Extremal Mechanisms in Differential Privacy

Quan Geng,

Sewoong Oh, Pramod Viswanath,

University of Illinois

December 12, 2013

Information Theory and Differential Privacy

- Communication -- small error probability
- Privacy -- large error probability

Information Theory and Differential Privacy

- Communication -- multi hypothesis testing
- Privacy -- binary hypothesis testing

Binary Inference Errors

- Two error types
 - False Alarm and Missed Detection
- Privacy: guarantee enough error

 \mathbf{P}_{MD}

Differential Privacy

- A specific way of enforcing inference errors
 - WZII
- Original formulation involves likelihood ratios
 - DKMNS05
- E controls privacy level

Differential Privacy

• For competing hypotheses D1 and D2

$$e^{-\epsilon} \leq \frac{\Pr(K(D_1) \in S)}{\Pr(K(D_2) \in S)} \leq e^{\epsilon}$$

• Equivalently:

$$P_{\rm MD} + e^{-\epsilon} P_{\rm FA} \ge e^{-\epsilon}$$
$$P_{\rm FA} + e^{-\epsilon} P_{\rm MD} \ge e^{-\epsilon}$$

- Likelihood ratios in a bounded interval
- ϵ small is high privacy
- ϵ large is low privacy

Information Theory isMatureDesignerNatureDesignerdata \longrightarrow Enc \longrightarrow Channel \longrightarrow Dec \longrightarrow data

- Shannon, 1948
 - A mathematical theory of communication
- Success
 - extremal limits
 - capacity, single-letter expressions
 - fundamental benchmarks
 - practical schemes
 - operational interpretation
 - data processing inequalities

This Talk

- Similar program for differential privacy
 - extremal mechanisms
 - fundamental limits
 - operational interpretation
- Results
 - Staircase mechanism
 - universally optimal noise adding mechanism
 - Optimal Composition theorems
 - Abstract Staircase mechanism
 - dominates every other privacy mechanism

State of the Art

- Noise adding mechanisms
- Real valued query
 - Laplacian noise
 - regular differential privacy
 - Gaussian noise
 - approximate differential privacy
- No exact optimality results

State of the Art

- Integer valued query
- Count queries (sensitivity is one)
- Geometric noise added
 - universal optimality in Bayesian cost minimization framework [GRS09]
 - no natural generalization
 - larger sensitivity [GS10]
- No operational interpretation
 - Hint: Log Likelihood ratio $\in \{-\varepsilon, +\varepsilon\}$

Staircase Mechanism

- Universally optimal noise adding mechanism
 - worst case setting
 - generalization of GRS09 ($\Delta = 1$)

- no operational interpretation
 - Log Likelihood ratio $\in \{-\varepsilon, 0, +\varepsilon\}$

Example Cost Functions

- Privacy mechanism involves adding noise K(D) = q(D) + X
 - amplitude of noise E[|X|] L(x) = |x|
 - variance of noise $E[X^2]$ $L(x) = x^2$
- In general any cost function
 - monotonically increasing
 - symmetric around origin

• min
$$E[L(X)]$$

Universal Optimality

• Theorem: Optimal Noise is Staircase shaped

• Geometric mixture of uniform random variables

Staircase Mechanism

• Theorem: Optimal Noise is universally Staircase shaped

- Geometric decaying
 - $\gamma \in [0,1]$ depends on cost function

Price of Privacy

 $\frac{\Delta}{\varepsilon}$

• For
$$L(x) = |x|$$

• Minimum noise magnitude
$$\frac{\Delta e^{-\varepsilon/2}}{1-e^{-\varepsilon/2}}$$

- Laplace noise magnitude
- High privacy
 - gap is small
- Low privacy
 - exponential improvement
- Low privacy costs exponentially less

Price of Privacy

• For
$$L(x) = x^2$$

• Minimum noise variance

$$\Theta\big(\frac{\Delta^2 e^{-2\varepsilon/3}}{(1-e^{-\varepsilon})^2}\big)$$

- Laplace noise variance
- $\frac{\Delta^2}{\varepsilon^2}$

- High privacy
 - gap is small
- Low privacy
 - exponential improvement
- Low privacy costs exponentially less

Properties of γ^*

- Need to pick γ^* ; depends on cost function
- General Properties: $\gamma^* \to \frac{1}{2}$ $\epsilon \to 0$ $\gamma^* \to 0$ $\epsilon \to \infty$
- Log Likelihood ratio $\in \{-\varepsilon, 0, +\varepsilon\}$

Canonical Result

- Laplacian mechanism (and variants) widely used
 - many papers on differential privacy
- Staircase mechanism applies
 - in nearly each case
 - improves performance nearly each time
 - pronounced improvement in moderate/low privacy regimes
- Two limitations
 - intuition missing
 - generalization hard
 - data/query dependent mechanisms

FA-MD Tradeoff Curves

- Operational setting
 - binary hypothesis testing

Binary Query

- Binary output
 - Yes or No answer
- Natural mechanism
 - randomized response;W59

- Potentially suboptimal in general
 - more complicated outputs
 - 2-party distributed AND computation GMPS13

Operational Look

- Binary output
 - randomized response X
 - likelihood ratio $\in \{-\varepsilon, +\varepsilon\}$
- Exactly meets the privacy region

- Any other mechanism Y
 - only inside the triangular region
- Reverse Data Processing Theorem: B53
 - D X Y -- Y can be simulated from X
 - Implications for GMPS13 -- distributed AND computation

Approximate Differential Privacy

• Privatized response has four output letters

- Exactly meets the privacy region
- Any other mechanism Y
 - only inside the privacy region
 - D X Y

Composition Theorem

- Privacy region met exactly
 - every other mechanism can be simulated
- Optimal Composition Theorem
 - Composing k queries
 - privacy region is intersection
 - of $((k-2i)\varepsilon, \delta_i)$ privacy regions for i=1..k

Composition Theorem Simplified

- Optimal Composition Theorem
 - conceptually straightforward
- Can be expressed as $(\tilde{\varepsilon}, \delta)$ privacy
 - k-fold composition, each $(\varepsilon, 0)$ private

$$\tilde{\varepsilon} \approx k\varepsilon^2 + \varepsilon \sqrt{2k \log(e + (\sqrt{k\varepsilon^2}/\delta))}$$

• contrast with state of the art [DRVI0]

$$\tilde{\varepsilon} \approx k \varepsilon^2 + \varepsilon \sqrt{2k \log(1/\delta)}$$

saving of log factor

Applications of the Composition Theorem

- Order optimality
 - for many mechanisms
 - Laplace
 - Staircase
 - Gaussian
- Direct composition improves performance of Gaussian mechanism
 - sharper concentration analysis
 - chernoff bound
 - direct expression for privacy region
- Immediate applications
 - each intermediate step has less noise

Back to the Staircase Mechanism

- Ternary query output
 - each pair is neighboring
- View through the operational lens
 - three FA-MD diagrams, one for each pair

- tradeoff among the privacy regions
 - all three regions cannot meet the full triangular region

Back to the Staircase Mechanism

- Ternary query output
 - each pair is neighboring
- Tradeoff among the privacy regions

- Staircase mechanism universally dominates
- Theorem: Every mechanism can be simulated from the staircase mechanism
 - Special reverse data processing inequality

Summary

- Fundamental Mechanisms
 - Staircase mechanism
- Universality
 - cost framework
 - Markov chain framework
- Operational Lens
 - data processing inequalities
- Connections to statistics
 - Blackwell, LeCam
 - converse results to Neyman-Pearson

- Q. Geng and P. Viswanath,
- The Optimal Mechanism for Differential Privacy
- <u>arxiv.org/1212.1186</u>
- Q. Geng and P. Viswanath,
- The Optimal Mechanism for Differential Privacy: Multidimensional Setting
- <u>arxiv.org/1312.0655</u>
- S. Oh and P. Viswanath
- The Composition Theorem for Differential Privacy
- <u>arxiv.org/1311.0776</u>
- Q. Geng and P. Viswanath
- Optimal Mechanisms for Approximate Differential Privacy
- <u>arxiv.org/1305.1330</u>
- Acknowledgement: K Chaudhury, M Hardt and A Smith

