When Hashes Met Wedges: A
Distributed Algorithm for Finding
High Similarity Vectors

Aneesh Sharma C. Seshadhri Ashish Goel
Google UC Santa Cruz Stanford U

This is based on a true story

The application is real

And now
for something
completely different...

Big data =» Theory =»Practice

Here’s an awesome new
algorithm for problem P.

2X faster than previous
work!

| just bought a
bigger cluster with
5X memory.

I’ll just use my old
codes.

The problem

* Given n non-negative
vectors in RY,

find all “similar” pairs

sim(u,v) = cos 6

/u%v (or sim(u,v) =u.v)

Why?

 Fundamental for link prediction and
recommendation

» [Goel et al 13][Gupta et al 13] Key feature in Who To
Follow engine at Twitter

— Common representations are non-negative

Formally...

* Given n hon-negative unit vectors in Rd
and threshold T,
find all pairs (u,v) such thatu.wv>rt

* |[n ATA, find all entries >t

The challenge

| need help!

—>

l ! No existing algorithm works when

A n=d=1B and nnz(A) > 10B

/ There is no systems solution

\

WHIMP

* WHIMP (Wedges and Hashes In Matrix Prod.)
Distributed (MR) algorithm for finding similar

vectors

— Theoretically “near-optimal” total shuffle/comm
— Practically viable. Works on nnz(A) = O(100B)

without killing cluster

The distributed framework

VARVARVA v

OO
OO

e Synchronous communication along edges (can
be simulated in MR)

e Total communication is shuffle cost

Previous art

Exact matrix mult: [BLAS, Csparse]

Approx matrix mult, using low rank

approximation: [Drineas-Kannan-Mahoney 06] [Sarlos
06][Belabbas-Wolfe 08]

Random projections, (Asym) LSH [Indyk-
Motwani99] [Charikar03] [Andoni-Indyk 06] [Shrivastava-Li15]
[Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt15]

Path sampling: [Cohen-Lewis99] [Schank-Wagner 06][S-
Pinar-Kolda 13] [Kolda-Pinar-Plantenga-S-Task 14] [Zadeh-
Goel 15] [Ballard-Kolda-Pinar-S 15]

Too much
communication! 2va-Li15]

Ballard

Philosophers and psychiatrists should explain
why it is that we mathematicians are in the
habit of systematically erasing our footsteps...

- Gian-Carlo Rota

I’ll tell you about an erased footstep.

The Twitter problem ,

The Twitter problem

e Users with large intersections of followers
tend to be “similar”

The Twitter problem

SNT

VISIIT]

Vi
O ,
)/)

e Cosine similarity is “normalized intersection”

The Twitter problem

SNT]

VISIIT]

Vi
)/ vj

e Domain studies show similarities of 0.15 - 0.2
matter

* 15% of my followers follow you. We need to
know

The similarity threshold

* Most literature on low dimensional
projections/hashing/nearest neighbor for on

sim > 0.8

* |n recommendations, similarities around
0.1-0.3 matter

Real recommendations

Users similar to @Qwww2016ca

Rank | Twitter @handle Score
1 QWSDMSocial 0.268
2 QW W Wfirenze 0.213
3 QSIGIR2016 0.190
4 Qecir2016 0.175
5 QWSDM2015 0.155

Users similar to @Qduncanjwatts

Rank | Twitter Qhandle Score
1 @ladamic 0.287
2 Qdavidlazer 0.286
3 @barabasi 0.284
4 Qjure 0.218
5 0.200

@net_science

— — — —— — i~

The quadratic bottleneck

* To find similarities of T, you need 1/t? work or
communication (or pain)

* A well-engineered solution for t = 0.9 fails
miserably for t=0.2 (20X more pain)

Our real contribution

* Theorem: To find similarities of T, WHIMP

requires communication/shuffle
lower bound

(T log n)|(# pairs with sim > 1) on output

-2
+ ('[|Og n) nnz(A typlca||y |ar8e

* |n previous methods, the T and t2terms
multiply larger quantities

The distributed framework

VARVARVA v

OO
OO

e Synchronous communication along edges (can
be simulated in MR)

e Total communication is shuffle cost

Wedge sampling

ViV, Vg vV, (\ (\
r 0:/'
\\. |

V V

e [Cohen-Lewis 99], [Schank-Wagener 06], [S-Pinar-Kolda
13], [Zadeh-Goel 16]

* nnz(A) time preprocessing
* |In O(1) time, generates wedge (i, r, j)
* Pr[wedge with ends i,j| proportional to v;. v,

Wedge sampling
AT 1 \A

ri r

\>)j

e

V V V
* Weight of path (i,r,j) = A; A,
* Sum over paths fromitoj=2 A ;A;=V;.V,
 Sample path proportional to weight;
probability of getting (i,j) prop. to v;. v,
— Non-negativity used!

Cohen-Lewis trick

ATN A, A

-

— ®

7

V V V

* Preprocess to compute w, =2, A,

* Build data structure to sample r prop. to w,

Cohen-Lewis trick

| | ta

V y V

* Preprocess to compute w, =2, A,

* Build data structure to sample r prop. to w,
* Pickiw.p.A./w_, and repeat to get j

e Qutput (i,j)

Wedge sampling

ViV, Vg vV, (\ (\
r 0:/'
\\. |

V V

e [Cohen-Lewis 99], [Schank-Wagener 06], [S-Pinar-Kolda
13], [Zadeh-Goel 16]

* nnz(A) time preprocessing
* |In O(1) time, generates wedge (i, r, j)
* Pr[wedge with ends i,j| proportional to v;. v,

Distributed wedge sampling

Rg
=
=

=l |,

» [Zadeh-Goel 15] DISCO: Frequent “candidates” tend
to be large entries of product matrix

* Requires shuffle/communication of all wedges

Distributed wedge sampling

%
-
CJ
-

vARY

So how may wedges do we need to catch

all v; . v, > 17

How many wedges?

/\ /\ ~ Pr[wedge with i,j]
o | | .
T proportional tov,. V,

Vi Vs

Pr|wedge with (¢, 7)] = v
25 Vi " Vi

Sum of all vs Uj

dot products/similarities

How many samples?

Vi Vj
Pr|{wedge with (2, 7 =
| GBI = aral,
Suppose v;.v, = T
10||AT Al|

#samples ~
.

We only want large entries in ATA
But # wedge samples is linear in |ATA]

Signal vs noise

|

/\

Large v;. v, Small v; . v,

Signal vs noise

/\

Large v;. v, Small v; . v,

* Too many small entries “drown” out the few
large entries

e Most of the communication is noise

How many samples?

IU. . rU
Pr|wedge with (2, 9 =
Suppose v;.v, = T
10||AT Al|

#samples ~
.

Some numbers

TB shuffle

26.2

247.4

691.2

Dataset Dimensions n = d | Size (nnz) | |AT A,
friendster 656M 1.6B 7.2E9
clueweb 978M 42B 6.8E10
eu 1.1B 84B 1.9E11
flock - O(100B) | 5.1E12

18553.7

Shuffle = (10| ATA|/0.2) X 16 bytes

Single round of MR can handle < 150TB

No systems solution for flock

Wedge sampling

Rg
=
=

=l |,

» [Zadeh-Goel 15] DISCO: Frequent “candidates” tend
to be large entries of product matrix

* Requires shuffle/communication of all wedges

Eventually

Only wedges with v;. v, >T are actua
communicated!

But isn’t designing the oracle the
problem itself?

ViV V3

A reminder

:
:

Something obvious

Y V2

If the green node “knows” all the vectors, it can construct
the oracle.

But that’s just exact multiplication!

\ /

Something not obvious 3@:

(\ V.
I
Ad f

Compression

° /‘
@

Green node collects “sketches”, and simulates oracle using
them

SimHash [Charikar 03]

* Single bit hash = sign of dot product
* Pr[h(v;) = h(v;)] = 1- 6/m

The hashing scheme

h(v,) =
h(v) =[]

* Rinse and repeat k times

The hashing scheme

* Rinse and repeat k times

h(v;) = | 1] 1
h(Vj)= o] 1

The hashing scheme

h(v;) = | 2| 2| of ===F~

h(Vj)= of 1§ 1] ===}-

Hamming distance A

Vj is measure of angle

 Ais binomial B(k, Gﬁt)

— Ifv;, v, are orthogonal, A is B(k,1/2)
* (Roughly) A = kB/mt
e cos(nA/k) = cos(0)

Choosing the hash length

Vi vV, h(v)) = [2 o] ---}-

Ais B(k,1/2) Ais B(k,1/2 - T/2) h(v)) = o[2| 3] ---}-

Hamming distance A
— (n/2)(1-1) is measure of angle
V. ,

cos=0 COS=T

e [Chernoff bound] Binomial tails

* Require 1/t flips to distinguish

* Need hash of length 1/t% to determine similarities
around t

Generating SimHashes

1

N

L
y
Z M; rg'r

* Sending independent Gaussian for each bit is expensive

* We use pseudorandom seeded Gaussians to reduce
communication

WHIMP = Wedge Sampling +
SimHash (Hashes)

WHIMP, Round 1: Hashing

h(v,)

Q ‘ [ozoroiiio]
(0
O]
|
|
d
|

h(v)

Y Y

* Each processor on right computes h(v,)
* Using pseudorandom generators, O(nnz(A)) communication

WHIMP, Round 2: Getting hashes

010101110
110111010

000110010
101101100

e Each vertex on left collects relevant hashes

S

/]

* All edges send a hash
* Communication = O(t2 nnz(A) log n)

<

P, Round 3: The Wedges

/\ i)
—1 '<:j)
\ From hashes,

estimate v,.v,

WHI

4

o

R

<T >T

g

Ignore Output

* Only output wedges that give similar vectors!
e Comm = (# t-similar pairs) X (t log n)

Some work required

THEOREM 4.1. Given input matrices A, B and threshold
T, denote the set of index pairs output by WHIMP algo-
rithm by S. Then, firing parameters £ = [ct ?logn], s =
(c(logn)/T), and o = 7/2 for a sufficiently large constant
c, the WHIMP a,lgomthm has the following properties with

e The total computation cost is

AT 13
O(’T_ ||A Bll1logn 172
(nnz(A) +nnz(B))logn).
o The total communication cost is Ot~ logn)||[A” B>+ /4ll1
_Q(HHZ(A) + nnz(B)) lognf+-m +n). Similar pairs output

Hashes

* Careful choice of parameters to get it to work
In practice

Evaluations

Dataset Dimensions n = d | Size (nnz) | |[ATA|
friendster 65M 1.6B 7.2E9
clueweb 978M 428 6.8E10
eu 1.1B 848 1.9E11
flock i O(100B) | 5.1E12

e Hard to validate!

e Stratified sample of vectors by degree (sparsity)
— 1000 vectors for degree in [10', 10™1]
— Full similarity compute for all of them

Major caveat!

N

s

\

Prune all high degree vertices on left
— Removing spammers, or those that follow too many
— Removes < 5% of edges in real instances

Removing dimensions that participate in too many
vectors

Reduces skew in communication

Total shuffle: t=0.2

Dataset WHIMP (TB) | DISCO est. (TB)
friendster 4.9 26.2
clueweb 90.1 247.4

eu 225.0 691.2
flock 287.0 18553.7

Infeasible to feasible

Communication

Dataset WHIMP (TB) | DISCO est. (TB)
friendster 4.9 26.2
clueweb 90.1 247.4

eu 225.0 691.2
flock 287.0 18553.7

Infeasible to feasible

=
o

About 9X overhead
over optimum

Communication split-u

o
o3)

O
o

o
I

Fraction of total shuffle

== Output

== Sketches
0.2l= Candidates

ghoendster clueweb eu flock

Dataset

Precision

Precision-recall curves: t=0.2, 0.4

10 Cosine sim > 0.20

0.8/ }
0.6 | — clueweb

0.4/ — €U

02 — flock

|| = friendster

08902 0z 06 o038

Recall

* Vary o for precision-recall curves

1.0

Precision

10 Cosine sim > 0.40

0.8

0.6/ — clueweb

0.4{| — ¢€u

05 — flock

|| = friendster

08902 02 06 08 Lo

Recall

From hashes,
estimate vi.vj

<O >0

lgnore Output

Miles to go before | sleep...

The skew problem?

d =106 /‘%\a. 1KB

. ;
= 10° KB !

- 168 i
()

\/

 Communication to node: O(d X hash size)
— O(d ttlog n), can be too much

e Alternate scheme to bound max
communication?

Minhash alternative?

Communication split-up

Vv o 1.0
i Vi S 08
A 20
Ais B(k,1/2) £0.6
Ais B(k,1/2 -t/2) 2
5 0.4 I
z == Sketches
(r/2)(1-1) = 0.2]== Candidates
] 0 Output
V. H b= — T
> J > VJ g'rPendster clueweb eu flock

cos=0 COS=T Dataset

* 1KB (= 8000 bits) sketch barely distinguishes O
from 0.1

* Better sketches? Even saving % in length
would be useful

Uses of non-negativity?

AT/ | A

: 1 r
| .;\ \)
—1 |]

e

V V V

e Power of Cohen-Lewis trick

- [Andoni-Razenshteyn 15, 16] Data dependent hashing

— Using low dimensional structure

Finding large entries in matrix
product?

* Find all large entries in product AB (or ATA)
 What is the complexity of this problem?

— Fine-grained complexity anyone?

Takeaways

Similarity search/nearest neighbor is
extremely relevant when sim values are closer
toOthan1

— And it is hard

WHIMP deals with this regime using wedge
sampling and hashing

Big data required (minor?) rethink
Systems solutions don’t always work

| DON'T ALWAYS THINK BIG DATA IS
INTERESTING

TES
. b)
’ g
, ,
)
-

| @
BUT WHEN1DO, IT INVOLVES
THEORY

emegenerator.net

Evaluations

Dataset Dimensions n = d | Size (nnz) | |AT A,
friendster 65M 1.6B 7.2E9
clueweb 978M 42B 6.8E10
eu 1.1B 84B 1.9E11
flock i O(100B) | 5.1E12

Hard to validate!

Stratified sample of vectors by degree (sparsity)
— 1000 vectors for degree in [10', 10™1]
— Full similarity compute for all of them

Precision: is everything output similar?

Recall: does algorithm output all similar pairs?

Per-user results: t=0.2

7000 eu: cosine > 0.20 7000 7000___flock: cosine > 0.20 54,
>

3 6000 6000 2 6000/ 6000

S 5000| 5000 3 5000} 5000
()]

£ 4000| 4000 &= 4000} 4000

£ 3000 3000 2 3000| 3000
= IS

= 2000/ 2000 E 2000/ 2000

5 1000} 1000 3 1000} 1000

8007 024 o6 08 19 8002 04 06 08 19
min(precision,recall) min(precision,recall)

 Accurate for most users
— Important for recommendation applications

WHIMP, Round 3: The Wedges

%ﬁ /\ ! h{vi)
-<:j v

—
\\0
\ From hashes,

R

000110010
101101100

110111010
estimate vi.vj

<O >0

g

Ignore Output

* Normally,o=Tt
* Vary o for precision-recall curves

