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Large Spatial Data

What is common?

e Data Sets have gotten really large!

e Spatial position is not uniform, its clustered

e Grouping of measured data describes anomalies
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Spatial Scan Statistics

Find a region where measured data is significantly denser than background data.
(Martin Kulldorff 1997)
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e Family of regions € e.g., disks, axis-aligned rectangles, halfspaces
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Spatial Scan Statistics

Find a region where measured data is significantly denser than background data.
(Martin Kulldorff 1997)

e Family of regions € e.g., disks, axis-aligned rectangles, halfspaces

e Data set X C R?, measured set R C X.
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Spatial Scan Statistics

Find a region where measured data is significantly denser than background data.
(Martin Kulldorff 1997)

e Family of regions € e.g., disks, axis-aligned rectangles, halfspaces
e Data set X C R?, measured set R C X.

e Define statistic ®(C, X, R) = ®(C): log-likelihood ratio ®(C) = log(prrplcy )

o : no anomaly, rate of measured points same inside than outside

JH1 : cluster C has higher rate of measured points than outside C
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Spatial Scan Statistics

Find a region where measured data is significantly denser than background data.
(Martin Kulldorff 1997)

e Family of regions € e.g., disks, axis-aligned rectangles, halfspaces

e Data set X C R?, measured set R C X.

e Define statistic ®(C, X, R) = ®(C): log-likelihood ratio ®(C) = log(przeic )
o : no anomaly, rate of measured points same inside than outside

JH1 : cluster C has higher rate of measured points than outside C
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Spatial Scan Statistics

Find a region where measured data is significantly denser than background data.
(Martin Kulldorff 1997)

e Family of regions € e.g., disks, axis-aligned rectangles, halfspaces
e Data set X C R?, measured set R C X.

e Define statistic ®(C, X, R) = ®(C): log-likelihood ratio ®(C) = log(prrplcy )

o : no anomaly, rate of measured points same inside than outside

JH1 : cluster C has higher rate of measured points than outside C
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FiveThirtyEight

Politics Sports Science & Health Economics Culture

. 16, 2016 AT 8:00 AM

How New York Hunts For Early
Signs Of Disease Outbreaks

By Ian Evans

Filed under Public Health

On July 29, 2015, the New York City Department of Health and Mental
Hygiene sent out an alert — 31 people in the South Bronx had contracted
Legionnaires’ disease, a lung infection from waterborne bacteria that kills
about 1 out of every 10 people who get it. By the time officials found the
source (a cooling tower) and contained the spread, 128 people had
contracted Legionnaires’ and 12 people had died. It was the largest outbreak
of Legionnaires’ disease in the city’s history — an outbreak that was first
detected by a computer program.
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Statistic Function ¢
| RNC|

e baseline b(C') = % measured r(C) = ¥

e &(C) = ¢(b(C),r(C)) = [b(C) —r(C)]
e Kulldorff: ¢x (b,r) =rlnt + (1 —r)In =5 = KL(r, b) \ /

Exists set of k linear functions {¢1,...,¢r} s.t. ¢(r,b) = ayr + B;b,
for e € (0,1), so for all (r,b) € [e,1 — €]? then
¢ (r,b) > max ¢;(r,b) > ¢x(r,b) — ¢.




Statistic Function ¢

e baseline b(C) = % measured r(C) = |R|2|C|

e &(C) = ¢(b(C),r(C)) = [b(C) —r(C)]
e Kulldorff: ¢x (b,r) =rlnt + (1 —r)In =5 = KL(r, b) \ /

Exists set of k linear functions {¢1,...,¢r} s.t. ¢(r,b) = ayr + B;b,
for e € (0,1), so for all (r,b) € [e,1 — €]? then

¢K (7“, b) > max ¢Z (Ta b) > ¢K (Ta b) — &
e Agarwal etal 2006 : £ = O((1/¢e)log(1/e))
e Phillips and Matheny 2018 : kK =1/4/¢
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e Every disc is combinatorially defined by at most 3 points.
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= Choose all (g) pairs, scan through n points.
O(n?) time to scan all disks!
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Scanning all Ranges

e Every disc is combinatorially defined by at most 3 points.
= Choose all (g) pairs, scan through n points.
O(n?) time to scan all disks!

o O(n%) halfspaces in R?

o O(n??) axis-aligned rectangles in R?
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e A range space is a pair (X,A), where A is a set of subsets of set X.

e A mapping 14 is conforming to (X, A) if forany N C X
(recovery) : any A € (N, A) then Y4 (A)NN=A
(inclusion) :
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Conforming Range Space
e A range space is a pair (X,A), where A is a set of subsets of set X.

e A mapping 14 is conforming to (X, A) if forany N C X

(recovery) : any A € (N, A) then ¥ 4(A) N N A
(inclusion) : any Y C X then ¢4 (Y)N X € (
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Conforming Range Space
e A range space is a pair (X,A), where A is a set of subsets of set X.

e A mapping 14 is conforming to (X, A) if forany N C X
(recovery) : any A € (N, A) then Y4 (A)NN =A
(inclusion) : any Y C X then ¥4 (Y)N X € (X, A)

e Not all ¢4 induced by small enclosing shapes are conforming.
@7 : the smallest enclosing triangle
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SatScan is not Scalable

--- agarwal
«—e satscan

Runtimes

e halfspaces O(\XP)
o disks : O(|X]?)

e rectangles :

O(1X[*)

1000
Size

1500

2000



big data
N

“coreset”

S

poly(s)



c-Samples and =-Nets

e A range space is a pair (X, C), where C is a set of subsets of set X.

e The VC-dimension of (X, C) is the maximum size Y C X so
all subset Z C Y are elements of (Y, C).
= in R?: disks v = 3; halfspaces v = 3; rectangles v = 4.
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e The VC-dimension of (X, C) is the maximum size Y C X so
all subset Z C Y are elements of (Y, C).
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An e-sample S C X maintains density of (X, C) so
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for all C € < e. . . ..
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c-Samples and =-Nets

e A range space is a pair (X, C), where C is a set of subsets of set X.

e The VC-dimension of (X, C) is the maximum size Y C X so
all subset Z C Y are elements of (Y, C).
= in R?: disks v = 3; halfspaces v = 3; rectangles v = 4.

An e-sample S C X maintains density of (X, C) so

cNnX| |CnS| .
for all C € < e. . . ..
X 1S R
onx| 22 B
= —— = 0.22 .
| X | 119 0.227
cns|) 4

= — =0.25
S| 16




c-Samples and =-Nets

e A range space is a pair (X, C), where C is a set of subsets of set X.

e The VC-dimension of (X, C) is the maximum size Y C X so
all subset Z C Y are elements of (Y, C).
= in R?: disks v = 3; halfspaces v = 3; rectangles v = 4.

An e-net S C X hits every large enough subset (X, C) so

X .
for all C' € C with ‘C‘;’ ’25,tnen C'NS #A0Q. . |




c-Samples and =-Nets

e A range space is a pair (X, C), where C is a set of subsets of set X.

e The VC-dimension of (X, C) is the maximum size Y C X so
all subset Z C Y are elements of (Y, C).
= in R?: disks v = 3; halfspaces v = 3; rectangles v = 4.

e A random sample S C X of size k, with probability at least 1 — 9, is a
= e-sample for k = Q(S (v +log 5)) = =
= e-net for k = Q(%log =) ~ L log 1
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c-Samples and =-Nets

e A range space is a pair (X, C), where C is a set of subsets of set X.

e The VC-dimension of (X, C) is the maximum size Y C X so
all subset Z C Y are elements of (Y, C).
= in R?: disks v = 3; halfspaces v = 3; rectangles v = 4.

e A random sample S C X of size k, with probability at least 1 — 9, is a
= e-sample for k = Q(&H (v +log §)) = =
= e-net for k = Q(%log =) ~ L log 1

\ |dea: Sample-then-scan! '
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Sample then Scan

e Consider large conforming range space (X, €) with map e and VC-dim v
create an e-sample S C X; |S| =s =1/
(do same for R — SR independently)




Sample then Scan

e Consider large conforming range space (X, €) with map e and VC-dim v
create an e-sample S C X; |S| =s =1/
(do same for R — SR independently)

Now for all C' € C we have |b(C) —bs(C)| < e = |®(C) — Pg(C)| < O(e).

°
°
° .
°
° o ° 5
°
. ° L4 °
° . °
. = ° ¢ R
.-
v . °
i ° °
° °
. ° o %o
°
° ° °
°
[ .0.
°
. L4 °
. A
°
° L % .'
° ® o
° ® o ¢
°



Sample then Scan

e Consider large conforming range space (X, €) with map e and VC-dim v
create an e-sample S C X; |S| =s =1/
(do same for R — SR independently)

Now for all C' € C we have |b(C) —bs(C)| < e = |®(C) — Pg(C)| < O(e).

e Enumerate all s ranges C € (5, C)
for each evaluate ®(C') in O(s) time.
Total runtime O(s**1) = 1/22T2 time.
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Sample then Scan

e Consider large conforming range space (X, €) with map e and VC-dim v
create an e-sample S C X; |S| =s =1/
(do same for R — SR independently)

Now for all C' € C we have |b(C) —bs(C)| < e = |®(C) — Pg(C)| < O(e).

e Enumerate all s ranges C € (5, C)
for each evaluate ®(C') in O(s) time.
Total runtime O(s**1) = 1/22T2 time.

e Special cases have faster runtime:
disks O(s?) = 1/¢&° D e
halfspaces O(s%) =1/ Ol N

rectangles O(%s2 log s) = (1/e*?)log < T I




Sample then Scan

e Consider large conforming range space (X, €) with map e and VC-dim v
create an e-sample S C X; |S| =s =1/
(do same for R — SR independently)

Now for all C' € C we have |b(C) —bs(C)| < e = |®(C) — Pg(C)| < O(e).

e Enumerate all s ranges C € (5, Q)
for each evaluate ®(C') in O(s) time.
Total runtime O(s**1) = 1/22T2 time.

Setting £ = -1~ = (.01

100
e Special cases have faster runtime: — requires s ~ 10,000
disks O(s?) = 1/¢&° — 50 82 ~ 100million
halfspaces O(s?) = 1/¢* Still too slow!

reCtangleS O(%S2 lOg S) — (1/645) log %



Two-Level Sample-then-Scan

e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°.
2. create an e-net N C X; |[N|=n = (1/¢)log(1/e).
(do same for R — Sr, R — Npg independently)
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e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°.
2. create an e-net N C X; |[N|=n = (1/¢)log(1/e).
(do same for R — Sr, R — Npg independently)

e For induced range subsets C\y = {C NN | C € C}

YCN wﬂ(y)ﬂ Xv‘A)



Two-Level Sample-then-Scan

e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°.
2. create an e-net N C X; |[N|=n = (1/¢)log(1/e).
(do same for R — Sr, R — Npg independently)

e For induced range subsets C\y = {C NN | C € C}
define reduced range space (X,Can) = {X Nee(Y) | Y € (IV,C )}
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Two-Level Sample-then-Scan

e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°.
2. create an e-net N C X; |[N|=n = (1/¢e)log(1/e).
(do same for R — Sr, R — Npg independently)

e For induced range subsets C\y = {C NN | C € C}
define reduced range space (X,Can) ={X Nee(Y)|Y € (N,Cn)}.
Now for all C' € (X, €) there exists C" e (S,Can) so
r(C )—TSC”\<5:>\<I> — dg(C")] < e
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Two-Level Sample-then-Scan

e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°.
2. create an e-net N C X; |[N|=n = (1/¢e)log(1/e).
(do same for R — Sr, R — Npg independently)

e For induced range subsets C\y = {C NN | C € C}
define reduced range space (X,Can) ={X Nee(Y)|Y € (N,Cn)}.
Now for all C' € (X, C) there exists C’ € (S,Can) so
r(C) —rs(C")] <e = |P(C) — P (C")]| < e

e Enumerate all n” ranges C' € (5,Can) . .
for each evaluate ®5(C") in s time. I I ERN
Total runtime n”s = (1/e¥*2)log” < time. '

— disks O(sn?) = (1/£%) log? . e
— halfspaces O(sn) = (1/&3)log 1 LN A

— rectangles O(n? + slogn) = (1/4) log?(1/¢)




Scalable Scanning and with Guarantees

~— allrect
~— satscan
--- agarwal
+— neill
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e Plant high-discrepancy region.
e Run algorithm to see if you find it.

Repeat many times,
what fraction find planted region?
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Power

Statistical Power

Is an s-approx Cecl acceptable?
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Can we do better?
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Can we do better?

0.10 Rectangles
~—  SatScan on Sample (1/¢)®
o—e 2-level Sampling (1/¢)*
< v—v 2-levSamp+gridScan | (1/£)?loglog 1
+—+ 2-levSamp+SimplegridScan (1/¢)’

Non-Linear: ®(A*) — ®(A)
o
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Can we do better?
Halfspaces
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Can we do better?
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Can we do better?

Halfspaces
0.014 - T
——
0.012- —<— 2-level Sampling | (1/€)°
—*— 2-levSamp+HamTree (1/g)*657
. 0.010 -
O
L]
J' 0.008 - Random Sampling (very fast!)
© . .
o + O(1/¢%) time scanning
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- VS.
0.004 -
Fast Sampling
0.002 - O(1/£2:%%) time scanning
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Improved Two-Level Sample-then-Scan

e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°
2. create an e-net N C X; |[IN| =n = (1/¢e)log(1/e)
3. Scan all ranges C' € (5,Can) and evaluate ®5(C)
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e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°
2. create an e-net N C X; |[IN| =n = (1/¢e)log(1/e)
3. Scan all ranges C' € (5,Can) and evaluate ®5(C)

e For halfspaces in R2, there exist e-samples of size 1/¢%/3.

= NEW construct S with s = O( 41/3 log?’?) in O(|X|1log | X]|) time.
= O(ns) time from 1/¢° — (1/57/3)log2/3 1
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Improved Two-Level Sample-then-Scan

e Consider large conforming range space (X, C) with map ¥ and VC-dim v
1. create an e-sample S C X; |S| = s = 1/¢°
2. create an e-net N C X; |[IN| =n = (1/¢e)log(1/e)
3. Scan all ranges C' € (5,Can) and evaluate ®5(C)

e For halfspaces in R2, there exist e-samples of size 1/¢%/3.

= NEW construct S with s = O( 41/3 log?’?) in O(|X|1log | X]|) time.
= O(ns) time from 1/¢° — (1/57/3)log2/3 1

e For rectangles in R?, only approximately scan (S, Can). g
= NEW e-apx-scanning in O(n?loglogn + sloglogn) time.  -." "\
= NEW simple e-apx-scanning in O(n° + slogn) time. A

= from n* + s~ 1/e* to n? + s ~ 1/¢? time. A
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e There exists e-sample for (X, Js) of size O(1/e%/3).
Alexander (Combinatorica '90), Matousek (DCG '95)
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Fast Halfspace s-Samples

e There exists e-sample for (X, Js) of size O(1/e%/3).
Alexander (Combinatorica '90), Matousek (DCG '95)

The high computational complexity of the currently known algorithms for these subroutines may be prohibitive
for data stream applications. It is a long standing open problem to find efficient exact
or approximation algorithms for either of them. — Suri, Toth,&Zhou (SoCG'04)

e Can be made constructed in polynomial time, about O(|X|/s*). Uses SDP.

Bansal (FOCS '10)



Fast Halfspace =-Samples

e A (t,z)-partition of (X, Hs) is a set of pairs {(A1, X71), (A2, X3),...} so
— each cell A; is a simple region that contains X
— X is a disjoint union of X; U X U ...
— there are O(t) pairs, each with | X;| < 2|X|/t,
— and each h € Hy crosses O(t?) cells.
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Fast Halfspace s-Samples

e A (t,z)-partition of (X, Hs) is a set of pairs {(A1, X71), (A2, X3),...} so
— each cell A; is a simple region that contains X
— X is a disjoint union of X; U X U ...
— there are O(t) pairs, each with | X;| < 2|X|/t,
— and each h € Hy crosses O(t?) cells.

e Choose one s; € X; randomly for each pair (4;, X;).
= NEW If t ~ (1/£)2/(2=2) |og 7= L then S = {s1,$2,...} is an e-sample.
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Fast Halfspace s-Samples

e A (t,z)-partition of (X, Hs) is a set of pairs {(A1, X71), (A2, X3),...} so
— each cell A; is a simple region that contains X
— X is a disjoint union of X; U X U ...
— there are O(t) pairs, each with | X;| < 2|X|/t,
— and each h € Hy crosses O(t?) cells.

e Choose one s; € X; randomly for each pair (4;, X;).

= NEW If t & (1/£)2/(2=2) Jog 7= L then S = {s1,$2,...} is an e-sample.
l\ w .




Fast Halfspace =-Samples

e A (t,z)-partition of (X, Hs) is a set of pairs {(A1, X71), (A2, X3),...} so
— each cell A; is a simple region that contains X
— X is a disjoint union of X; U X U ...
— there are O(t) pairs, each with | X;| < 2|X|/t,
— and each h € Hy crosses O(t?) cells.

e Choose one s; € X; randomly for each pair (4;, X;).

= NEW If t & (1/£)2/(2=2) Jog 7= L then S = {s1,$2,...} is an e-sample.
I\ % . + h hits t1/2 cells oroof
+ each | X;| < | X |/t

in R2

+ b1/t z=3

Apply Hoeffding bound:

Prlerr > ¢ X|] <

eXp(—tlfz!f&P) = exp(—e2t3/?)

~ const




Even Faster Halfspace Scanning
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Approximate Rectangle Scanning

e c-cover X with a grid GG so each strip has ~ | X| points.
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Approximate Rectangle Scanning

e c-cover X with a grid GG so each strip has &~ ¢| X | points.

e Each rectangle R € (X, Ry) is e-approximated by on in R, € G

e| X| points

e| X| points e| X| points
A P —— A e N I,
L
[ ° .
()
. ° o
{ { ® L
P [ ]
° lo o o
[ ]
e O
[ ° [
a
° ° ®

allalalialelielle

points

points

points
points
points
points

points



Approximate Rectangle Scanning
e c-cover X with a grid GG so each strip has &~ ¢| X | points.

e Each rectangle R € (X, Ry) is e-approximated by on in R, € G
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Approximate Rectangle Scanning
e c-cover X with a grid GG so each strip has ~ | X| points.
e Each rectangle R € (X, Ry) is e-approximated by on in R, € G

e Compute subset sum for all 2-sided rectangle in 1/ time.
Can now compute ®(R,) for each R, € G in O(1) time.
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Approximate Rectangle Scanning
e c-cover X with a grid G so each strip has = €| X| points.
e Each rectangle R € (X, Ry) is e-approximated by on in R, € G

e Compute subset sum for all 2-sided rectangle in 1/ time.
Can now compute ®(R,) for each R, € G in O(1) time.
Enumerate all in O(1/g%) time.




Approximate Rectangle Scanning
e c-cover X with a grid GG so each strip has &~ ¢| X | points.

e Run Kadane's Algorithm to find R* = argmaxpg_ cq ®(Ry)
Consider all 1/¢ left end points
— Sweep 1/¢ right endpoints
— — Scan to calculate best vertical rect in 1/¢ time
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Approximate Rectangle Scanning
e c-cover X with a grid GG so each strip has &~ ¢| X | points.

e Run Kadane's Algorithm to find R* = argmaxpg_ cq ®(Ry)
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Approximate Rectangle Scanning
e c-cover X with a grid GG so each strip has &~ ¢| X | points.

e Run Kadane's Algorithm to find R* = argmaxpg_ cq ®(Ry)
Consider all 1/¢ left end points
— Sweep 1/¢ right endpoints
— — Scan to calculate best vertical rect in 1/¢ time
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Approximate Rectangle Scanning
e c-cover X with a grid GG so each strip has ~ ¢| X | points.

e Run Kadane's Algorithm to find R* = argmaxpg_ cq ®(Ry)
Consider all 1/¢ left end points
— Sweep 1/¢ right endpoints
— — Scan to calculate best vertical rect in 1/¢ time




Very Fast Rectangle Scanning

0.10 Rectangles
~—  SatScan on Sample (1/¢)®
o—e 2-level Sampling (1/¢)*
< v—v 2-levSamp+gridScan | (1/£)?loglog 1
+—+ 2-levSamp+SimplegridScan (1/¢)’

Non-Linear: ®(A*) — ®(A)
o
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(A%) — B(A)

d

Non-Linear

. Michael Mathen
Conclusion y

e R?: Halfspaces O(N + 1/¢7/3),
Rectangles in O(N + 1/¢2),
Disks in O(N + 1/£19/3).

e Rectangles conditionally tight (APSP). Conjecture Halfspaces © (/N + 1/5).

e Code online: pyscan | https://github.com/michaelmathen/pyscan
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