When Hashes Met Wedges: A Distributed Algorithm for Finding High Similarity Vectors

Aneesh Sharma C. So Google UC S

Google

C. Seshadhri UC Santa Cruz

Ashish Goel Stanford U

This is based on a true story

The application is real

Big data → Theory → Practice

- Fundamental for link prediction and recommendation
- [Goel et al 13][Gupta et al 13] Key feature in Who To Follow engine at Twitter
 - Common representations are non-negative

- Given n non-negative unit vectors in R^d and threshold τ, find all pairs (**u**,**v**) such that **u**.**v** > τ
- In A^TA , find all entries > τ

- WHIMP (Wedges and Hashes In Matrix Prod.)
 Distributed (MR) algorithm for finding similar vectors
 - Theoretically "near-optimal" total shuffle/comm
 - Practically viable. Works on nnz(A) = O(100B)
 without killing cluster

The distributed framework

- Synchronous communication along edges (can be simulated in MR)
- Total communication is shuffle cost

Previous art

- Exact matrix mult: [BLAS, Csparse]
- Approx matrix mult, using low rank approximation: [Drineas-Kannan-Mahoney 06] [Sarlos 06][Belabbas-Wolfe 08]
- Random projections, (Asym) LSH [Indyk-Motwani99] [Charikar03] [Andoni-Indyk 06] [Shrivastava-Li15] [Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt15]
- Path sampling: [Cohen-Lewis99] [Schank-Wagner 06][S-Pinar-Kolda 13] [Kolda-Pinar-Plantenga-S-Task 14] [Zadeh-Goel 15] [Ballard-Kolda-Pinar-S 15]

Philosophers and psychiatrists should explain why it is that we mathematicians are in the habit of **systematically erasing our footsteps**... - Gian-Carlo Rota

I'll tell you about an erased footstep.

The Twitter problem

The Twitter problem

 Users with large intersections of followers tend to be "similar"

Cosine similarity is "normalized intersection"

The Twitter problem V_i $S \cap T$ |S||T|Vj

- Domain studies show similarities of 0.15 0.2 matter
- 15% of my followers follow you. We need to know

The similarity threshold

- Most literature on low dimensional projections/hashing/nearest neighbor for on sim > 0.8
- In recommendations, similarities around 0.1-0.3 matter

Real recommendations

Users similar to @www2016ca

Rank	Twitter @handle	Score
1	@WSDMSocial	0.268
2	@WWWfirenze	0.213
3	@SIGIR2016	0.190
4	@ecir2016	0.175
5	@WSDM2015	0.155

Users similar to @duncanjwatts

Rank	Twitter @handle	Score
1	@ladamic	0.287
2	@davidlazer	0.286
3	@barabasi	0.284
4	@jure	0.218
5	@net_science	0.200

The quadratic bottleneck

- To find similarities of τ , you need $1/\tau^2$ work or communication (or pain)
- A well-engineered solution for $\tau = 0.9$ fails miserably for $\tau = 0.2$ (20X more pain)

Our real contribution

Theorem: To find similarities of τ, WHIMP requires communication/shuffle

lower bound on output

 $(\tau^{-1} \log n)$ (# pairs with sim > τ) + $(\tau^{-2} \log n)$ (nnz(A))

typically large

• In previous methods, the τ^{-1} and τ^{-2} terms multiply larger quantities

The distributed framework

- Synchronous communication along edges (can be simulated in MR)
- Total communication is shuffle cost

- [Cohen-Lewis 99], [Schank-Wagener 06], [S-Pinar-Kolda 13], [Zadeh-Goel 16]
- nnz(A) time preprocessing
- In O(1) time, generates wedge (i, r, j)
- Pr[wedge with ends i,j] proportional to v_i. v_i

- Weight of path (i,r,j) = A_{ri} A_{rj}
- Sum over paths from i to $j = \Sigma_r A_{ri} A_{rj} = v_i \cdot v_j$
- Sample path proportional to weight; probability of getting (i,j) prop. to v_i. v_j – Non-negativity used!

- Preprocess to compute $w_r = \Sigma_i A_{ri}$
- Build data structure to sample r prop. to w_r

Cohen-Lewis trick

- Preprocess to compute $w_r = \Sigma_i A_{ri}$
- Build data structure to sample r prop. to w_r
- Pick i w.p. A_{ri}/w_r , and repeat to get j
- Output (i,j)

- [Cohen-Lewis 99], [Schank-Wagener 06], [S-Pinar-Kolda 13], [Zadeh-Goel 16]
- nnz(A) time preprocessing
- In O(1) time, generates wedge (i, r, j)
- Pr[wedge with ends i,j] proportional to v_i. v_i

- [Zadeh-Goel 15] DISCO: Frequent "candidates" tend to be large entries of product matrix
- Requires shuffle/communication of all wedges

Distributed wedge sampling :// ;*י*י

So how may wedges do we need to catch all $v_i \cdot v_j > \tau$?

How many samples?

$$\mathbf{Pr}[\text{wedge with } (i,j)] = \frac{v_i \cdot v_j}{\|A^T A\|_1}$$

Suppose $v_i \cdot v_j = \tau$ #samples $\approx \frac{10 \|A^T A\|_1}{\tau}$

We only want large entries in $A^T A$ But # wedge samples is linear in $|A^T A|$

Signal vs noise

Signal vs noise

- Too many small entries "drown" out the few large entries
- Most of the communication is noise

How many samples?

$$\mathbf{Pr}[\text{wedge with } (i,j)] = \frac{v_i \cdot v_j}{\|A^T A\|_1}$$

Suppose $v_i \cdot v_j = \tau$ #samples $\approx \frac{10 \|A^T A\|_1}{\tau}$

Some numbers

TB shuffle

Dataset	Dimensions $n = d$	Size (nnz)	$ A^TA _1$		
friendster	65M	1.6B	7.2E9	26.2	
clueweb	978M	42B	6.8E10	247.4	
eu	1.1B	84B	1.9E11	691.2	
flock	-	O(100B)	$5.1\mathrm{E}12$	18553.7	

Shuffle = $(10|A^{T}A|/0.2) \times 16$ bytes

Single round of MR can handle < 150TB

No systems solution for flock

Wedge sampling ://

- [Zadeh-Goel 15] DISCO: Frequent "candidates" tend to be large entries of product matrix
- Requires shuffle/communication of all wedges

Pruning with oracle

Pruning with oracle i' $v_{i'}$. $v_{i'} < \tau$ What is v_{i'}. v_{i'}?

communicated!

But isn't designing the oracle the problem itself?

 V_j

Something obvious

If the green node "knows" all the vectors, it can construct the oracle. But that's just exact multiplication!

Green node collects "sketches", and simulates oracle using them

SimHash [Charikar 03]

- Single bit hash = sign of dot product
- $\Pr[h(v_i) = h(v_j)] = 1 \theta/\pi$

The hashing scheme

• Rinse and repeat k times

The hashing scheme

• Rinse and repeat k times

The hashing scheme

θ

Vi

Hamming distance Δ is measure of angle

- Δ is binomial B(k, θ/π)
 - If v_i , v_j are orthogonal, Δ is B(k,1/2)
- (Roughly) $\Delta \approx k\theta/\pi$
- $\cos(\pi\Delta/k) \approx \cos(\theta)$

Choosing the hash length

Hamming distance Δ is measure of angle

- [Chernoff bound] Binomial tails
- Require 1/τ² flips to distinguish
- Need hash of length $1/\tau^2$ to determine similarities around τ

Generating SimHashes

- Sending independent Gaussian for each bit is expensive
- We use pseudorandom seeded Gaussians to reduce communication

WHIMP = Wedge Sampling + SimHash (Hashes)

WHIMP, Round 1: Hashing

- Each processor on right computes h(v_i)
- Using pseudorandom generators, O(nnz(A)) communication

WHIMP, Round 2: Getting hashes

- Each vertex on left collects relevant hashes
- All edges send a hash
- Communication = $O(\tau^{-2} nnz(A) \log n)$

- Only output wedges that give similar vectors!
- Comm = ($\# \tau$ -similar pairs) X ($\tau \log n$)

Some work required

THEOREM 4.1. Given input matrices A, B and threshold τ , denote the set of index pairs output by WHIMP algorithm by S. Then, fixing parameters $\ell = \lceil c\tau^{-2} \log n \rceil$, $s = (c(\log n)/\tau)$, and $\sigma = \tau/2$ for a sufficiently large constant c, the WHIMP algorithm has the following properties with probability at least $1 - 1/n^2$.

• [Recall] If $(A^T B)_{a,b} \ge \tau$, (a,b) is output. • [Precision] If (a,b) is output. $(A^T B)_{a,b} \ge \tau/4$.

• The total computation cost is $O(\tau^{-1} || A^T B ||_1 \log n + \tau^{-2} (\operatorname{nnz}(A) + \operatorname{nnz}(B)) \log n).$

• The total communication cost is $O((\tau^{-1}\log n) || [A^T B]_{\geq \tau/4} ||_1$

 $+ au^{-2}(\mathrm{nnz}(A) + \mathrm{nnz}(B))\log n + m + n).$ Similar pairs output

Hashes

 Careful choice of parameters to get it to work in practice

Evaluations

Dataset	$\ \ \text{Dimensions} \ n=d$	Size (nnz)	$ A^TA _1$
friendster	65M	1.6B	7.2E9
clueweb	978M	42B	6.8E10
eu	1.1B	84B	1.9E11
flock	-	O(100B)	$5.1\mathrm{E}12$

- Hard to validate!
- Stratified sample of vectors by degree (sparsity)
 - 1000 vectors for degree in $[10^i, 10^{i+1}]$
 - Full similarity compute for all of them

- Prune all high degree vertices on left
 - Removing spammers, or those that follow too many
 - Removes < 5% of edges in real instances
- Removing dimensions that participate in too many vectors
- Reduces skew in communication

Total shuffle: $\tau = 0.2$

Dataset	WHIMP (TB)	DISCO est. (TB)
friendster	4.9	26.2
clueweb	90.1	247.4
eu	225.0	691.2
flock	287.0	18553.7

Infeasible to feasible

Communication

Dataset	WHIMP (TB)	DISCO est. (TB)
friendster	4.9	26.2
clueweb	90.1	247.4
eu	225.0	691.2
flock	287.0	18553.7

Infeasible to feasible

Precision-recall curves: $\tau = 0.2, 0.4$

• Vary σ for precision-recall curves

Miles to go before I sleep...

- Communication to node: O(d X hash size)
 O(d τ⁻¹log n), can be too much
- Alternate scheme to bound max communication?

Minhash alternative?

- 1KB (≈ 8000 bits) sketch barely distinguishes 0 from 0.1
- Better sketches? Even saving ½ in length would be useful

- Power of Cohen-Lewis trick
- [Andoni-Razenshteyn 15, 16] Data dependent hashing
 - Using low dimensional structure

- Find all large entries in product AB (or A^TA)
- What is the complexity of this problem?
 - Fine-grained complexity anyone?

Takeaways

 Similarity search/nearest neighbor is extremely relevant when sim values are closer to 0 than 1

– And it is hard

- WHIMP deals with this regime using wedge sampling and hashing
- Big data required (minor?) rethink
- Systems solutions don't always work

Evaluations

Dataset	$\ \ \text{Dimensions} \ n=d$	Size (nnz)	$ A^TA _1$
friendster	65M	1.6B	7.2E9
clueweb	978M	42B	6.8E10
eu	1.1B	84B	1.9E11
flock	-	O(100B)	$5.1\mathrm{E}12$

- Hard to validate!
- Stratified sample of vectors by degree (sparsity)
 - 1000 vectors for degree in $[10^i, 10^{i+1}]$
 - Full similarity compute for all of them
- Precision: is everything output similar?
- Recall: does algorithm output all similar pairs?

Per-user results: $\tau = 0.2$

Accurate for most users

 Important for recommendation applications

- Normally, $\sigma = \tau$
- Vary σ for precision-recall curves