
When	Hashes	Met	Wedges:	A	
Distributed	Algorithm	for	Finding	

High	Similarity	Vectors		
	

Aneesh	Sharma	
Google	

C.	Seshadhri	
UC	Santa	Cruz	

Ashish	Goel	
Stanford	U	

This	is	based	on	a	true	story	

The	application	is	real	

Big	data	èTheory	èPractice	

Here’s	an	awesome	new	
algorithm	for	problem	P.	

	
2X	faster	than	previous	

work!	

I	just	bought	a	
bigger	cluster	with	

5X	memory.		
	

I’ll	just	use	my	old	
codes.	

The	problem	

•  Given	n	non-negative	
vectors	in	Rd,	
	find	all	“similar”	pairs	

θ	

u	

v	

	sim(u,v)	=	cos	θ	
(or	sim(u,v)	=	u.v)	
	

Why?	

•  Fundamental	for	link	prediction	and	
recommendation	

•  [Goel	et	al	13][Gupta	et	al	13]	Key	feature	in	Who	To	
Follow	engine	at	Twitter	
– Common	representations	are	non-negative	

Formally…	

•  Given	n	non-negative	unit	vectors	in	Rd	
	and	threshold	τ,	
	find	all	pairs	(u,v)	such	that	u.v	>	τ	

•  In	ATA,	find	all	entries	>	τ	

The	challenge	

No	existing	algorithm	works	when	
	n	=	d	=	1B	and	nnz(A)	>	10B	

	
There	is	no	systems	solution	

I	need	help!	

WHIMP	

•  WHIMP	(Wedges	and	Hashes	In	Matrix	Prod.)	
Distributed	(MR)	algorithm	for	finding	similar	
vectors	
– Theoretically	“near-optimal”	total	shuffle/comm	
– Practically	viable.	Works	on	nnz(A)	=	O(100B)	
without	killing	cluster	

The	distributed	framework	

•  Synchronous	communication	along	edges	(can	
be	simulated	in	MR)	

•  Total	communication	is	shuffle	cost	

v1	v2	v3	 vn	

r	
i	

Ari	

Previous	art	
•  Exact	matrix	mult:	[BLAS,	Csparse]	
•  Approx	matrix	mult,	using	low	rank	
approximation:	[Drineas-Kannan-Mahoney	06]	[Sarlos	
06][Belabbas-Wolfe	08]		

•  Random	projections,	(Asym)	LSH	[Indyk-
Motwani99]	[Charikar03]	[Andoni-Indyk	06]	[Shrivastava-Li15]
[Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt15]	

•  Path	sampling:	[Cohen-Lewis99]	[Schank-Wagner	06][S-
Pinar-Kolda	13]	[Kolda-Pinar-Plantenga-S-Task	14]	[Zadeh-
Goel	15]	[Ballard-Kolda-Pinar-S	15]	

Previous	art	
•  Exact	matrix	mult:	[BLAS,	Csparse]	
•  Approx	matrix	mult,	using	low	rank	
approximation:	[Drineas-Kannan-Mahoney	06]	[Sarlos	
06][Belabbas-Wolfe	08]		

•  Random	projections,	(Asym)	LSH	[Indyk-
Motwani99]	[Charikar03]	[Andoni	et	al	06]	[Shrivastava-Li15]	

•  Path	sampling:	[Cohen-Lewis99]	[Zadeh-Goel	15]	[Ballard	
et	al	15]	

Too	much	
communication!	

	
	Philosophers	and	psychiatrists	should	explain	

why	it	is	that	we	mathematicians	are	in	the	
habit	of	systematically	erasing	our	footsteps…	
	 	 	 	 	 	 	 	 	 	-	Gian-Carlo	Rota	

	
	
I’ll	tell	you	about	an	erased	footstep.	
	
	
	

The	Twitter	problem	

The	Twitter	problem	

•  Users	with	large	intersections	of	followers	
tend	to	be	“similar”	

The	Twitter	problem	

•  Cosine	similarity	is	“normalized	intersection”	

vi	

vj	

The	Twitter	problem	

•  Domain	studies	show	similarities	of	0.15	–	0.2	
matter	

•  15%	of	my	followers	follow	you.	We	need	to	
know	

vi	

vj	

The	similarity	threshold	

•  Most	literature	on	low	dimensional	
projections/hashing/nearest	neighbor	for	on	
sim	>	0.8	

•  In	recommendations,	similarities	around	
0.1-0.3	matter	

Real	recommendations	

The	quadratic	bottleneck	

•  To	find	similarities	of	τ,	you	need	1/τ2	work	or	
communication	(or	pain)	

•  A	well-engineered	solution	for	τ	=	0.9	fails	
miserably	for	τ	=	0.2		(20X	more	pain)	

Our	real	contribution	

•  Theorem:	To	find	similarities	of	τ,	WHIMP	
requires	communication/shuffle	

	
	(τ-1	log	n)	(#	pairs	with	sim	>	τ)		

		+	(τ-2	log	n)	(nnz(A))	
	
	
•  In	previous	methods,	the	τ-1		and	τ-2	terms	
multiply	larger	quantities	

	
		

lower	bound	
on	output	
	
typically	large	

The	distributed	framework	

•  Synchronous	communication	along	edges	(can	
be	simulated	in	MR)	

•  Total	communication	is	shuffle	cost	

v1	v2	v3	 vn	

r	
i	

Ari	

Wedge	sampling	

•  [Cohen-Lewis	99],	[Schank-Wagener	06],	[S-Pinar-Kolda	
13],	[Zadeh-Goel	16]		

•  nnz(A)	time	preprocessing	
•  In	O(1)	time,	generates	wedge	(i,	r,	j)	
•  Pr[wedge	with	ends	i,j]	proportional	to	vi	.	vj	

v1	v2	v3	 vn	

r	
i	

j	

Wedge	sampling	

•  Weight	of	path	(i,r,j)	=	Ari	Arj	
•  Sum	over	paths	from	i	to	j	=	Σr	Ari	Arj	=	vi	.	vj	
•  Sample	path	proportional	to	weight;	
probability	of	getting	(i,j)	prop.	to		vi	.	vj	
– Non-negativity	used!	

r	
i	

Arj	

j	

Ari	

AT
	

A	

Cohen-Lewis	trick	

•  Preprocess	to	compute	wr	=	Σi	Ari		
•  Build	data	structure	to	sample	r	prop.	to	wr	

r	

j	

Ari	
AT

	
A	

Cohen-Lewis	trick	

•  Preprocess	to	compute	wr	=	Σi	Ari		
•  Build	data	structure	to	sample	r	prop.	to	wr	

•  Pick	i	w.p.	Ari/wr	,	and	repeat	to	get	j	
•  Output	(i,j)	

r	

j	

Ari	

AT
	

A	

i	

Wedge	sampling	

•  [Cohen-Lewis	99],	[Schank-Wagener	06],	[S-Pinar-Kolda	
13],	[Zadeh-Goel	16]		

•  nnz(A)	time	preprocessing	
•  In	O(1)	time,	generates	wedge	(i,	r,	j)	
•  Pr[wedge	with	ends	i,j]	proportional	to	vi	.	vj	

v1	v2	v3	 vn	

r	
i	

j	

Distributed	wedge	sampling	

•  [Zadeh-Goel	15]	DISCO:	Frequent	“candidates”	tend	
to	be	large	entries	of	product	matrix	

•  Requires	shuffle/communication	of	all	wedges	

i	

j	

i	

j	

i’	

j’	

i’’	

j’’	
i	

j	
i	

j	

Distributed	wedge	sampling	

•  Frequent	“candidates”	tend	to	be	large	entries	
of	product	matrix	

•  Requires	shuffle/communication	of	all	wedges	

i	

j	

i	

j	

i’	

j’	

i’’	

j’’	
i	

j	
i	

j	

So	how	may	wedges	do	we	need	to	catch	
all	vi	.	vj	>	τ?	

How	many	wedges?	

Sum	of	all	
dot	products/similarities	

r	
i	

j	

Pr[wedge	with	i,j]	
proportional	to	vi	.	vj	

How	many	samples?	

We	only	want	large	entries	in	ATA	
But	#	wedge	samples	is	linear	in	|ATA|	

Suppose	vi.vj	=	τ	

Signal	vs	noise	

Large	vi	.	vj	 Small	vi	.	vj	

Signal	vs	noise	

•  Too	many	small	entries	“drown”	out	the	few	
large	entries	

•  Most	of	the	communication	is	noise	

Large	vi	.	vj	 Small	vi	.	vj	

How	many	samples?	

Suppose	vi.vj	=	τ	

Some	numbers	

Shuffle	=	(10|ATA|/0.2)	X	16	bytes	

TB	shuffle	

Single	round	of	MR	can	handle	<	150TB	
	
No	systems	solution	for	flock	

Wedge	sampling	

•  [Zadeh-Goel	15]	DISCO:	Frequent	“candidates”	tend	
to	be	large	entries	of	product	matrix	

•  Requires	shuffle/communication	of	all	wedges	

i	

j	

i	

j	

i’	

j’	

i’’	

j’’	
i	

j	
i	

j	

Pruning	with	oracle	

i	

j	
What	is	
vi.	vj?	

vi.	vj	>	τ		

Pruning	with	oracle	

What	is	
vi’.	vj’?	

vi’.	vj’	<	τ		

i’	

j’	

Eventually	

i	

j	

Only	wedges	with	vi	.	vj	>	τ		are	actually	
communicated!	

i’	

j’	

But	isn’t	designing	the	oracle	the	
problem	itself?	

A	reminder	

i	

j	

v1	v2	v3	 vn	

vi	

vj	

Something	obvious	

vi	 vj	
vi	

vk	

vj	

vk	

If	the	green	node	“knows”	all	the	vectors,	it	can	construct	
the	oracle.	
But	that’s	just	exact	multiplication!	
	

Something	not	obvious	

vi	 vj	
vi	

vk	

vj	

vk	

Green	node	collects	“sketches”,	and	simulates	oracle	using	
them	
	

1011110	

1000100	

0011011	

Compression	

SimHash	[Charikar	03]	

•  Single	bit	hash	=	sign	of	dot	product	
•  Pr[h(vi)	=	h(vj)]	=	1-	θ/π	

vi	

vj	

h(vi)	=	1	
h(vj)	=	0	

θ	

The	hashing	scheme	

•  Rinse	and	repeat	k	times	

vi	

vj	

h(vi)	=	

θ	

h(vj)	=	
1

0

The	hashing	scheme	

•  Rinse	and	repeat	k	times	

vi	

vj	

h(vi)	=	

θ	

h(vj)	=	
1

0

1

1

The	hashing	scheme	

•  Δ	is	binomial	B(k,	θ/π)	
–  If	vi	,	vj	are	orthogonal,	Δ	is	B(k,1/2)	

•  (Roughly)	Δ	≈	kθ/π	
•  cos(πΔ/k)	≈	cos(θ)	

vi	

vj	

h(vi)	=	

θ	

h(vj)	=	
1

0

1

1

0

1

Hamming	distance	Δ	
is	measure	of	angle		

Choosing	the	hash	length	

•  [Chernoff	bound]	Binomial	tails	
•  Require	1/τ2	flips	to	distinguish	

•  Need	hash	of	length	1/τ2	to	determine	similarities	
around	τ	

vi	

vj	

h(vi)	=	
h(vj)	=	

1

0

1

1

0

1

Hamming	distance	Δ	
is	measure	of	angle		

Δ	is	B(k,1/2)	

vi	

vj	
(π/2)(1-τ)	

Δ	is	B(k,1/2	– τ/2)	

cos	=	0	 cos	≈	τ	

Generating	SimHashes	

i	

•  Sending	independent	Gaussian	for	each	bit	is	expensive	
•  We	use	pseudorandom	seeded	Gaussians	to	reduce	

communication	

vi	

WHIMP	=	Wedge	Sampling	+	
SimHash	(Hashes)	

WHIMP,	Round	1:	Hashing	

i	

j	

vi	

vj	

•  Each	processor	on	right	computes	h(vi)	
•  Using	pseudorandom	generators,	O(nnz(A))	communication	

010101110	

110001010	

h(vi)	

h(vj)	

WHIMP,	Round	2:	Getting	hashes	

•  Each	vertex	on	left	collects	relevant	hashes	
•  All	edges	send	a	hash	
•  Communication	=	O(τ-2	nnz(A)	log	n)	

010101110	

110111010	

000110010	

101101100	

WHIMP,	Round	3:	The	Wedges	

•  Only	output	wedges	that	give	similar	vectors!	
•  Comm	=	(#	τ-similar	pairs)	X	(τ	log	n)	

010101110	

110111010	

000110010	

101101100	

i	

j	

010101110	

000110010	

h(vi)	

h(vj)	

From	hashes,	
estimate	vi.vj	

<	τ	 >	τ	

Ignore	 Output	

Some	work	required	

•  Careful	choice	of	parameters	to	get	it	to	work	
in	practice	

Similar	pairs	output	
Hashes	

Evaluations	

•  Hard	to	validate!	
•  Stratified	sample	of	vectors	by	degree	(sparsity)	

–  1000	vectors	for	degree	in	[10i,	10i+1]	
–  Full	similarity	compute	for	all	of	them	

Major	caveat!	

•  Prune	all	high	degree	vertices	on	left	
–  Removing	spammers,	or	those	that	follow	too	many	
–  Removes	<	5%	of	edges	in	real	instances	

•  Removing	dimensions	that	participate	in	too	many	
vectors	

•  Reduces	skew	in	communication	

Total	shuffle:	τ	=	0.2	

Infeasible	to	feasible	

Communication	

Infeasible	to	feasible	

About	9X	overhead	
over	optimum	

Precision-recall	curves:	τ	=	0.2,	0.4		

•  Vary	σ	for	precision-recall	curves	
From	hashes,	
estimate	vi.vj	

<	σ		 >	σ		

Ignore	 Output	

Miles	to	go	before	I	sleep…	

The	skew	problem?	

•  Communication	to	node:	O(d	X	hash	size)	
– O(d	τ-1log	n),	can	be	too	much	

•  Alternate	scheme	to	bound	max	
communication?	

010101110	

110111010	

000110010	

101101100	

1KB	d	=	106	
	

Comm		
=	106	KB	
=	1	GB		
	
	

Minhash	alternative?		

•  1KB	(≈	8000	bits)	sketch	barely	distinguishes	0	
from	0.1	

•  Better	sketches?	Even	saving	½	in	length	
would	be	useful	

vi	

vj	

Δ	is	B(k,1/2)	

vi	

vj	
(π/2)(1-τ)	

Δ	is	B(k,1/2	– τ/2)	

cos	=	0	 cos	≈	τ	

Uses	of	non-negativity?		

•  Power	of	Cohen-Lewis	trick	
•  [Andoni-Razenshteyn	15,	16]	Data	dependent	hashing	
– Using	low	dimensional	structure	

r	
i	

Arj	

j	

Ari	

AT
	

A	

Finding	large	entries	in	matrix	
product?		

•  Find	all	large	entries	in	product	AB	(or	ATA)	
•  What	is	the	complexity	of	this	problem?	
– Fine-grained	complexity	anyone?	

Takeaways	

•  Similarity	search/nearest	neighbor	is	
extremely	relevant	when	sim	values	are	closer	
to	0	than	1	
– And	it	is	hard	

•  WHIMP	deals	with	this	regime	using	wedge	
sampling	and	hashing	

•  Big	data	required	(minor?)	rethink	
•  Systems	solutions	don’t	always	work	

Evaluations	

•  Hard	to	validate!	
•  Stratified	sample	of	vectors	by	degree	(sparsity)	

–  1000	vectors	for	degree	in	[10i,	10i+1]	
–  Full	similarity	compute	for	all	of	them	

•  Precision:	is	everything	output	similar?	
•  Recall:	does	algorithm	output	all	similar	pairs?	

Per-user	results:	τ	=	0.2	

•  Accurate	for	most	users	
–  Important	for	recommendation	applications	

WHIMP,	Round	3:	The	Wedges	

•  Normally,	σ	=	τ	
•  Vary	σ	for	precision-recall	curves	

010101110	

110111010	

000110010	

101101100	

i	

j	

010101110	

000110010	

h(vi)	

h(vj)	

From	hashes,	
estimate	vi.vj	

<	σ		 >	σ		

Ignore	 Output	

