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Large Spatial Data
What is common?

• Data Sets have gotten really large!

• Spatial position is not uniform, its clustered

• Grouping of measured data describes anomalies



Spatial Scan Statistics
Find a region where measured data is significantly denser than background data.
(Martin Kulldor↵ 1997)

• Family of regions C e.g., disks, axis-aligned rectangles, halfspaces

• Data set X ⇢ R2, measured set R ⇢ X.

• Define statistic �(C,X,R) = �(C): log-likelihood ratio �(C) = log(Pr(H0|C,X,R)
Pr(H1|C,X,R) )

H0 : no anomaly, rate of measured points same inside than outside

H1 : cluster C has higher rate of measured points than outside C

• Scan all C 2 C to find C⇤ = argmaxC2C �(C)
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Spatial Scan Statistics
Find a region where measured data is significantly denser than background data.
(Martin Kulldor↵ 1997)

• Family of regions C e.g., disks, axis-aligned rectangles, halfspaces

• Data set X ⇢ R2, measured set R ⇢ X.

• Define statistic �(C,X,R) = �(C): log-likelihood ratio �(C) = log(Pr(H0|C,X,R)
Pr(H1|C,X,R) )

H0 : no anomaly, rate of measured points same inside than outside

H1 : cluster C has higher rate of measured points than outside C

• Scan all C 2 C to find C⇤ = argmaxC2C �(C)

• Run 1000 permutation tests to measure significance
Repeat scan on random data, 1000x
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Statistic Function �
• baseline b(C) = |X\C|

|X| measured r(C) = |R\C|
|R|

• �(C) = �(b(C), r(C)) = |b(C)� r(C)|

• Kulldor↵: �K(b, r) = r ln r
b + (1� r) ln 1�r

1�b = KL(r, b)

Exists set of k linear functions {�1, . . . ,�k} s.t. �(r, b) = ↵ir + �ib,
for " 2 (0, 1), so for all (r, b) 2 [", 1� "]2 then

�K(r, b) � max
i

�i(r, b) � �K(r, b)� ".

• Agarwal etal 2006 : k = O((1/") log(1/"))
• Phillips and Matheny 2018 : k = 1/

p
"
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Scanning all Ranges
• Every disc is combinatorially defined by at most 3 points.

) Choose all
�n
2

�
pairs, scan through n points.

O(n3) time to scan all disks!

• O(nd) halfspaces in Rd

• O(n2d) axis-aligned rectangles in Rd
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Conforming Range Space
• A range space is a pair (X,A), where A is a set of subsets of set X.

• A mapping  A is conforming to (X,A) if for any N ⇢ X
(recovery) : any A 2 (N,A) then  A(A) \N = A
(inclusion) : any Y ⇢ X then  A(Y ) \X 2 (X,A)
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A recover A
not

 T(A)

Conforming Range Space
• A range space is a pair (X,A), where A is a set of subsets of set X.

• A mapping  A is conforming to (X,A) if for any N ⇢ X
(recovery) : any A 2 (N,A) then  A(A) \N = A
(inclusion) : any Y ⇢ X then  A(Y ) \X 2 (X,A)

• Not all �A induced by small enclosing shapes are conforming.
�T : the smallest enclosing triangle



SatScan is not Scalable

Runtimes
• halfspaces O(|X|2)
• disks : O(|X|3)
• rectangles : O(|X|4)
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"-Samples and "-Nets
• A range space is a pair (X,C), where C is a set of subsets of set X.

• The VC-dimension of (X,C) is the maximum size Y ⇢ X so
all subset Z ⇢ Y are elements of (Y,C).

) in R2: disks ⌫ = 3; halfspaces ⌫ = 3; rectangles ⌫ = 4.

An "-sample S ⇢ X maintains density of (X,C) so

for all C 2 C

����
|C \X|
|X| � |C \ S|

|S|

����  ".
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• A range space is a pair (X,C), where C is a set of subsets of set X.

• The VC-dimension of (X,C) is the maximum size Y ⇢ X so
all subset Z ⇢ Y are elements of (Y,C).

) in R2: disks ⌫ = 3; halfspaces ⌫ = 3; rectangles ⌫ = 4.

An "-sample S ⇢ X maintains density of (X,C) so

for all C 2 C

����
|C \X|
|X| � |C \ S|

|S|

����  ".

|C \X|
|X| =
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|C \ S|
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"-Samples and "-Nets
• A range space is a pair (X,C), where C is a set of subsets of set X.

• The VC-dimension of (X,C) is the maximum size Y ⇢ X so
all subset Z ⇢ Y are elements of (Y,C).

) in R2: disks ⌫ = 3; halfspaces ⌫ = 3; rectangles ⌫ = 4.

An "-net S ⇢ X hits every large enough subset (X,C) so

for all C 2 C with
|C \X|
|X| � ", then C \ S 6= ;.
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"-Samples and "-Nets
• A range space is a pair (X,C), where C is a set of subsets of set X.

• The VC-dimension of (X,C) is the maximum size Y ⇢ X so
all subset Z ⇢ Y are elements of (Y,C).

) in R2: disks ⌫ = 3; halfspaces ⌫ = 3; rectangles ⌫ = 4.

• A random sample S ⇢ X of size k, with probability at least 1� �, is a
) "-sample for k = ⌦( 1

"2 (⌫ + log 1
� )) ⇡

1
"2

) "-net for k = ⌦( ⌫" log
1
"� ) ⇡

1
" log

1
"

Idea:  Sample-then-scan!



Sample then Scan
• Consider large conforming range space (X,C) with map  C and VC-dim ⌫

create an "-sample S ⇢ X; |S| = s = 1/"2.
(do same for R ! SR independently)

Now for all C 2 C we have |b(C)� bS(C)|  " ) |�(C)� �S(C)|  O(").

• Enumerate all s⌫ ranges C 2 (S,C)
for each evaluate �(C) in O(s) time.
Total runtime O(s⌫+1) = 1/"2⌫+2 time.

• Special cases have faster runtime:
disks O(s3) = 1/"6

halfspaces O(s2) = 1/"4

rectangles O( 1p
"
s
2 log s) = (1/"4.5) log 1

"



Sample then Scan
• Consider large conforming range space (X,C) with map  C and VC-dim ⌫

create an "-sample S ⇢ X; |S| = s = 1/"2.
(do same for R ! SR independently)

Now for all C 2 C we have |b(C)� bS(C)|  " ) |�(C)� �S(C)|  O(").

• Enumerate all s⌫ ranges C 2 (S,C)
for each evaluate �(C) in O(s) time.
Total runtime O(s⌫+1) = 1/"2⌫+2 time.

• Special cases have faster runtime:
disks O(s3) = 1/"6

halfspaces O(s2) = 1/"4

rectangles O( 1p
"
s
2 log s) = (1/"4.5) log 1

"



Sample then Scan
• Consider large conforming range space (X,C) with map  C and VC-dim ⌫

create an "-sample S ⇢ X; |S| = s = 1/"2.
(do same for R ! SR independently)

Now for all C 2 C we have |b(C)� bS(C)|  " ) |�(C)� �S(C)|  O(").

• Enumerate all s⌫ ranges C 2 (S,C)
for each evaluate �(C) in O(s) time.
Total runtime O(s⌫+1) = 1/"2⌫+2 time.

• Special cases have faster runtime:
disks O(s3) = 1/"6

halfspaces O(s2) = 1/"4

rectangles O( 1p
"
s
2 log s) = (1/"4.5) log 1

"



Sample then Scan
• Consider large conforming range space (X,C) with map  C and VC-dim ⌫

create an "-sample S ⇢ X; |S| = s = 1/"2.
(do same for R ! SR independently)

Now for all C 2 C we have |b(C)� bS(C)|  " ) |�(C)� �S(C)|  O(").

• Enumerate all s⌫ ranges C 2 (S,C)
for each evaluate �(C) in O(s) time.
Total runtime O(s⌫+1) = 1/"2⌫+2 time.

• Special cases have faster runtime:
disks O(s3) = 1/"6

halfspaces O(s2) = 1/"4

rectangles O( 1p
"
s
2 log s) = (1/"4.5) log 1

"



Sample then Scan
• Consider large conforming range space (X,C) with map  C and VC-dim ⌫

create an "-sample S ⇢ X; |S| = s = 1/"2.
(do same for R ! SR independently)

Now for all C 2 C we have |b(C)� bS(C)|  " ) |�(C)� �S(C)|  O(").

• Enumerate all s⌫ ranges C 2 (S,C)
for each evaluate �(C) in O(s) time.
Total runtime O(s⌫+1) = 1/"2⌫+2 time.

• Special cases have faster runtime:
disks O(s3) = 1/"6

halfspaces O(s2) = 1/"4

rectangles O( 1p
"
s
2 log s) = (1/"4.5) log 1

"

Setting " = 1
100 = 0.01

! requires s ⇡ 10,000
! so s2 ⇡ 100million

Still too slow!



Two-Level Sample-then-Scan
• Consider large conforming range space (X,C) with map  C and VC-dim ⌫

1. create an "-sample S ⇢ X; |S| = s = 1/"2.
2. create an "-net N ⇢ X; |N | = n = (1/") log(1/").

(do same for R ! SR, R ! NR independently)

• For induced range subsets C|N = {C \N | C 2 C}
define reduced range space (X,C�N ) = {X \  C(Y ) | Y 2 (N,C|N )}.
Now for all C 2 (X,C) there exists C 0 2 (S,C�N ) so
|r(C)� rS(C 0)|  " ) |�(C)� �S(C 0)|  ".

• Enumerate all n⌫ ranges C 0 2 (S,C�N )
for each evaluate �S(C 0) in s time.
Total runtime n

⌫
s = (1/"⌫+2) log⌫ 1

" time.

! disks O(sn2) = (1/"4) log2 1
"

! halfspaces O(sn) = (1/"3) log 1
"

! rectangles O(sn2 log2 n)) = (1/"4) log4 1
"
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 D(Y )

 D(Y ) \X 2 (X,A)⇢ N
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Can we do better?

SatScan on Sample

Rectangles

2-level Sampling
2-levSamp+gridScan
2-levSamp+SimplegridScan

(1/")8

(1/")4

(1/")2 log log 1
"

(1/")3



⇢
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�
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ekxk2
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Random Sampling (very fast!)
+ O(1/"3) time scanning

vs.

Fast Sampling
+ O(1/"2.66) time scanning



Improved Two-Level Sample-then-Scan
• Consider large conforming range space (X,C) with map  C and VC-dim ⌫

1. create an "-sample S ⇢ X; |S| = s = 1/"2

2. create an "-net N ⇢ X; |N | = n = (1/") log(1/")
3. Scan all ranges C 2 (S,C�N ) and evaluate �S(C)

• For halfspaces in R2, there exist "-samples of size 1/"4/3.
) NEW construct S with s = O( 1

"4/3
log2/3) in O(|X| log |X|) time.

) O(ns) time from 1/"3 ! (1/"7/3) log2/3 1
"

• For rectangles in R2, only approximately scan (S,C�N ).
) NEW "-apx-scanning in O(n2 log log n+ s log log n) time.
) NEW simple "-apx-scanning in O(n3 + s log n) time.
) from n

4 + s ⇡ 1/"4 to n
2 + s ⇡ 1/"2 time.
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Fast Halfspace "-Samples

• There exists "-sample for (X,H2) of size ⇥(1/"4/3).
Alexander (Combinatorica ’90), Matousek (DCG ’95)

The high computational complexity of the currently known algorithms for these subroutines may be prohibitive
for data stream applications. It is a long standing open problem to find e�cient exact
or approximation algorithms for either of them. – Suri,Toth,&Zhou (SoCG’04)

• Can be made constructed in polynomial time, about O(|X|/"4). Uses SDP.
Bansal (FOCS ’10)
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• A (t,z)-partition of (X,H2) is a set of pairs {(�1, X1), (�2, X2), . . .} so
! each cell �i is a simple region that contains Xi

! X is a disjoint union of X1 [X2 [ . . .

! there are O(t) pairs, each with |Xi|  2|X|/t,
! and each h 2 H2 crosses O(tz) cells.
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• A (t, 0.7925)-partition can be found in O(|X| log |X|
t ) time; z = log4(3).
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• Choose one si 2 Xi randomly for each pair (�i, Xi).

) NEW If t ⇡ (1/")2/(2�z) log
1

2�z 1
" then S = {s1, s2, . . .} is an "-sample.
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• A (t,z)-partition of (X,H2) is a set of pairs {(�1, X1), (�2, X2), . . .} so
! each cell �i is a simple region that contains Xi

! X is a disjoint union of X1 [X2 [ . . .

! there are O(t) pairs, each with |Xi|  2|X|/t,
! and each h 2 H2 crosses O(tz) cells.

• Choose one si 2 Xi randomly for each pair (�i, Xi).

) NEW If t ⇡ (1/")2/(2�z) log
1

2�z 1
" then S = {s1, s2, . . .} is an "-sample.

+ h hits t1/2 cells

+ each |Xi|  |X|/t
+ t ⇡ 1/"4/3

Apply Hoe↵ding bound:

Pr[err > "|X|] 
exp(� ("|X|)2

t1/2·( |X|
t )2

) = exp(�"2t3/2)

⇡ const

proof
in R2

z = 1
2



⇢
ekxk2

ekxk2

�
(1/")2.33
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Even Faster Halfspace Scanning



Approximate Rectangle Scanning
• "-cover X with a grid G so each strip has ⇡ "|X| points.

• Each rectangle R 2 (X,R2) is "-approximated by on in Rg 2 G

• Compute subset sum for all 2-sided rectangle in 1/"2 time.
Can now compute �(Rg) for each Rg 2 G in O(1) time.
Enumerate all in O(1/"4) time.
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! Sweep 1/" right endpoints
� ! Scan to calculate best vertical rect in 1/" time
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SatScan on Sample

Rectangles

2-level Sampling
2-levSamp+gridScan
2-levSamp+SimplegridScan

(1/")8

(1/")4

(1/")2 log log 1
"

(1/")3

Very Fast Rectangle Scanning



Michael Matheny
Conclusion
• R2

: Halfspaces O(N + 1/"7/3),
Rectangles in O(N + 1/"2),
Disks in O(N + 1/"10/3).

• Rectangles conditionally tight (APSP). Conjecture Halfspaces ⇥(N + 1/"2).

• Code online: pyscan | https://github.com/michaelmathen/pyscan
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