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What is this tutorial about?

• Using powerful techniques from learning theory to 
design differentially private algorithms
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Why would we want to do that?

x1

x2

xn

Sanitizer

Database D

Information about D

“privacy barrier”
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Why would we want to do that?

x1

x2

xn

Sanitizer

Database D

Information about D

“privacy barrier”

Learning 
Alg

Distribution D
“limited access to 

distribution”

Information about D
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• Connections between learning and DP algorithm 
design first(?) introduced in [BDMN,KLNRS]

Why would we want to do that?
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• Clean, qualitatively strong guarantees brought out 
the potential of differentially private data analysis

• For these strong guarantees, learning-theoretic 
techniques yield nearly-optimal algorithms

Why would we want to do that?
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d attributes per record

D∈({0,1}d)n

Private Counting Query Release

Counting query: What 
fraction of records satisfy 
property q?

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0

Thursday, December 12, 2013



d attributes per record

D∈({0,1}d)n

Private Counting Query Release

Counting query: What 
fraction of records satisfy 
property q? e.g.
q(x) = GiveYouUp ∨ 
LetYouDown?

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0

q(x1) = 0
q(x1) = 1
q(x1) = 1
q(x1) = 1

q(D) = 3/4

Thursday, December 12, 2013



Private Counting Query Release

x1

x2

xn

Sanitizer

D∈({0,1}d)n

Queries Q

a1,...,a|Q|

Accurate if 
|aq - q(D)| ≤ α 
for every q∈Q

• Want to design a sanitizer that is simultaneously 
differentially private and accurate
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Definition:  A (randomized) San is (ε,δ)-differentially private 
if for all neighbors D, D’ and every S⊆Range(San)

Pr[San(D) ∈ S] ≤ eεPr[San(D’) ∈ S] + δ 

x1

x2

x3

xn

San

x1

x2

x’3

xn

San

D D’

D and D’ are neighbors if they differ only on one user’s data

Differential Privacy
[DN,DN,BDMN,DMNS,D]
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Private Counting Query Release

x1

x2

xn

Sanitizer

D∈({0,1}d)n

Queries Q

a1,...,a|Q|

Accurate if 
|aq - q(D)| ≤ α 
for every q∈Q

• Want to design a sanitizer that is simultaneously 
differentially private and accurate

• Want to minimize

• Amount of data required, n for a given Q,d,α

• Running time of the sanitizer
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Private Query Release: 
An Abridged History

• Adding independent noise (Laplace mechanism) 
requires n ≳ |Q|1/2/α
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• Adding independent noise (Laplace mechanism) 
requires n ≳ |Q|1/2/α

• [BLR] gave a sanitizer that requires only                 
n ≳ d log|Q|/α3

• Several important improvements by [DNRRV,DRV,RR]

Private Query Release: 
An Abridged History

Thursday, December 12, 2013



• [HR] introduced the private multiplicative weights 
algorithm, requires only n ≳ d1/2log|Q|/α2

Private Query Release: 
An Abridged History
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• [HR] introduced the private multiplicative weights 
algorithm, requires only n ≳ d1/2log|Q|/α2

• Put in a general framework, with tight analysis by 
[GHRU,GRU,HLM]

• Several improvements for special cases of private 
query release followed 
[GRU,JT,BR,HR,HRS,TUV,CTUW,...]

Private Query Release: 
An Abridged History
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Talk Outline

• Differentially private query release

• A blueprint for private query release

• No-regret algorithms / MW

• Query Release Algorithms

• Offline MW

• Online MW

• Variants

• Faster algorithms for disjunctions via polynomial approx.
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D

A Blueprint for Query Release
Raw DataSanitized (DP) Output
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D

A Blueprint for Query Release
Raw Data

D1

Sanitized (DP) Output
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D

Raw Data

D1

Is D1 
good for Q?

A Blueprint for Query Release
Sanitized (DP) Output
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D

Raw Data

D1

Here’s hint1

A Blueprint for Query Release

Is D1 
good for Q?

(hint1)

Sanitized (DP) Output
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D

Raw Data

(query1)D1

Here’s query1

A Blueprint for Query Release

Is D1 
good for Q?

query1 is a query D1 
answers incorrectly

Sanitized (DP) Output
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D

Raw Data

(query1)D1

Update Alg: U

A Blueprint for Query Release
Sanitized (DP) Output
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D

Raw Data

(query1)D1

D2

Update Alg: U

A Blueprint for Query Release
Sanitized (DP) Output
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D

Raw Data

(query1)D1

D2
(query2)

Update Alg: U

Here’s query2

A Blueprint for Query Release

Is D2 
good for Q?

query2 is a query D2 
answers incorrectly

Sanitized (DP) Output
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D

Raw Data

(query1)D1

D2
(query2)

D3

Update Alg: U

A Blueprint for Query Release
Sanitized (DP) Output
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D

Raw Data

(query1)D1

D2
(query2)

(query3)

(query4)

(OK)

D3

D4

DT

.

..
.
..

Update Alg: U

Yes, approximately!

A Blueprint for Query Release

Is DT 
good for Q?

Sanitized (DP) Output
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D

Raw Data

D1

D2

D3

D4

DT

.

..

Update Alg: U

Yes, approximately!

A Blueprint for Query Release

(query1)

(query2)

(query3)

(query4)

(OK)

.

..

Is DT 
good for Q?

Sanitized (DP) Output
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LET D be the real database
LET D1 be an “initial guess”
FOR t = 1,...,T

LET queryt = argmaxq∈Q q(Dt) - q(D)  
LET Dt+1 = Update(Dt, qt)

A Blueprint for Query Release
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Why did we do this?

• Decomposed the problem into smaller problems

• Fortunately, DP has nice composition properties

• We’ve separated privacy (finding qt) from the task 
of learning the database (updating Dt)

• Means we can choose any update algorithm
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D

Raw Data

D1

D2

D3

D4

D|Q|

.

..

Update Alg: U

Yes, approximately!

A Blueprint for Query Release

(query1)

(query2)

(query3)

(query4)

(OK)

.

..

Is D|Q| 
good for Q?

Sanitized (DP) Output
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Why did we do this?

• (Hopefully) decomposed the problem into T ≪ |Q| 
smaller problems

• Fortunately, DP has nice composition properties

• We’ve separated privacy (finding qt) from the task 
of learning the database (updating Dt)

• Means we can choose any update algorithm
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Talk Outline

• Differentially private query release

• A blueprint for private query release

• No-regret algorithms / MW

• Query Release Algorithms

• Offline MW

• Online MW

• Variants

• Faster algorithms for disjunctions via polynomial approx.
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No-Regret Learning Algorithms

Set of experts X Losses for each expert
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25

Losses for each expert

D1

Distribution over X
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

Distribution over X [0,1]X
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.20 .30 .20 .30D2

Distribution over X [0,1]X

Multiplicative Weights Update [LW] 
D2 = MWU(D1,L1):

D�2(x) = (1− ηL1(x))D1(x)

D2(x) =D�2(x)/
�

x∈X
D�2(x)
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.20 .30 .20 .30D2 L2Loss is <D2,L2>

Distribution over X

0 0 1 0

[0,1]X
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.20 .30 .20 .30D2 L2Loss is <D2,L2>

.23 .32 .15 .32DT LTLoss is <DT,LT>

Distribution over X

0 0 1 0

0 0 0 1

.

.

.

[0,1]X
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.20 .30 .20 .30D2 L2Loss is <D2,L2>

.23 .32 .15 .32DT LTLoss is <DT,LT>

Distribution over X

0 0 1 0

0 0 0 1

.

.

.

[0,1]X

For any distribution D, sequence L1, . . . ,LT ,
T�

t=1

�Dt −D,Lt� ≤
�
T log |X |
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q(D)=3/4

q(x1)=0
q(x2)=1
q(x3)=1
q(x4)=1

Counting query: What 
fraction of records satisfy 
property q? e.g.
q(x) = GiveYouUp ∨ 
LetYouDown

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0

d attributes per record

D∈({0,1}d)n

Counting Queries
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q(D)=3/4

q(x1)=0
q(x2)=1
q(x3)=1
q(x4)=1

Counting query: What 
fraction of records satisfy 
property q? e.g.
q(x) = GiveYouUp ∨ 
LetYouDown

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0

d attributes per record

D∈({0,1}d)n

Counting Queries

D is a distribution on {0,1}d
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q(D)=3/4

q(x1)=0
q(x2)=1
q(x3)=1
q(x4)=1

Counting query: What 
fraction of records satisfy 
property q? e.g.
q(x) = GiveYouUp ∨ 
LetYouDown

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0

d attributes per record

D∈({0,1}d)n

Counting Queries

D is a distribution on {0,1}dq is an indicator vector

Linear query: q(D) = <D, q> 
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.20 .30 .20 .30D2 L2Loss is <D2,L2>

.23 .32 .15 .32DT LTLoss is <DT,LT>

Distribution over X

0 0 1 0

0 0 0 1

.

.

.

[0,1]X

For any distribution D, sequence L1, . . . ,LT ,
T�

t=1

�Dt −D,Lt� ≤
�
T log |X |
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Multiplicative Weights for Query Release

Set of experts X={0,1}d

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 q1Loss is <D1,q1>

.20 .30 .20 .30D2 q2Loss is <D2,q2>

.23 .32 .15 .32DT qTLoss is <DT,qT>

Distribution over X={0,1}d

0 0 1 0

0 0 0 1

.

.

.

Truth table of q in [0,1]X

For any database D, sequence q1, . . . , qT ,
T�

t=1

�Dt −D,qt� ≤
√
Td
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LET D be the real database, viewed as a dist over {0,1}d

LET D1 be the uniform dist on {0,1}d

FOR t = 1,...,T
LET qt = argmaxq∈Q <Dt - D, q>  
LET Dt+1 = MWU(Dt, qt)

A Blueprint for Query Release

D�t+1(x) = (1− ηqt(x))Dt(x)

Dt+1(x) =
D�t+1(x)�

x∈{0,1}d D
�
t+1(x)
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Query Release via MW

• Thm: For any database D sequence q1,...,qT,

√
Td ≥

T�

t=1

�Dt −D, qt�
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Query Release via MW

• Thm: For any database D sequence q1,...,qT,

• If q1,...,qT all satisfy <Dt - D,qt> ≥ α, then we have

√
Td ≥

T�

t=1

�Dt −D, qt� ≥ αT

√
Td ≥

T�

t=1

�Dt −D, qt�
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Query Release via MW

• Thm: For any database D sequence q1,...,qT,

• If q1,...,qT all satisfy <Dt - D,qt> ≥ α, then we have

• If T ≳ d/α2, then <DT - D,q> ≤ α for all of Q 

√
Td ≥

T�

t=1

�Dt −D, qt� ≥ αT

√
Td ≥

T�

t=1

�Dt −D, qt�
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Query Release via MW

• Thm: For any database D sequence q1,...,qT,

• If q1,...,qT all satisfy <Dt - D,qt> ≥ α, then we have

• If T ≳ d/α2, then |<DT - D,q>| ≤ α for all of Q 

√
Td ≥

T�

t=1

�Dt −D, qt� ≥ αT

√
Td ≥

T�

t=1

�Dt −D, qt�

Q is closed under neg.
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LET D be the real database, viewed as a dist over {0,1}d

LET D1 be the uniform dist on {0,1}d

FOR t = 1,...,T=O(d/α2)
LET qt = argmaxq∈Q <Dt - D, q>  
LET Dt+1 = MWU(Dt, qt)

A Blueprint for Query Release
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LET D be the real database, viewed as a dist over {0,1}d

LET D1 be the uniform dist on {0,1}d

FOR t = 1,...,T=O(d/α2)
LET qt = argmaxq∈Q <Dt - D, q>  
LET Dt+1 = MWU(Dt, qt)

A Blueprint for Query Release

Have to make 
this DP
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Finding the “Bad” Queries

• How do I find argmaxq in Q <Dt - D, q> privately? Use 
the exponential mechanism!

• Output q wp proportional to exp(ε0n<Dt - D, q>)

If n ≳ log|Q|/αε0 then whp EM outputs qt s.t.        
<Dt - D, qt> ≥ maxq∈Q <Dt - D, q> - α/2
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LET D be the real database, viewed as a dist on {0,1}d

LET D1 be the uniform distribution on {0,1}d

FOR t = 1,...,T = O(d/α2)
LET qt = q wp proportional to exp(ε0n<Dt - D, q>)
LET Dt+1 = MWU(Dt, qt)

A Blueprint for Query Release
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LET D be the real database, viewed as a dist on {0,1}d

LET D1 be the uniform distribution on {0,1}d

FOR t = 1,...,T = O(d/α2)
LET qt = q wp proportional to exp(ε0n<Dt - D, q>)
LET Dt+1 = MWU(Dt, qt)

A Blueprint for Query Release

Need n≳log|Q|/αε0
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LET D be the real database, viewed as a dist on {0,1}d

LET D1 be the uniform distribution on {0,1}d

FOR t = 1,...,T = O(d/α2)
LET qt = q wp proportional to exp(ε0n<Dt - D, q>)
LET Dt+1 = MWU(Dt, qt)

A Blueprint for Query Release

Thm [DRV]: If ε0 ≤ ε/(8Tlog(1/δ))1/2 ≈ ε/T1/2, then running T 
(adaptively chosen) ε0-DP algorithms satisfies (ε,δ)-DP.

Need n≳log|Q|/αε0
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LET D be the real database, viewed as a dist on {0,1}d

LET D1 be the uniform distribution on {0,1}d

FOR t = 1,...,T = O(d/α2)
LET qt = q wp proportional to exp(εαn<Dt - D, q>/d1/2)
LET Dt+1 = MWU(Dt, qt)

A Blueprint for Query Release

Thm [DRV]: If ε0 ≈ ε/T1/2 ≈ εα/d1/2, then running T (adaptively 
chosen) ε0-DP algorithms satisfies (ε,δ)-DP.

Need             
n≳d1/2log|Q|/α2ε
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Recap

Thm: PMW takes a database D∈({0,1}d)n and a set of 
counting queries Q, satisfies (ε,δ)-DP and, if                                                                              

n ≳ d1/2log|Q|/α2ε,                                                     
it outputs DT such that for every q∈Q,                       

|q(D) - q(DT)| ≤ α
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Optimality?

• PMW achieves a nearly-optimal data requirement 
for this level of generality

• Thm [BUV]: for every sufficiently large s, there is 
a family of s queries Q such that any (ε,δ)-DP 
algorithm that is α-accurate for Q requires         

n ≳ d1/2log|Q|/α2ε
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Recap

Thm: PMW runs in time poly(n,2d,|q1|+...+|q|Q||)

Thm: PMW takes a database D∈({0,1}d)n and a set of 
counting queries Q, satisfies (ε,δ)-DP and, if                                                                              

n ≳ O(d1/2log|Q|/α2ε),                                                     
it outputs DT such that for every q∈Q,                       

|q(D) - q(DT)| ≤ α
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Optimality?

• Private multiplicative weights achieves nearly-
optimal running time for this level of generality

• Thm [U]: any DP algorithm that takes a database 
D∈({0,1}d)n and a set of counting queries Q, runs 

in time poly(n,d,|q1|+...+|q|Q||), and accurately 
answers Q requires n ≳ |Q|1/2                                                   

(assuming secure crypto exists)

• But PMW can be practical! [HLM]
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Talk Outline

• Differentially private query release

• A blueprint for private query release

• No-regret algorithms / MW

• Query Release Algorithms

• Offline MW

• Online MW

• Variants

• Faster algorithms for disjunctions via polynomial approx.
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Online Counting Query Release 

x1

x2

xn

Sanitizer

D∈({0,1}d)n

query1?
answer1

Accurate if 
|aq - q(D)| ≤ α 
for every q∈Q

• Want to design an online sanitizer that is 
simultaneously differentially private and accurate

• Want to minimize

• Amount of data required, n as a function of |Q|,d,α

• Running time of the sanitizer per query

.

..
query|Q|?

answer|Q|
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D

Raw Data

Here’s query1

A Blueprint for Query Release

Is D1 
good for Q?

query1 is a query D1 
answers incorrectly

Family of 
queries Q?

D1

D2

D3

D4

DT

.

..

(query1)

(query2)

(query3)

(query4)

(OK)

.

..

Sanitized (DP) Output
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D

Raw Data

Yes

A Blueprint for Online Query Release

Is D1 
good for q1?

D1
Query q1?

Sanitized (DP) Output
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D

Raw Data

Yes

Is D1 
good for q1?

D1 (OK)Query q1?
q1(D1)

Sanitized (DP) Output

A Blueprint for Online Query Release
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D

Raw Data

No, q2(D2) 
should be q2(D)

Is D1 
good for q2?

D1

D1

(OK)

(q2(D))

Query q1?
q1(D1)

Query q2?
q2(D)

Sanitized (DP) Output

A Blueprint for Online Query Release
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D

Raw Data

No, q2(D2) 
is too low

Is D1 
good for q2?

D1

D1

D2

(OK)Query q1?
q1(D1)

Query q2?
q2(D)

(q2(D))

Sanitized (DP) Output

A Blueprint for Online Query Release
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D

Raw Data

No, qk(Dt) 
is too small

Is Dt 
good for qk?

D1

D1

D2

D3

DT

.

..
(OK)

.

..

Query q1?
q1(D1)

Query q2?
q2(D)

Query q3?
q3(D2)

(OK)

(q2(D))

(OK)

Query q4?
q4(D)

(q4(D))

.

..

Sanitized (DP) Output

A Blueprint for Online Query Release
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D

Raw Data

No, qk(Dt) 
is too small

Is Dt 
good for qk?

D1

D1

D2

D3

DT

.

..
(OK)

.

..

Query q1?
q1(D1)

Query q2?
q2(D)

Query q3?
q3(D2)

(OK)

(q2(D))

(OK)

Query q4?
q4(D)

(q4(D))

.

..

Sanitized (DP) Output

A Blueprint for Online Query Release

Thursday, December 12, 2013



LET D be the real database, viewed as a dist over {0,1}d

LET D1 be the uniform dist on {0,1}d

FOR k = 1,...,|Q|
IF |<Dt - D, qk>| ≤ α THEN answer <Dt, qk> 
ELSE 

answer <D, qk>, Dt+1 = MWU(Dt, qk)
LET t=t+1

A Blueprint for Query Release

T≤d/α2 
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“Threshold” Algorithm

• Suppose we have a stream of queries q1,...,qk and 
promise that there is only a single qi s.t. qi(D)≥α/2

• Then there is an ε0-DP algorithm that whp 
answers every query with accuracy α as long as    
n ≳ log(k)/αε0
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A Blueprint for Online Query Release

D1

D1

D2

D3

DT

.

..
(OK)

.

..

Query q1?
q1(D1)

Query q2?
q2(D)

Query q3?
q3(D2)

(OK)

(q2(D))

(OK)

Query q4?
q4(D)

(q4(D))

.

..

Instance of 
threshold algorithm

Instance of 
threshold algorithm
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Recap

Thm: Runs in time poly(n,2d,|q|) for each query q

Thm: Online PMW takes a database D∈({0,1}d)n and 
an online stream of counting queries Q, satisfies 

(ε,δ)-DP and, if                                                                              
n ≳ d1/2log|Q|/α2ε,                                                     

is α-accurate for all of Q
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Talk Outline

• Differentially private query release

• A blueprint for private query release

• No-regret algorithms / MW

• Query Release Algorithms

• Offline MW

• Online MW

• Variants

• Faster algorithms for disjunctions via polynomial approx.
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Other Applications

• PMW has optimal data requirement and running 
time in the worst case, but better algorithms are 
known for special cases

• Modular design makes it easy to construct new 
algorithms by swapping in different no-regret 
algorithms
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Graph Cuts
[GRU]

• G in (VxV)|E|.  Cut query qS,T(G) asks “What fraction 
of edges cross from S to T?”

• Counting queries on a database D in ({0,1}2log|V|)|E|

• Can reduce the data requirement for some 
settings of parameters by replacing MW with an 
algorithm based on the “cut-decomposition” [FK]

S

T
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Mirror Descent
[JT]

• Replace MW with algorithms from the mirror 
descent family

• Reduces the data requirement when the Lp norm of the 
database and Lq norm of the queries satisfy certain 
relationships

• For PMW, we view the database as a distribution over 
X={0,1}d (L1 norm = 1), we view the query as a vector 
in [0,1]X (L∞ norm = 1)

• Applications to cut queries, matrix queries
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Sparse Queries
[BR]

• Query is sparse if it only accepts S ≪ 2d elements 
from {0,1}d

• Can design an “implicit” implementation of MW 
that keeps track of ~S weights instead of 2d

• Improves running time per query from 2d to ~S

• Also improves the data requirement slightly
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Distance Queries
[HR]

• D in ([0,1]d)n.  Query qx is a point x in [0,1]d and 
asks “What is the average distance between 
points in D and x?”

• Can answer in time poly(n,d) per query using a 
specialized no-regret algorithm for distance 
queries

• Improves data requirement in some cases too
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Talk Outline

• Differentially private query release

• A blueprint for private query release

• No-regret algorithms / MW

• Query Release Algorithms

• Offline MW

• Online MW

• Variants

• Faster algorithms for disjunctions via polynomial approx.
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q(D)=3/4

q(x1)=0
q(x2)=1
q(x3)=1
q(x4)=1

Private Counting Query Release

Counting query: What 
fraction of records satisfy 
property q? e.g.
q(x) = GiveYouUp ∨ 
LetYouDown

x1

x2

xn

Sanitizer

D∈({0,1}d)n

Queries Q

a1,...,a|Q|

Accurate if 
|aq - q(D)| < α 
for every q∈Q

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0

d attributes per record

D∈({0,1}d)n
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Private Counting Query Release

x1

x2

xn

Sanitizer

D∈({0,1}d)n

a1,...,a|Q|

Accurate if 
|aq - q(D)| < .01 
for every q∈Q

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0

d attributes per record

D∈({0,1}d)n
Disjunction query: What 
fraction of records satisfy 
a given monotone k-way 
disjunction qS, |S|≤k?
qS(x) = ∨i∈S xi
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Private Counting Query Release

d attributes per record

D∈({0,1}d)n

•Useful facts:
•Number of k-way disj’s is d-choose-k ~ dk

•Equivalent to conjunctions / marginal queries / 
contingency tables

Disjunction query: What 
fraction of records satisfy 
a given monotone k-way 
disjunction qS, |S|≤k?
qS(x) = ∨i∈S xi

GiveYouUp? LetYouDown? RunAround? DesertYou?

0 0 1 1

1 1 1 1

1 0 0 0

1 1 0 0
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Algorithms for Disjunctions

Minimum DB Size

Running Time
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Minimum DB Size

Running Time

dk=|Q|

Algorithms for Disjunctions

•Laplace Mechanism 

dk/2=|Q|1/2
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Minimum DB Size

2d •PMW

k√d

dk=|Q|

Running Time

Algorithms for Disjunctions

•Laplace Mechanism 

dk/2=|Q|1/2
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Minimum DB Size

2d •PMW

k√d

dk=|Q|

Running Time

Algorithms for Disjunctions

•Holy grailpoly(d,k)

•Laplace Mechanism 

dk/2=|Q|1/2
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Efficient Reduction to Learning

• The bottleneck in PMW is viewing the database as 
a distribution over {0,1}d
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Efficient Reduction to Learning

• The bottleneck in PMW is viewing the database as 
a distribution over {0,1}d

• Instead, view the database as a map fD: Q→[0,1]

• If Q is “simple”, this map might have a nice structure that 
leads to more efficient algorithms

• Doesn’t even need to be defined for queries outside Q
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• View the database as a map fD: Q→[0,1]

• Thm (Approximately) [HRS]: There is an efficient 
reduction from answering a family of queries Q to 
“learning” the family {fD: Q→[0,1]}D

• Approach was implicit in [GHRU,CKKL]

• Using the learning techniques, without going 
through the reduction, gives simpler algorithms 
and stronger guarantees [TUV, CTUW]

Efficient Reduction to Learning
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Minimum DB Size

2d •PMW

k√d

dk=|Q|

Running Time

Algorithms for Disjunctions

•Holy grail

•[HRS]

dC√k

poly(d,k)

•Laplace Mechanism 

dk/2=|Q|1/2
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Minimum DB Size

2d •PMW

k√d

dk=|Q|

Running Time

Algorithms for Disjunctions

•Holy grail

•[HRS]

dC√k

•[TUV]dC√k

poly(d,k)

•Laplace Mechanism 

dk/2=|Q|1/2
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Minimum DB Size

2d •PMW

k√d

dk=|Q|

Running Time

•Laplace Mechanism 

Algorithms for Disjunctions

•Holy grail

•[HRS]

dC√k

•[TUV]dC√k

•[CTUW]2o(d)

poly(d,k)

dk/2=|Q|1/2
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Minimum DB Size

2d •PMW

dk/2=|Q|1/2k√d

dk=|Q|

Running Time

•Laplace Mechanism 

Algorithms for Disjunctions

•Holy grail

•[HRS]

dC√k

•[TUV]dC√k

•[CTUW]2o(d)

poly(d,k)

Average error variants:
[GHRU, CKKL, HRS, FK]

•[DNT]

dk/4
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Low-Weight Bases

• Instead, view the database as a map fD: Q→[0,1]

• If Q is “simple”, this map might have a nice structure that 
leads to more efficient algorithms

• For disjunctions, fD will be a “low-weight” linear 
combination of a small number of “basis functions”
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Multiplicative Weights

Set of experts X={0,1}d

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D q

Distribution over X={0,1}d

q(D) = <D,q>

qx = 1 iff q(x) = 1

Truth table of q in [0,1]X
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Basis of functions {fx}, x in {0,1}d

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D q

Weight 1 linear comb of fns in {fx}

q(D) = <D,q>

Multiplicative Weights

Query function on a row:
fx(q) = q(x)

Query function on a DB:
fD(q) = (1/n)Σi fxi(q)

Truth table of q in [0,1]X

Losses for an expert x:
fx(q) = q(x)
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.20 .30 .20 .30D2 L2Loss is <D2,L2>

.23 .32 .15 .32DT LTLoss is <DT,LT>

Distribution over X

0 0 1 0

0 0 0 1

.

.

.

[0,1]X

For any distribution D, sequence L1, . . . ,LT ,
T�

t=1

�Dt −D,Lt� ≤
�
T log |X |

Thursday, December 12, 2013



No-Regret Learning Algorithms

Set of experts X = F

1 1 1 1 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.80 1.20 .80 1.20D2 L2Loss is <D2,L2>

.92 1.28 .60 1.28DT LTLoss is <DT,LT>

Weight W linear comb over X = F

0 0 1 0

0 0 0 1

.

.

.

[0,1]X

For any weight W linear combination D, sequence L1, . . . ,LT ,
T�

t=1

�Dt −D,Lt� ≤W
�
T log |X |
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Basis of functions {fx}, x in {0,1}d

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D q

Weight 1 linear comb of fns in {fx}

q(D) = <D,q>

Multiplicative Weights

Query function on a row:
fx(q) = q(x)

Query function on a DB:
fD(q) = (1/n)Σi fxi(q)

Truth table of q in [0,1]X

Losses for an expert x:
fx(q) = q(x)

The Private MW algorithm treats the database as a weight 1 linear 
comb. of a set of 2d functions fx: {All Queries}→{0,1}
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Basis of functions {fx}, x in {0,1}d

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D q

Weight 1 linear comb of fns in {fx}

q(D) = <D,q>

Multiplicative Weights

Query function on a row:
fx(q) = q(x)

Query function on a DB:
fD(q) = (1/n)Σi fxi(q)

Truth table of q in [0,1]X

Losses for an expert x:
fx(q) = q(x)

Improved algs for disj’s treat the database as a weight W linear 
comb. of a set of S functions f: {k-way disj’s}→{0,1}
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Low-Weight Bases

• View the database as a map fD: Q→[0,1]

• Let F = {f: Q→{0,1}} be a set of functions

• Def: F is a weight-W approximate basis wrt Q if for 
every database D, there exists a weight-W linear 
combination of functions in F, pD, such that for 
every q∈Q, |fD(q) - pD(q)| ≤ .001
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No-Regret Learning Algorithms

Set of experts X

.25 .25 .25 .25 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.20 .30 .20 .30D2 L2Loss is <D2,L2>

.23 .32 .15 .32DT LTLoss is <DT,LT>

Distribution over X

0 0 1 0

0 0 0 1

.

.

.

[0,1]X

For any distribution D, sequence L1, . . . ,LT ,
T�

t=1

�Dt −D,Lt� ≤
�
T log |X |

Thursday, December 12, 2013



No-Regret Learning Algorithms

Set of experts X = F

1 1 1 1 1 0 1 0

Losses for each expert

D1 L1Loss is <D1,L1>

.80 1.20 .80 1.20D2 L2Loss is <D2,L2>

.92 1.28 .60 1.28DT LTLoss is <DT,LT>

Weight W linear comb over X = F

0 0 1 0

0 0 0 1

.

.

.

[0,1]X

For any weight W linear combination D, sequence L1, . . . ,LT ,
T�

t=1

�Dt −D,Lt� ≤W
�
T log |X |
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Recap

Thm: PMW runs in time poly(n,2d,|q1|+...+|q|Q||)

Thm: PMW takes a database D∈({0,1}d)n and a set of 
counting queries Q, satisfies (ε,δ)-DP and, if                                                                              

n ≳ d1/2log|Q|/α2ε,                                                     
it outputs DT such that for every q∈Q,                       

|q(D) - q(DT)| ≤ α
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Recap

Thm: PMW runs in time poly(n,|F|,|q1|+...+|q|Q||)

Thm [CTUW]: PMW (run with F, a weight-W 
approximate basis wrt Q) takes a database D∈({0,1}d)n, 

satisfies (ε,δ)-DP and, if                                                                              
n ≳ Wd1/2log|Q|/α2ε,                                                        

it outputs DT such that for every q∈Q,                               
|q(D) - q(DT)| ≤ .01
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Low-Weight Bases

• But where do these low-weight bases come from?

• Polynomial approximations!

• Extremely prevalent in PAC/agnostic learning.  Underlies 
the most-efficient learning algorithms.

• First used for disjunctions by [CKKL],[HRS]
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Low-Weight Bases

Query on a row:
q(x) = x1∨x2

Query on a DB:
q(D) = (1/n)Σi q(xi)

D∈({0,1}d)n
x1? x2? x3? x4?

1 1 1 0

1
N

1 0 0

0 0 1 1

0 0 0 1
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Query on a row:
qy(x) = x1∨x2

Query on a DB:
qy(D) = (1/n)Σi qy(xi)

D∈({0,1}d)n
x1? x2? x3? x4?

1 1 1 0

1
N

1 0 0

0 0 1 1

0 0 0 1

Each query described by 
a d-bit string y ∈{0,1}d

Low-Weight Bases
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D∈({0,1}d)n

Query function on a row:
fx(y) = qy(x)

Query function on a DB:
fD(y) = (1/n)Σi fxi(y)

x1? x2? x3? x4?

1 1 1 0

1
N

1 0 0

0 0 1 1

0 0 0 1

Query on a row:
qy(x) = x1∨x2

Query on a DB:
qy(D) = (1/n)Σi qy(xi)

Each query described by 
a d-bit string y ∈{0,1}d

Low-Weight Bases
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Query on a row:
qy(x) = x1∨x2

Query on a DB:
qy(D) = (1/n)Σi qy(xi)

D∈({0,1}d)n

Query function on a row:
fx(y) = qy(x)

Query function on a DB:
fD(y) = (1/n)Σi fxi(y)

Approximation:  For every x, want 
px(y) s.t.
•px has degree T
•px has weight W
•for every y corresponding to a k-
way disj. |px(y) - fx(y)| ≤ .001 

x1? x2? x3? x4?

1 1 1 0

1
N

1 0 0

0 0 1 1

0 0 0 1

Each query described by 
a d-bit string y ∈{0,1}d

Low-Weight Bases
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D∈({0,1}d)n

f(1,1,1,0)(y1,...,yd) =     
y1 ∨ y2 ∨ y3 

Disjunction on y 
(Coincidentally)

x1? x2? x3? x4?

1 1 1 0

1
N

1 0 0

0 0 1 1

0 0 0 1

Query function on a row:
fx(y) = qy(x)

Query function on a DB:
fD(y) = (1/n)Σi fxi(y)

Query on a row:
qy(x) = x1∨x2

Query on a DB:
qy(D) = (1/n)Σi qy(xi)

Each query described by 
a d-bit string y ∈{0,1}d

Low-Weight Bases
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D∈({0,1}d)n

f(y1,...,yd) =     
OR(y1,...,yd)

Sufficient to approx. 
d-variate OR function 

on inputs with at most 
k non-zeros

x1? x2? x3? x4?

1 1 1 0

1
N

1 0 0

0 0 1 1

0 0 0 1

Query function on a row:
fx(y) = qy(x)

Query function on a DB:
fD(y) = (1/n)Σi fxi(y)

Query on a row:
qy(x) = x1∨x2

Query on a DB:
qy(D) = (1/n)Σi qy(xi)

Each query described by 
a d-bit string y ∈{0,1}d

Low-Weight Bases
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Recap

• Suppose there is a d-variate polynomial p of deg T 
and weight W such that for every y in {0,1}d with at 
most k non-zeroes |OR(y) - p(y)| ≤ .001.  

• Then there is a weight-W approximate basis wrt k-
way disj’s of size roughly d-choose-T

• F = {all d-variate monomials of degree at most T}
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Approximating OR (Low Weight)

On [1,k],  .999≤r(x)≤1.001

•Degree is C√k
•Coeffs are at most 2C√k

•Want to approx OR(y1,...,yd) on 
inputs with k non-zeros

rk(z)
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Approximating OR (Low Weight)

On [1,k],  .999≤r(x)≤1.001

•Degree is C√k
•Coeffs are at most 2C√k

•Want to approx OR(y1,...,yd) on 
inputs with k non-zeros

rk(z)
•Set 

p(y1,...,yd) = rk(y1 + . . . + yd)
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•Degree is C√k
•Coeffs are at most 2C√k

•If OR(y1,...,yd)=0, then 
p(y1,...yd) = rk(0) = 0

•If OR(y1,...,yd)=1, then 1≤y1+...+yd≤k
p(y1,...,yd) = rk(y1+...+yd)≈1

•Set 
p(y1,...,yd) = rk(y1 + . . . + yd)

•Want to approx OR(y1,...,yd) on 
inputs with k non-zeros

Approximating OR (High Weight)

On [1,k],  .999≤r(x)≤1.001

rk(z)
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•Degree is C√k
•Coeffs are at most 2C√k

•If OR(y1,...,yd)=0, then 
p(y1,...yd) = rk(0) = 0

•If OR(y1,...,yd)=1, then 1≤y1+...+yd≤k
p(y1,...,yd) = rk(y1+...+yd)≈1

•Set 
p(y1,...,yd) = rk(y1 + . . . + yd)

•Want to approx OR(y1,...,yd) on 
inputs with k non-zeros

Approximating OR (High Weight)

On [1,k],  .999≤r(x)≤1.001

rk(z)

Polynomial has degree C√k, weight dC√k

Thursday, December 12, 2013



Minimum DB Size

2d •PMW

dk/2k√d

dk=|Q|

Running Time

•Laplace Mechanism 

Algorithms for Disjunctions

•Holy grail

•[HRS]

dC√k

•[TUV]dC√k

•[CTUW]2o(d)

poly(d,k)

Average error variants:
[GHRU, CKKL, HRS, FK]

Thursday, December 12, 2013



Approximating OR (Low Weight)

ORd

•Have an approximation with 
degree C√k and weight dC√k

•The “trivial” exact polynomial 
has degree d and weight 1
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Approximating OR (Low Weight)

•Have an approximation with 
degree C√k and weight dC√k

•The “trivial” exact polynomial 
has degree d and weight 1

ORb

ORd/b ORd/b ORd/b

Final polynomial has degree C(d/b)√k, weight bC√k
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Approximating OR (Low Weight)

•Have an approximation with 
degree C√k and weight dC√k

•The “trivial” exact polynomial 
has degree d and weight 1

ORb

ORd/b ORd/b ORd/b

Use T = d/b, W = 1 Use T = d/b, W = 1 Use T = d/b, W = 1

Use T = C√k, W = bC√k

Final polynomial has degree C(d/b)√k, weight bC√k
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Approximating OR (Low Weight)

•Have an approximation with 
degree C√k and weight dC√k

•The “trivial” exact polynomial 
has degree d and weight 1

ORb

ORd/b ORd/b ORd/b

Use T = d/b, W = 1 Use T = d/b, W = 1 Use T = d/b, W = 1

Use T = C√k, W = bC√k

Final polynomial has degree ~d1-1/C’√k, weight ~d.01

Set b = d1/C’√k
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Minimum DB Size

2d •PMW

dk/2k√d

dk=|Q|

Running Time

•Laplace Mechanism 

Algorithms for Disjunctions

•Holy grail

•[HRS]

dC√k

•[TUV]dC√k

•[CTUW]2o(d)

poly(d,k)

Average error variants:
[GHRU, CKKL, HRS, FK]
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Can these results be improved?

• Not using polynomials! [CTUW]

• In the high-weight setting, there is no approximate 
basis smaller than dC√k [S]

• Open question: What is the smallest weight-poly(d) 
basis wrt to {k-way disj}?
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x1

x2

xn

Sanitizer

Database D

Information about D

“privacy barrier”

Learning 
Alg

Distribution D
“limited access to 

distribution”

Information about D

What about using different techniqes?
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Can these results be improved?

• Sometimes we can improve running time by 
avoiding learning algorithms altogether.
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Minimum DB Size

2d •PMW

dk/2=|Q|1/2k√d

dk=|Q|

Running Time

•Laplace Mechanism 

Algorithms for Disjunctions

•Holy grail

•[HRS]

dC√k

•[TUV]dC√k

•[CTUW]2o(d)

poly(d,k)

Average error variants:
[GHRU, CKKL, HRS, FK]

•[DNT]

dk/4
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Wrap-Up

• There is a flexible, modular framework for deriving 
differentially private algorithms from learning-
theoretic techniques

• For the general private counting query release 
problem, these techniques (PMW) give optimal 
accuracy and running time guarantees

• For natural, special cases of query release, learning 
techniques (often) give best-known algorithms

• But is this the right approach?
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Thanks!
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