main Task

f = g · h

n-variate, individual degree d

arbitrary nonzero polynomial

‖f ‖ ≥ |V (Pg )|

Showing a lower bound on |V (Pg )| will be the main technical core

of our proof of the sparsity bound.

This connection between Newton polytopes and sparsity bounds was first

made in [Dvir-Oliveira’14] and indeed it inspired the approach taken in

this paper.
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Note that in general, for an arbitrary Polytope P, there is no good bound

on the number of vertices of P in terms of the number of monomials of g .
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lattice points

.

v1

v2

v3

v4

. . .

. . . . . .

...

vt

vt−1
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ε close to lattice points

lattice points

v1

v2

v3

v4

. . .

. . . . . .

...

vt

vt−1

15



Approx. Carathéodory’s Theorem

Theorem (Barman’15)

Given a set of vectors V = {v1, v2, . . . , vt} ⊆ Rn with

maxv∈U ‖u‖∞ ≤ d, and ε > 0. For every µ ∈ CS(U) there exists an

O
(

d2 log n
ε2

)
uniform vector µ′ ∈ CS(U) such that ‖µ− µ′‖∞ ≤ ε.

• uniform combination of (v1, v2, . . . , vk) :=
∑

i vi
k

• each lattice point can be “associated” by atleast one

O
(
d2 log n

)
-uniform vector.

• #
(
d2 log n

)
-uniform vectors ≈ t(d2 log n)

This proves our Sparsity Bound.
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Deterministic Factoring

Algorithm



Polynomial factorization

Given, f ∈ F[x1, x2, . . . , xn]

• Either give a factorization

f =
∏

gi

• Or Output f is irreducible.

Applications: list decoding [Sud97, GS99], derandomization [KI04] and

cryptography [CR88].

17



Polynomial factorization

Given, f ∈ F[x1, x2, . . . , xn]

• Either give a factorization

f =
∏

gi

• Or Output f is irreducible.

Applications: list decoding [Sud97, GS99], derandomization [KI04] and

cryptography [CR88].

17



Representing a Polynomial

• White-box Arithmetic Circuit

• Black-box Arithmetic Circuit
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A brief history on Polynomial factorization

• White-box Arithmetic Circuit [Kaltofen’87, Kaltofen’89]

• Black-box Arithmetic Circuit [Kaltofen-Trager’90]

All of them are Randomized Algorithms

A natural Algorithmic question, Can we derandomize this?
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Equivalence of PIT and Polynomial factorization

Polynomial Identity Testing(PIT)

Given f ∈ C, determine whether f ≡ 0.

KSS’14

Derandomizing PIT for VP ⇐⇒ Derandomizing Polynomial

factorization for VP.

What about models we already knew PIT about? In particular, Sparse

polynomials [Klivans-Spielman’01].

20



Equivalence of PIT and Polynomial factorization

Polynomial Identity Testing(PIT)

Given f ∈ C, determine whether f ≡ 0.

KSS’14

Derandomizing PIT for VP ⇐⇒ Derandomizing Polynomial

factorization for VP.

What about models we already knew PIT about? In particular, Sparse

polynomials [Klivans-Spielman’01].

20



Equivalence of PIT and Polynomial factorization

Polynomial Identity Testing(PIT)

Given f ∈ C, determine whether f ≡ 0.

KSS’14

Derandomizing PIT for VP ⇐⇒ Derandomizing Polynomial

factorization for VP.

What about models we already knew PIT about? In particular, Sparse

polynomials [Klivans-Spielman’01].

20



Vague overview of [KSS’14]

All mentioned [von zur Gathen-Kaltofen’85, Kaltofen’87, Kaltofen’89,

Kaltofen-Trager’90] need randomness at multiple stages.

Randomized Factoring Algorithm:-

1. Step 1 requires randomness r1

2. Step 2 requires randomness r2

3. Step 3 requires randomness r3

21
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Our Results

Main Theorem

There exists a deterministic algorithm that given a polynomial

f ∈ F[x1, x2, . . . , xn] of sparsity s and individual degrees at most d ,

computes the complete factorization of f , using sO(d7 log n) · poly(d , |F|)
field operations.

Remark: If one could improve the sparsity bound from quasi-polynomial

to polynomial then this will directly improve the run time of our

deterministic factoring algorithm.
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Factoring

Generic Factoring Algorithm

• Preprocessing

• Hilbert Irreducibility Theorem

• GCD (Solving System of

Equations)

Our Approach

• Preprocessing

• “Brute force” for Hilbert

Irreducibility

• Reconstructing the factors

• Test the factorization.
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• For simplicity (and WLOG.),

f = xd1 + f ′ (f is monic in x1)

. (where highest degree of f ′ in x1 is less than d)

• Notice, factorization of f looks like

f = (xe11 + g1) · · · (xek1 + gk)

• Consequently, f has at most d factors (total).

24
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Projection to few variables

Randomized World

f = g1g2 · · · g5 ∈ F[x1, x2, . . . , xn]yHilbert Irrreducibility

f̃ = g̃1g̃2 · · · g̃5 ∈ F[x1, y ]

Deterministic World

f = g1g2 · · · g5 ∈ F[x1, x2, . . . , xn]y??

f̃ = g̃1g̃2 · · · g̃20 ∈ F[x1, y ]

Brute force the factorization “pattern”!!

Q. How do we know which “pattern” is correct?

A. We don’t need to! We can test our factorization.
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A. We don’t need to! We can test our factorization.
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Black-box trick [Kaltofen-Trager’90]

How can one evaluate the factors?

Suppose you want to evaluate your factor at (α, β̄). Notice,

h(x , t) := f (x , b̄ + (β̄ − b̄)t)

Factorize h(x , t) and substitute x = α, t = 1.
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Lemma (Klivans-Spielman’01)

Given an oracle access to an s-sparse polynomial f ∈ F[x1, x2, . . . , xn] of

degree d, we can deterministically reconstruct f in poly(n, s, d , log |F|)
time.

Remaining steps:-

• Reconstruct the factors.

• Test the factorization.

This concludes our factoring algorithm.
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Summary

Theorem (Sparsity Bound)

Let F be an arbitrary field and let f ∈ F[x1, x2, . . . , xn] be a polynomial of

sparsity s and individual degrees at most d, then the sparsity of every

factor of f is bounded by sO(d2 log n).

Theorem (Deterministic factoring Algorithm)

Given a polynomial f ∈ F[x1, x2, . . . , xn] of sparsity s and individual

degrees at most d, we can computes the factorization of f , using

sO(d7 log n) · poly(d , |F|) field operations deterministically.
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Open Problems

1. Improving the sparsity bound?

making it field specific?

2. Factoring Algorithm without the individual degree bound?

3. Are ROABPs with bounded individual degree closed under factoring?
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Thank you.
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