From Learning Algorithms to Differentially Private Algorithms

Jonathan Ullman, Harvard University

Big Data and Differential Privacy Workshop December 12, 2013

What is this tutorial about?

• Using powerful techniques from learning theory to design differentially private algorithms

 Connections between learning and DP algorithm design first(?) introduced in [BDMN,KLNRS]

- Clean, qualitatively strong guarantees brought out the potential of differentially private data analysis
- For these strong guarantees, learning-theoretic techniques yield nearly-optimal algorithms

 $D \in (\{0, I\}^d)^n$

Counting query: What fraction of records satisfy property q?

GiveYouUp?	LetYouDown?	RunAround?	DesertYou?
0	0	I	I
I	I	I	I
I	0	0	0
I		0	0

d attributes per record

Counting query: What fraction of records satisfy property q? e.g. $q(x) = GiveYouUp \lor$ LetYouDown?

• Want to design a sanitizer that is simultaneously differentially private and accurate

Differential Privacy

[DN,DN,BDMN,DMNS,D]

D and D' are neighbors if they differ only on one user's data

Definition: A (randomized) San is (ε, δ) -differentially private if for all neighbors D, D' and every S \subseteq Range(San)

$$Pr[San(D) \in S] \le e^{\epsilon}Pr[San(D') \in S] + \delta$$

- Want to design a sanitizer that is simultaneously differentially private and accurate
- Want to minimize
 - Amount of data required, n for a given Q,d,α
 - Running time of the sanitizer

• Adding independent noise (Laplace mechanism) requires $n \ge |Q|^{1/2}/\alpha$

- Adding independent noise (Laplace mechanism) requires $n \ge |Q|^{1/2}/\alpha$
- [BLR] gave a sanitizer that requires only $n \ge d \log |Q|/\alpha^3$
 - Several important improvements by [DNRRV,DRV,RR]

• [HR] introduced the private multiplicative weights algorithm, requires only $n \gtrsim d^{1/2} \log |Q| / \alpha^2$

- [HR] introduced the private multiplicative weights algorithm, requires only $n \gtrsim d^{1/2} \log |Q| / \alpha^2$
- Put in a general framework, with tight analysis by [GHRU,GRU,HLM]
- Several improvements for special cases of private query release followed [GRU,JT,BR,HR,HRS,TUV,CTUW,...]

Talk Outline

- Differentially private query release
- A blueprint for private query release
 - No-regret algorithms / MW
- Query Release Algorithms
 - Offline MW
 - Online MW
 - Variants
 - Faster algorithms for disjunctions via polynomial approx.

Sanitized (DP) Output

Raw Data

Sanitized (DP) Output

Raw Data

Raw Data

Sanitized (DP) Output

(query₁)

 D_1

Raw Data

Update Alg: U

Sanitized (DP) Output

Raw Data

D

Update Alg: U

Sanitized (DP) Output

Raw Data

D

Update Alg: U

LET D be the real database LET D₁ be an "initial guess" FOR t = 1,...,T LET query_t = $argmax_{q \in Q} q(D_t) - q(D)$ LET D_{t+1} = Update(D_t, q_t)

Why did we do this?

- Decomposed the problem into smaller problems
 - Fortunately, DP has nice composition properties
- We've separated privacy (finding q_t) from the task of learning the database (updating D_t)
 - Means we can choose any update algorithm

Why did we do this?

- (Hopefully) decomposed the problem into $T \ll |Q|$ smaller problems
 - Fortunately, DP has nice composition properties
- We've separated privacy (finding q_t) from the task of learning the database (updating D_t)
 - Means we can choose any update algorithm

Talk Outline

- Differentially private query release
- A blueprint for private query release
 - No-regret algorithms / MW
- Query Release Algorithms
 - Offline MW
 - Online MW
 - Variants
 - Faster algorithms for disjunctions via polynomial approx.

Set of experts X

Losses for each expert

Set of experts X

Distribution over X

D₁ .25 .25 .25 .25

Losses for each expert

Multiplicative Weights Update [LW] $D_2 = MWU(D_1,L_1)$: $D'_2(x) = (1 - \eta L_1(x))D_1(x)$ $D_2(x) = D'_2(x) / \sum_{x \in X} D'_2(x)$

	Set of experts X						Losses for each expert					
		ſ	P3				ſ	P2		3		
	Distribution over X						[0 , I] [×]					
Dı	.25	.25	.25	.25	Loss is $< D_1, L_1 >$	1	0	Ι	0	L		
D ₂	.20	.30	.20	.30	Loss is <d<sub>2,L₂></d<sub>	0	0	Ι	0	L ₂		
Dτ	.23	.32	.15	.32	Loss is <d<sub>T,L_T></d<sub>	0	0	0	T	Lτ		

Counting Queries

Counting query: What fraction of records satisfy property q? e.g. $q(x) = GiveYouUp \lor$ LetYouDown

Counting Queries

Counting query: What fraction of records satisfy property q? e.g. $q(x) = GiveYouUp \lor$ LetYouDown

D is a distribution on $\{0, I\}^d$

Counting Queries

Counting query: What fraction of records satisfy property q? e.g. $q(x) = GiveYouUp \lor$ LetYouDown

q is an indicator vector

D is a distribution on $\{0, I\}^d$

Linear query: $q(D) = \langle D, q \rangle$

Multiplicative Weights for Query Release

Set of experts $X = \{0, I\}^d$

Distribution over X={0,1}^d

Losses for each expert

Truth table of q in $[0, I]^{\times}$

Dı	.25	.25	.25	.25	Loss is <d1,q1></d1,q1>	1	0	Ι	0	q 1
----	-----	-----	-----	-----	-------------------------	---	---	---	---	------------

 D_2 .20 .30 .20 .30 Loss is $< D_2, q_2 > 0$ 0 1 0 q_2

D_T .23 .32 .15 .32 Loss is <D_T,q_T> 0 0 1 q_T

For any database *D*, sequence q_1, \dots, q_T , $\sum_{t=1}^{T} \langle D_t - D, q_t \rangle \leq \sqrt{Td}$

A Blueprint for Query Release

LET D be the real database, viewed as a dist over $\{0, I\}^d$ LET D₁ be the uniform dist on $\{0, I\}^d$ FOR t = 1,...,T LET q_t = argmax_{q∈Q} <D_t - D, q> LET D_{t+1} = MWU(D_t, q_t) $D'_{t+1}(x) = (1 - \eta q_t(x))D_t(x)$ $D_{t+1}(x) = \frac{D'_{t+1}(x)}{\sum_{x \in \{0,1\}^d} D'_{t+1}(x)}$

• Thm: For any database D sequence q_1, \dots, q_T ,

$$\sqrt{Td} \ge \sum_{t=1}^{T} \langle D_t - D, q_t \rangle$$

• Thm: For any database D sequence q_1, \dots, q_T ,

$$\sqrt{Td} \ge \sum_{t=1}^{T} \langle D_t - D, q_t \rangle$$

• If $q_1,...,q_T$ all satisfy $\langle D_t - D, q_t \rangle \geq \alpha$, then we have

$$\sqrt{Td} \ge \sum_{t=1}^{T} \langle D_t - D, q_t \rangle \ge \alpha T$$

• Thm: For any database D sequence q_1, \dots, q_T ,

$$\sqrt{Td} \ge \sum_{t=1}^{T} \langle D_t - D, q_t \rangle$$

• If $q_1,...,q_T$ all satisfy $\langle D_t - D, q_t \rangle \geq \alpha$, then we have

$$\sqrt{Td} \ge \sum_{t=1}^{T} \langle D_t - D, q_t \rangle \ge \alpha T$$

• If $T \gtrsim d/\alpha^2$, then $< D_T - D, q \ge \alpha$ for all of Q

• Thm: For any database D sequence q_1, \dots, q_T ,

$$\sqrt{Td} \ge \sum_{t=1}^{T} \langle D_t - D, q_t \rangle$$

• If $q_1,...,q_T$ all satisfy $\langle D_t - D, q_t \rangle \geq \alpha$, then we have

$$\sqrt{Td} \ge \sum_{t=1}^{T} \langle D_t - D, q_t \rangle \ge \alpha T$$

Q is closed under neg.

• If $T \gtrsim d/\alpha^2$, then $|\langle D_T - D, q \rangle| \leq \alpha$ for all of Q

Thursday, December 12, 2013

A Blueprint for Query Release

LET D be the real database, viewed as a dist over $\{0, I\}^d$ LET D₁ be the uniform dist on $\{0, I\}^d$ FOR t = 1,...,T=O(d/ α^2) LET q_t = argmax_{q∈Q} <D_t - D, q> LET D_{t+1} = MWU(D_t, q_t)

A Blueprint for Query Release

Finding the "Bad" Queries

- How do I find argmax_{q in Q} <D_t D, q> privately? Use the exponential mechanism!
- Output q wp proportional to $exp(\epsilon_0 n < D_t D, q >)$

If $n \ge \log |Q|/\alpha \varepsilon_0$ then whp EM outputs q_t s.t. $\langle D_t - D, q_t \rangle \ge \max_{q \in Q} \langle D_t - D, q \rangle - \alpha/2$

A Blueprint for Query Release

LET D be the real database, viewed as a dist on $\{0, I\}^d$ LET D₁ be the uniform distribution on $\{0, I\}^d$ FOR t = 1,...,T = $O(d/\alpha^2)$ LET q_t = q wp proportional to $exp(\epsilon_0 n < D_t - D, q >)$ LET D_{t+1} = MWU(D_t, q_t)

Thm [DRV]: If $\varepsilon_0 \le \varepsilon/(8T\log(1/\delta))^{1/2} \approx \varepsilon/T^{1/2}$, then running T (adaptively chosen) ε_0 -DP algorithms satisfies (ε, δ)-DP.

Thursday, December 12, 2013

Thm [DRV]: If $\varepsilon_0 \approx \varepsilon/T^{1/2} \approx \varepsilon \alpha/d^{1/2}$, then running T (adaptively chosen) ε_0 -DP algorithms satisfies (ε, δ)-DP.

Thursday, December 12, 2013

Recap

Thm: PMW takes a database $D \in (\{0, I\}^d)^n$ and a set of counting queries Q, satisfies (ε, δ) -DP and, if $n \ge d^{1/2} \log |Q| / \alpha^2 \varepsilon$, it outputs D_T such that for every $q \in Q$, $|q(D) - q(D_T)| \le \alpha$

Optimality?

- PMW achieves a nearly-optimal data requirement for this level of generality
 - Thm [BUV]: for every sufficiently large s, there is a family of s queries Q such that any (ε, δ) -DP algorithm that is α -accurate for Q requires $n \ge d^{1/2} \log |Q| / \alpha^2 \varepsilon$

Recap

Thm: PMW takes a database $D \in (\{0, I\}^d)^n$ and a set of counting queries Q, satisfies (ε, δ) -DP and, if $n \ge O(d^{1/2} \log |Q| / \alpha^2 \varepsilon)$, it outputs D_T such that for every $q \in Q$, $|q(D) - q(D_T)| \le \alpha$

Thm: PMW runs in time $poly(n, 2^d, |q_1| + ... + |q_{|Q|})$

Optimality?

- Private multiplicative weights achieves nearlyoptimal running time for this level of generality
 - Thm [U]: any DP algorithm that takes a database D∈({0,1}^d)ⁿ and a set of counting queries Q, runs in time poly(n,d,|q₁|+...+|q_{|Q|}|), and accurately answers Q requires n ≥ |Q|^{1/2} (assuming secure crypto exists)
- But PMW can be practical! [HLM]

Talk Outline

- Differentially private query release
- A blueprint for private query release
 - No-regret algorithms / MW
- Query Release Algorithms
 - Offline MW
 - Online MW
 - Variants
 - Faster algorithms for disjunctions via polynomial approx.

Online Counting Query Release

- Want to design an online sanitizer that is simultaneously differentially private and accurate
- Want to minimize
 - Amount of data required, *n* as a function of $|Q|, d, \alpha$
 - Running time of the sanitizer per query

A Blueprint for Query Release

Sanitized (DP) Output

Raw Data

Sanitized (DP) Output

Raw Data

A Blueprint for Query Release

LET D be the real database, viewed as a dist over $\{0, I\}^d$ LET D₁ be the uniform dist on $\{0, 1\}^d$ FOR k = 1, ..., |Q| $|F| < D_t - D, q_k > | \le \alpha$ THEN answer $< D_t, q_k > |$ ELSE answer $\langle D, q_k \rangle$, $D_{t+1} = MWU(D_t, q_k)$ LET t=t+1 $T \leq d/\alpha^2$

"Threshold" Algorithm

- Suppose we have a stream of queries $q_1,...,q_k$ and promise that there is only a single q_i s.t. $q_i(D) \ge \alpha/2$
- Then there is an ε_0 -DP algorithm that whp answers every query with accuracy α as long as $n \ge \log(k)/\alpha\varepsilon_0$

Recap

Thm: Online PMW takes a database $D \in (\{0, I\}^d)^n$ and an online stream of counting queries Q, satisfies (ε, δ) -DP and, if $n \ge d^{1/2} \log |Q| / \alpha^2 \varepsilon$, is α -accurate for all of Q

Thm: Runs in time $poly(n, 2^d, |q|)$ for each query q

Talk Outline

- Differentially private query release
- A blueprint for private query release
 - No-regret algorithms / MW
- Query Release Algorithms
 - Offline MW
 - Online MW
 - Variants
 - Faster algorithms for disjunctions via polynomial approx.

Other Applications

- PMW has optimal data requirement and running time in the worst case, but better algorithms are known for special cases
- Modular design makes it easy to construct new algorithms by swapping in different no-regret algorithms

- G in $(VxV)^{|E|}$. Cut query $q_{S,T}(G)$ asks "What fraction of edges cross from S to T?"
 - Counting queries on a database D in $({0, 1}^{2\log|V|})^{|E|}$
- Can reduce the data requirement for some settings of parameters by replacing MW with an algorithm based on the "cut-decomposition" [FK]

Mirror Descent

- Replace MW with algorithms from the mirror descent family
 - Reduces the data requirement when the L_p norm of the database and L_q norm of the queries satisfy certain relationships
 - For PMW, we view the database as a distribution over $X = \{0, I\}^d (L_I \text{ norm } = I)$, we view the query as a vector in $[0, I]^X (L_\infty \text{ norm } = I)$
 - Applications to cut queries, matrix queries

- Query is sparse if it only accepts S << 2^d elements from {0, 1}^d
- Can design an "implicit" implementation of MW that keeps track of ~S weights instead of 2^d
 - Improves running time per query from 2^d to $\sim S$
 - Also improves the data requirement slightly

- D in ([0,1]^d)ⁿ. Query q_x is a point x in [0,1]^d and asks "What is the average distance between points in D and x?"
- Can answer in time poly(n,d) per query using a specialized no-regret algorithm for distance queries
 - Improves data requirement in some cases too

Talk Outline

- Differentially private query release
- A blueprint for private query release
 - No-regret algorithms / MW
- Query Release Algorithms
 - Offline MW
 - Online MW
 - Variants
 - Faster algorithms for disjunctions via polynomial approx.

Private Counting Query Release

Counting query: What fraction of records satisfy property q? e.g. $q(x) = GiveYouUp \lor$ LetYouDown

 $D \in (\{0, I\}^d)^n$

Private Counting Query Release

Disjunction query: What fraction of records satisfy a given monotone k-way disjunction q_s , $|S| \le k$? $q_s(x) = \bigvee_{i \in S} x_i$

•					
'	GiveYouUp?	LetYouDown?	RunAround?	DesertYou?	
	0	0	I	I	
	Ι	I	I	Ι	
	Ι	0	0	0	
			0	0	

 $D \in (\{0, I\}^d)^n$

d attributes per record

Accurate if $|a_q - q(D)| < .01$ for every $q \in Q$

Private Counting Query Release

Disjunction query: What fraction of records satisfy a given monotone k-way disjunction q_s , $|S| \le k$? $q_s(x) = \bigvee_{i \in S} x_i$

GiveYouUp?	LetYouDown?	RunAround?	DesertYou?			
0	0	I	I			
I	I	Ι	I			
I	0	0	0			
I		0	0			

d attributes per record

- •Useful facts:
 - •Number of k-way disj's is d-choose-k ~ d^k
 - •Equivalent to conjunctions / marginal queries / contingency tables

$D \in (\{0, I\}^d)^n$

Minimum DB Size

Minimum DB Size

Efficient Reduction to Learning

 The bottleneck in PMW is viewing the database as a distribution over {0,1}^d

Efficient Reduction to Learning

- The bottleneck in PMW is viewing the database as a distribution over $\{0, I\}^d$
- Instead, view the database as a map $f_D: Q \rightarrow [0, 1]$
 - If Q is "simple", this map might have a nice structure that leads to more efficient algorithms
 - Doesn't even need to be defined for queries outside Q

Efficient Reduction to Learning

- View the database as a map $f_D: Q \rightarrow [0, I]$
- Thm (Approximately) [HRS]: There is an efficient reduction from answering a family of queries Q to "learning" the family $\{f_D: Q \rightarrow [0, I]\}_D$
 - Approach was implicit in [GHRU,CKKL]
- Using the learning techniques, without going through the reduction, gives simpler algorithms and stronger guarantees [TUV, CTUW]

Low-Weight Bases

- Instead, view the database as a map $f_D: Q \rightarrow [0, 1]$
 - If Q is "simple", this map might have a nice structure that leads to more efficient algorithms
 - For disjunctions, *f*_D will be a "low-weight" linear combination of a small number of "basis functions"

Multiplicative Weights

Set of experts $X = \{0, I\}^d$

Distribution over $X = \{0, I\}^d$

D .25 .25 .25 .25 $q(D) = \langle D,q \rangle$ | 0 | 0 q

Losses for each expert

Truth table of q in $[0, I]^X$ $I \quad 0 \quad I \quad 0 \quad q$

 $q_x = I$ iff q(x) = I

Multiplicative Weights

Query function on a row: $f_x(q) = q(x)$ Query function on a DB: $f_D(q) = (1/n)\Sigma_i f_{xi}(q)$

Losses for an expert x: $f_x(q) = q(x)$

No-Regret Learning Algorithms

No-Regret Learning Algorithms

Set of experts X = FLosses for each expert 🥐 👘 🐑 Weight W linear comb over X = F[0,1][×] D_1 I I I Loss is $\langle D_1, L_1 \rangle$ I O I O L_1 D_2 .80 1.20 .80 1.20 Loss is $\langle D_2, L_2 \rangle$ 0 0 1 0 L_2 D_T .92 1.28 .60 1.28 Loss is $\langle D_T, L_T \rangle$ 0 0 0 1 L_T For any weight W linear combination D, sequence L_1, \ldots, L_T , $\sum \langle D_t - D, L_t \rangle \le W \sqrt{T \log |X|}$

Multiplicative Weights

The Private MW algorithm treats the database as a weight 1 linear comb. of a set of 2^d functions f_x : {All Queries} \rightarrow {0,1}

Thursday, December 12, 2013

 $f_D(q) = (1/n)\Sigma_i f_{xi}(q)$

Multiplicative Weights

Improved algs for disj's treat the database as a weight W linear comb. of a set of S functions $f: \{k-way \ disj's\} \rightarrow \{0, I\}$

Thursday, December 12, 2013

 $f_D(q) = (1/n)\Sigma_i f_{xi}(q)$

Low-Weight Bases

- View the database as a map $f_D: Q \rightarrow [0, I]$
- Let $F = \{f: Q \rightarrow \{0, I\}\}$ be a set of functions
- Def: F is a weight-W approximate basis wrt Q if for every database D, there exists a weight-W linear combination of functions in F, p_D , such that for every $q \in Q$, $|f_D(q) - p_D(q)| \le .001$

No-Regret Learning Algorithms

No-Regret Learning Algorithms

Set of experts X = FLosses for each expert 🥐 👘 🐑 Weight W linear comb over X = F[0,1][×] D_1 I I I Loss is $\langle D_1, L_1 \rangle$ I O I O L_1 D_2 .80 1.20 .80 1.20 Loss is $\langle D_2, L_2 \rangle$ 0 0 1 0 L_2 D_T .92 1.28 .60 1.28 Loss is $\langle D_T, L_T \rangle$ 0 0 0 1 L_T For any weight W linear combination D, sequence L_1, \ldots, L_T , $\sum \langle D_t - D, L_t \rangle \le W \sqrt{T \log |X|}$

Recap

Thm: PMW takes a database $D \in (\{0, I\}^d)^n$ and a set of counting queries Q, satisfies (ε, δ) -DP and, if $n \ge d^{1/2} \log |Q| / \alpha^2 \varepsilon$, it outputs D_T such that for every $q \in Q$, $|q(D) - q(D_T)| \le \alpha$

Thm: PMW runs in time $poly(n, 2^d, |q_1| + ... + |q_{|Q|})$

Recap

Thm [CTUW]: PMW (run with *F*, a weight-W approximate basis wrt *Q*) takes a database $D \in (\{0, I\}^d)^n$, satisfies (ε, δ) -DP and, if $n \ge Wd^{1/2} \log |Q| / \alpha^2 \varepsilon$, it outputs D_T such that for every $q \in Q$, $|q(D) - q(D_T)| \le .01$

Thm: PMW runs in time $poly(n, |F|, |q_1|+...+|q_{|Q|})$

Low-Weight Bases

- But where do these low-weight bases come from?
- Polynomial approximations!
 - Extremely prevalent in PAC/agnostic learning. Underlies the most-efficient learning algorithms.
 - First used for disjunctions by [CKKL],[HRS]

Low-Weight Bases

$D \in (\{0, I\}^d)^n$

Query on a row: $q(x) = x_1 \lor x_2$ Query on a DB: $q(D) = (1/n)\Sigma_i q(x_i)$

xı?	×2?	×3?	×4?
I			0
I		0	0
0	0	I	I
0	0	0	

$D \in (\{0, I\}^d)^n$

Query on a row: $q_y(x) = x_1 \lor x_2$ Query on a DB: $q_y(D) = (1/n) \Sigma_i q_y(x_i)$

Each query described by a *d*-bit string $y \in \{0, I\}^d$

×15	x ₂ ?	×3?	×4?
Ι	I		0
Ι	I	0	0
0	0	Ι	Ι
0	0	0	

$D \in (\{0, I\}^d)^n$

Query on a row: $q_y(x) = x_1 \lor x_2$ Query on a DB: $q_y(D) = (1/n)\Sigma_i q_y(x_i)$

xı?	×2?	×3?	×4?
Ι			0
Ι		0	0
0	0	Ι	Ι
0	0	0	I

Each query described by a *d*-bit string $y \in \{0, I\}^d$

Query function on a row: $f_x(y) = q_y(x)$ Query function on a DB: $f_D(y) = (1/n)\Sigma_i f_{xi}(y)$

Query on a row: $q_y(x) = x_1 \lor x_2$ Query on a DB: $q_y(D) = (1/n) \Sigma_i q_y(x_i)$

Each query described by a *d*-bit string $y \in \{0, I\}^d$

Query function on a row: $f_x(y) = q_y(x)$ Query function on a DB: $f_D(y) = (1/n)\Sigma_i f_{xi}(y)$

$D \in (\{0, I\}^d)^n$

xı?	×2?	×3?	×4?
I			0
Ι	I	0	0
0	0	I	I
0	0	0	I

Approximation: For every x, want $p_x(y)$ s.t. • p_x has degree T • p_x has weight W •for every y corresponding to a kway disj. $|p_x(y) - f_x(y)| \le .001$

0

0

Query on a row: $q_y(x) = x_1 \lor x_2$ Query on a DB: $q_y(D) = (1/n) \Sigma_i q_y(x_i)$

Each query described by a *d*-bit string $y \in \{0, I\}^d$

Query function on a row: $f_x(y) = q_y(x)$ Query function on a DB: $f_D(y) = (1/n)\Sigma_i f_{xi}(y)$

0

0

0

0

0

0

0

Query on a row: $q_y(x) = x_1 \lor x_2$ Query on a DB: $q_y(D) = (1/n) \Sigma_i q_y(x_i)$ 0

0

0

 $D \in (\{0, I\}^d)^n$

Each query described by a *d*-bit string $y \in \{0, I\}^d$

Query function on a row: $f_x(y) = q_y(x)$ Query function on a DB: $f_D(y) = (1/n)\Sigma_i f_{xi}(y)$

$$f(y_1,...,y_d) = OR(y_1,...,y_d)$$
Sufficient to approx.
d-variate *OR* function
on inputs with at most
k non-zeros

Recap

- Suppose there is a *d*-variate polynomial p of deg *T* and weight W such that for every y in $\{0, I\}^d$ with at most k non-zeroes $|OR(y) p(y)| \le .001$.
- Then there is a weight-W approximate basis wrt kway disj's of size roughly *d-choose-T*
 - $F = \{all d \text{-variate monomials of degree at most } T\}$

•Want to approx $OR(y_1,...,y_d)$ on inputs with k non-zeros

•Want to approx $OR(y_1,...,y_d)$ on inputs with k non-zeros

•Set $p(y_1,...,y_d) = r_k(y_1 + ... + y_d)$

Approximating OR (High Weight)

•Want to approx $OR(y_1,...,y_d)$ on inputs with k non-zeros

•Set $p(y_1,...,y_d) = r_k(y_1 + ... + y_d)$

•If $OR(y_1,...,y_d)=0$, then $p(y_1,...,y_d) = r_k(0) = 0$ •If $OR(y_1,...,y_d)=1$, then $1 \le y_1+...+y_d \le k$ $p(y_1,...,y_d) = r_k(y_1+...+y_d) \approx 1$

Approximating OR (High Weight)

•Want to approx $OR(y_1,...,y_d)$ on inputs with k non-zeros

•Set $p(y_1,...,y_d) = r_k(y_1 + ... + y_d)$

•If
$$OR(y_1,...,y_d)=0$$
, then
 $p(y_1,...,y_d) = r_k(0) = 0$
•If $OR(y_1,...,y_d)=1$, then $1 \le y_1+...+y_d \le k$
 $p(y_1,...,y_d) = r_k(y_1+...+y_d) \approx 1$

Polynomial has degree $C\sqrt{k}$, weight $d^{C\sqrt{k}}$

Algorithms for Disjunctions

•Have an approximation with degree $C\sqrt{k}$ and weight $d^{C\sqrt{k}}$

•The "trivial" exact polynomial has degree *d* and weight *l*

 OR_d

•Have an approximation with degree $C\sqrt{k}$ and weight $d^{C\sqrt{k}}$

•The "trivial" exact polynomial has degree *d* and weight *l*

Final polynomial has degree $C(d/b)\sqrt{k}$, weight $b^{C\sqrt{k}}$

Thursday, December 12, 2013

•Have an approximation with degree $C\sqrt{k}$ and weight $d^{C\sqrt{k}}$

•The "trivial" exact polynomial has degree *d* and weight *l*

Use T = d/b, W = I Use T = d/b, W = I Use T = d/b, W = I

Final polynomial has degree $C(d/b)\sqrt{k}$, weight $b^{C\sqrt{k}}$

Thursday, December 12, 2013

•Have an approximation with degree $C\sqrt{k}$ and weight $d^{C\sqrt{k}}$

•The "trivial" exact polynomial has degree *d* and weight *l*

Use T = d/b, W = I Use T = d/b, W = I Use T = d/b, W = I

Final polynomial has degree $\sim d^{1-1/C'\sqrt{k}}$, weight $\sim d^{.01}$

Thursday, December 12, 2013

Algorithms for Disjunctions

Can these results be improved?

- Not using polynomials! [CTUW]
- In the high-weight setting, there is no approximate basis smaller than $d^{C\sqrt{k}}$ [S]
- Open question: What is the smallest weight-poly(d) basis wrt to {k-way disj}?

What about using different techniqes?

Can these results be improved?

• Sometimes we can improve running time by avoiding learning algorithms altogether.

Algorithms for Disjunctions

Wrap-Up

- There is a flexible, modular framework for deriving differentially private algorithms from learning-theoretic techniques
- For the general private counting query release problem, these techniques (PMW) give optimal accuracy and running time guarantees
- For natural, special cases of query release, learning techniques (often) give best-known algorithms
 - But is this the right approach?

Thanks!