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Classical Maximum-Likelihood Theory J




Logistic regression in R: n = 200, p = 60

Classical Maximum-Likelihood Theory

> fit = glm(y ~
> summary (fit)

Call:

glm(formula = y ~

Deviance Residuals:

Min 1
-2.1836 -0.980

Coefficients:

X, family = binomial)
X, family = binomial)
Q Median 3Q Max

8

0.3590

0.9770  2.4853

Estimate Std. Error z value Pr(>|z|)

(Intercept) O.
X1 -0.
X2 0.
X3 -0.
X4 0.
X5 -0.
X6 0.

Signif. codes:

3320037
3080503
1707889
1491842
0346026
0962019
4634118
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Classical Maximum-Likelihood Theory

Logistic regression in R: n = 200, p = 60

> fit = glm(y ~ X, family = binomial)
> summary (fit)

Call:
glm(formula = y ~ X, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max
-2.1836 -0.9808 0.3590 0.9770 2.4853
Coefficients: Can |nference
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.3320037 0.2029364 1.636 0.1018 be t ru Sted ?
X1 -0.3080503 0.1969881 -1.564 0.1179
X2 0.1707889 0.2096599 0.815 0.4153
X3 -0.1491842 0.1883217 -0.792 0.4283
X4 0.0346026 0.1987109 0.174 0.8618
X5 -0.0962019 0.1725523 -0.558 0.5772
X6 0.4634118 0.2167999 2.138 0.0326 *

Signif. codes: O ’*¥x> 0.001 ’**x’ 0.01 ’*x’ 0.05 ’.” 0.1’ ’ 1
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Classical Maximum-Likelihood Theory

Logistic Regression setting

@ Consider n i.i.d. samples (y;, X;), y; € {0,1}, X; € RP,

eXiB
Ply; = 1| X;] = o(X;8) := T3 XA B eRP
@ MLE and reduced MLE
@ = argmingegre (B)
B-j = argmingerrp=o (5)
Z{p (X!8) — (X!8)y:}, p(t) =log(1+e*) (link fun.)

o For testing Ho; : B =0vs Hy: 3; #0

log LRT; = £(B) — £(B(—3))
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Classical Maximum-Likelihood Theory

Basic staples of classical theory

Theorem (Classical MLE distribution)

Under ‘suitable regularity conditions’, p fixed, n — oo, with Fisher information I

V(B - 8) S N (0, 1Y),

Theorem (Wilks' theorem)

Under suitable ‘regularity conditions’, p fixed, n — oo

—21og LRT % 2 (under null)

Similar result for testing a group of k variables.
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Classical Maximum-Likelihood Theory

Basic staples of classical theory

Theorem (Classical MLE distribution)

Under ‘suitable regularity conditions’, p fixed, n — oo, with Fisher information I

V(B - 8) S N (0, 1Y),

Theorem (Wilks' theorem)

Under suitable ‘regularity conditions’, p fixed, n — oo

—21og LRT % 2 (under null)

Similar result for testing a group of k variables.

@ Extensions to diverging dimensions—Huber ('73), Portnoy ('88), p = o(y/n).
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Classical Maximum-Likelihood Theory

Agenda

Classical theory used for inference all the time, and by all software packages.

@ The MLE is approximately unbiased.
@ Variance of the MLE is approximately given by inverse Fisher information.

© LRT is approximately distributed as a x2.

Is classical inference accurate in modern settings where n, p are both large
(— o0) and n/pis 5 or 10?
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What do we see in simulation studies? )




Classical Maximum-Likelihood Theory

Scaling

Simulation settings:

@ Gaussian covariates

@ Coeff. 3 scaled s.t.

Var(X[8) =+* =5

Pragya Sur (Stanford)
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? First Example

w
Q@

.
a1

Coefficients (true and fitted)
o
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Index

Figure: Signal (black) and MLE (blue), n = 4000, p = 800
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? First Example
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Figure: Signal (black) and MLE (blue), n = 4000, p = 800
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? Second example

-20- .
-10

0 ) 10
True signal

Figure: Lines with slope 1 (black) and 1.499 (red). n = 4000, p = 800
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Classical Maximum-Likelihood Theory

Unbiasedness of MLE? Second example

MLE

-20- .
-10

0 ) 10
True signal

Figure: Lines with slope 1 (black) and 1.499 (red). n = 4000, p = 800

~~ MLE seems to be over-biased
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Classical Maximum-Likelihood Theory

Consequence for predicted probabilities

MLE
) ) ) e
IS > ® 1S)

Probabilities (True and predicted)
=Y
o

!
N
=}
o
o

0 ) 10
True signal

Figure: (Left) Scatterplot of Bj vs. B;. (Right) True and predicted probabilities.

~~ Predictions biased towards the extremes
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Classical Maximum-Likelihood Theory

Accuracy of standard errors?

Relative Counts
o
o
o

2.00 2.66 3.00 . 4.00 5.00
SEs of coefficients

Figure: SEs of null coeff. estimates obtained via MC simulations (red) and

classical value (blue)

~~ MLE exhibits variance inflation in high dimensions
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Classical Maximum-Likelihood Theory

Accuracy of Wilks' theorem?

1.00-

Relative Counts
o °
[ ~
=] a

o
)
a

0.00-

0.00 0.25 0.50 0.75 1.00
P-Values

Figure: P-values (under the null) based on x? approximation.

Observed earlier in Candes et al. ('16)
Studied under 3 =0, S., Chen and Candeés ('17)
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Classical Maximum-Likelihood Theory

Accuracy of Wilks' theorem?

1.00-

Relative Counts
o o
[ ~
=] o

o
)
a

0.00-
0.00 0.25 0.50 0.75 1.00
P-Values

Figure: P-values (under the null) based on x? approximation.

~~ P-values far from uniform. Note, LRT distribution here is continuous.

Observed earlier in Candes et al. ('16)
Studied under 3 =0, S., Chen and Candes ('17)
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Classical Maximum-Likelihood Theory

Merely a finite sample effect?

Historically known

@ MLE exhibits bias in small samples.

@ LLR performs poorly in small samples.
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Classical Maximum-Likelihood Theory

Merely a finite sample effect?

Historically known

MLE exhibits bias in small samples.

LLR performs poorly in small samples.

Several correction methods: Bartlett, Schaefer, Cordeiro, McCullagh, Firth...

Central theme (under classical asymptotics):

1
E[-2log LRT] = 1+O‘+0(2>
n n
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Classical Maximum-Likelihood Theory

Merely a finite sample effect?

Historically known

MLE exhibits bias in small samples.

LLR performs poorly in small samples.

Several correction methods: Bartlett, Schaefer, Cordeiro, McCullagh, Firth...

Central theme (under classical asymptotics):

1
E[-2log LRT] = 1+O‘+0(2>
n n

@ Plug in estimator «, for a.. Corrected statistic:

—21og LRT
1+ =

@ Bartlett correction—specific choice for «,.
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Classical Maximum-Likelihood Theory

Bartlett corrected p-values

1.00-

Relative counts
o o
Ul ~
S a

o
N
a1

0.00-

000 025 050 075  1.00
P-Values

Traditional finite sample corrections do not suffice in high dimensions
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Classical Maximum-Likelihood Theory

Failures of Classical Theory

@ MLE over-estimates effect magnitudes
~ Predictions for risk of a disease shrunk to 0 or 1.

@ Variability of MLE is underestimated
~~ invalid confidence intervals.

© P-values based on LRT far from uniform under the null
~> Entirely unreliable inference.
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Classical Maximum-Likelihood Theory

Failures of Classical Theory

@ MLE over-estimates effect magnitudes
~> Predictions for risk of a disease shrunk to 0 or 1.

@ Variability of MLE is underestimated
~~ invalid confidence intervals.

© P-values based on LRT far from uniform under the null
~> Entirely unreliable inference.

Serious need for a modern maximum-likelihood theory in high dimensions! J
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A Modern Maximum-Likelihood Theory for High Dimensions J




Modern Maximum-Likelihood Theory

Asymptotic Setting

Sequence of problems with n, p — oo and covariates v/nX; ~ N (0, I,x,)

@ Dimensionality s:
p/n — k€ (0,1)

@ Signal strength (SNR):
Var(X(B) — ~*

@ Conditions on the signal:

1< 1<
=365 A1, EIP < o, EZﬂ]?—HEH(ﬁ)
i=1 =1
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Modern Maximum-Likelihood Theory Crucial Building Blocks

When does the MLE exist?

Albert and Anderson (1984)
The MLE does not exist if a hyperplane separates the two groups, and exists

otherwise.

Modern Likelihood Theory
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Modern Maximum-Likelihood Theory Crucial Building Blocks

Analytical characterization

Cover (1964)

If X; i.i.d. from continuous distribution
F and 3 = 0, MLE does not exist
(asymp.) if K > 1/2.

Pragya Sur (Stanford) Modern Likelihood Theory



Modern Maximum-Likelihood Theory Crucial Building Blocks

Analytical characterization

20
Cover (1964) 15 MLE does not exist
If X; i.i.d. from continuous distribution ~10
F and B8 = 0, MLE does not exist
(asymp.) if kK> 1/2 5 Cover’s point
MLE exists

0.1 0.6

Theorem (Candes and S.('18))
o VIYX, X~N(O,1), andY = £1, P(Y = 1|X) = 1/(1 + exp(—1X))
@/~ N(O, 1) A V, hMLE(’Y) = minteR {IE(tV — Z)%'_}

k> huely) = lim,, 00 P{MLE exists} = 0
k< huely) = lim,, ;00 P{MLE exists} =1
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Modern Maximum-Likelihood Theory Crucial Building Blocks

A nonlinear system of equations

Equation system (S) in 3 unknowns (o, o, A), parametrized by (%, )

A %E [2p’(Q1) ()\p’(prox)\p(Q2)))2} (Q1,Q2) ~ N(0,2(a,0))

(S) 0=E [,0/(Ql)Ql/\PI(PVOX,\p(Q2))] 2 2
1-k=E [ ey ] = [_Z"YQ az'y_zajmz
1+ Ap(prox,,(Q2))

This system holds lots of keys...
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Modern Maximum-Likelihood Theory Crucial Building Blocks

A nonlinear system of equations

Recall
@ Signal strength: 72 := lim Var(X/03).
@ Dimensionality: x = limp/n.
@ Link function: p(t) = log(1 + €).

@ Proximal mapping operator: prox,,(z) = arg min;eg {Ap(t) + 3(t — 2)*}

Equation system (S) in 3 unknowns (o, o, A), parametrized by (%, )

o’ = %E [QPI(Ql) (/\p'(proxAp(Qz)))z} (Q1,Q2) ~ N(0,2(a, 7))

(9) = E [¢/(Q1)@120 (proxy,(Q2))] 2 2
L |: 2p/(Q1) :| 3= [_’;72 ag’};a—zﬁoﬁ
1+ Ap"(proxy,(Q2))

This system holds lots of keys...
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MLE exists (asymp.) iff (S) has a unique solution




Modern Maximum-Likelihood Theory ~ On the MLE

‘Average’ MLE behavior

Assume MLE exists asymp. ((S) has unique solution (., 0., Ax)).

ﬁj - O‘*ﬁj

(o

Roughly ~ N(0,1)
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Modern Maximum-Likelihood Theory ~ On the MLE

‘Average’ MLE behavior

Assume MLE exists asymp. ((S) has unique solution (., 0., Ax)).

ﬁj - O‘*ﬁj

(o

Roughly ~ N(0,1)

Theorem (S. and Candes '18)

For any bivariate pseudo-Lipschitz function v of order 2,

%Z@”(Bj — ., B;5) — E[Y(0.Z, B)]

where Z ~ N(0,1) and 3 ~ 11 L Z. Recall 1 is weak limit of % >7%_, dg,.
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Modern Maximum-Likelihood Theory ~ On the MLE

Consequence 1: Bias

20.0-
15.0-

10.0-

5.0-

MLE

2.5

-20- - ; 1.0-
-i0 10

0 .
True signal

Bias a, = 1.499
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Modern Maximum-Likelihood Theory ~ On the MLE

Consequence 2: Variance

1\~ (4 2 as,
Y(t,u) =t — I;Z(ﬂj—a*@) 2% 02

Jj=1

Ratio of opand classical std.

20.0-

10.0-

5.0-

2.5

1.0-
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Modern Maximum-Likelihood Theory ~ On the MLE

Consequence 3: confidence intervals

P(t,u) =1{-1.96 < t/o. < 1.96}

p

1 3 a.s.
= D 1{-1.96 < (B; — ;) /o < 1.96} 2% 0.95
j=1
a, - B; & 1.960*]
Oy
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Modern Maximum-Likelihood Theory ~ On the MLE

Consequence 3: confidence intervals

Confidence intervals and MLE

P(t,u) =1{-1.96 < t/o. < 1.96}
P

1 A
= EZ 1{=1.96 < (B; — a.B3;)/0. < 1.96} 2% 0.95
j=1
3. 4+ 1.960,
- ﬂ%]
Qs
30-
15-
o
_as]
a0l
0 200 400 600 800
Index
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Modern Maximum-Likelihood Theory ~ On the MLE

Consequence 3: confidence intervals

P(tu) =1{-1.96 < t/o, < 1.96}
P

|
i
a

1 .
— ]—)Z 1{-1.96 < (B; — a.B;) /0w < 1.96} 2% 0.95
j=1
3 +1.960,
Cly = ,6’3—0]
Qs

|i|J 30-
=
83 s Nominal | Average coverage
: wﬂg‘M‘}J‘{“l‘} ik i 95% 94.63 (0.12)
< i 90% 89.70 (0.16)
8

all B; (200 replicates)

]
w
<

0 200 400 600 800

Pragya Sur (Stanford) Modern Likelihood Theory



Modern Maximum-Likelihood Theory ~ On the MLE

Consequence 4: confidence intervals for which 3; # 0

Confidence intervals and MLE

P(t,u) = 1{-1.96 < t/o. < 1.96}1{u # 0}
= Avejig,20{B; € Clj} =2 0.95

30-
15' Nominal | Average coverage
o 95% 94.11 (0.12)
90% 88.89 (0.16)
-15- I
_a0! o all 8; # 0 (200 replicates)
0 200 400 600 800
Index
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Modern Maximum-Likelihood Theory ~ On the MLE

Distribution of nulls

Theorem (S. and Candes, '18)

For any null variable 8; = 0,
B; % N(0,02).

For any k null variables i, ... i, (Bi,,-..,[:,) is jointly asymp. independent.

Pragya Sur (Stanford) Modern Likelihood Theory



Modern Maximum-Likelihood Theory ~ On the MLE

Distribution of nulls

Theorem (S. and Candes, '18)

For any null variable 8; = 0,

B; % N(0,02).

For any k null variables i, ... i, (Bi,,-..,[:,) is jointly asymp. independent.

Empirical cdf
o o =
(42 ~ o
o [6)] o

o
N
a

0.00 0.25 0.50 0.75 1.00

Figure: Empirical cdf of @(Bj/cr*); n = 4000, p = 400, 7> =5
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Modern Maximum-Likelihood Theory = On the LRT

Distribution of the LRT

Theorem (S. and Candes '18)

Assume MLE exists asymp. ((S) has unique solution (., 0., Ax)).
For a null j, 5; =0,

—21log(LRT;)

Similar extension to groups of k variables.
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Modern Maximum-Likelihood Theory = On the LRT

Distribution of the LRT

Theorem (S. and Candes '18)

Assume MLE exists asymp. ((S) has unique solution (., 04, Ax)).

For a null j, 5; =0,

Kol

—21log(LRT;) S

Similar extension to groups of k variables.

; 2
Rescaling constant KGu/)\u

10.0
5.0

25

1.0
0.0 0.1 O.2K 0.3 0.4
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Modern Maximum-Likelihood Theory = On the LRT

Bulk and tail asymptotics using our correction

1.00-

10000 5075
o
£ ©

3 £0.50
O 5000 g

wo.25

0 0.00_~ | ] ] |
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
P-Values t
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Modern Maximum-Likelihood Theory = On the LRT

Bulk and tail asymptotics using our correction

[y
o
<
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Counts
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Empirical cdf
o
I3
o

o
N
a

o
=}
<

0.00 0.25 0.50 0.75 1.00
P-Values

I
o
S

0.25 0.50 0.75 1.00
t

0.0100
0.0075

-=0.0050

Empirical cdf

0.0025
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0.0000 0.0025 0.0?50 0.0075 0.010

Figure: Histogram and empirical cdfs of p-values under the null
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Modern Maximum-Likelihood Theory Non-Gaussian covariates

Non-Gaussian covariates

P(X;=0)=p; P(X;=1)=2p;(1-p;) P(X;=2)=(1-p;)?
(SNPs in Hardy-Weinberg equilibrium)

MLE

True signal
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Modern Maximum-Likelihood Theory

Non-Gaussian covariates

Non-Gaussian covariates

Empirical cdf
o o =
o ~ o
c a o

I
N
a

(a) Emp. cdf of ®(3,/0.) for null 3

1.00-

Empirical cdf
o o
a ~
o o

I
N
a

(c) Empirical dist. of p-vals from (b)

Pragya Sur (Stanford)

10000

Counts

5000

0

0.00 0.25 0.75 1.00

0.50
P-Values

(b) P-vals from LLR approx. for this null
0.0100-
0.0075-

0.0050-

Empirical cdf

0.0025-

0.0000- 4 ‘ ‘ ‘ ‘
0.0000 0.0025 0.0050 0.0075 0.010
t

(d) Tail behavior of (c)
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Main Mathematical Ideas )




@ MLE phase transition @ Convex geometry—Cover('65),

Amelunxen et al.('13
P{MLE exists} — 0/1 (13)



Mathematical Ingredients

Tools and Inspiration

© MLE phase transition @ Convex geometry—Cover('65),

] Amelunxen et al.('13)
P{MLE exists} — 0/1

@ Average behavior @ Generalized Approximate Message
A Passing, robust M-estimation
Avep(Bj—aufBy, ;) == El(0.Z, B)] (G-AMP)—Rangan ('10),
Javanmard and Montanari ('12),
Donoho and Montanari('13)
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Mathematical Ingredients

Tools and Inspiration

@ MLE phase transition

P{MLE exists} — 0/1

@ Average behavior

Avep(Bj—a.By, B;) =2 E[p(0.Z, B)]

@ Null dist. & LRT
B; % N(0,0?)

Ko? o

-~ X1

*

—21log(LRT;) %

Pragya Sur (Stanford)

@ Convex geometry—Cover('65),
Amelunxen et al.('13)

Generalized Approximate Message
Passing, robust M-estimation
(G-AMP)—Rangan ('10),
Javanmard and Montanari ('12),
Donoho and Montanari('13)

Leave-one-out arguments (robust
M-estimation), non-asymptotic
RMT—EI Karoui('13), El Karoui,
Bean, Bickel, Lim, Yu('13)
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Mathematical Ingredients

Approximate message passing (AMP) for the MLE

@ Consider an iterative algorithm with B as fixed point
@ Track iterates 3! at each stage via state evolution (SE)

@ Show Bt converges to ﬁ in an appropriate sense

DMM ('09), BM ('11), JM ('13), BLM ('15)

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Approximate message passing (AMP) for the MLE

@ Consider an iterative algorithm with ﬁ as fixed point
@ Track iterates ,é't at each stage via state evolution (SE)

@ Show [:It converges to ﬁ in an appropriate sense

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

The algorithm

Update {3!, S*} iteratively (from init. cond. (3°,8° = X 3°)

,ét _ Btfl + IiilX/\I/t(y,Stil)
S'=XpB' -0, 1(y, 8

U, (applied element-wise) depends on scalars {\; }:>0

Uy(y,s) =N 1=y — p'(proxy, ,(Aey + 5))

Can be interpreted as scaled residuals

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Why this algorithm?

Assume \; = A (constant). If {3*, §*} fixed point

X'{y — p'(prox,,(\y + S))} = 0
(Ay + 5*) — M\ (prox,,(\y + S)) = X B*

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Why this algorithm?

Assume \; = A (constant). If {3*, §*} fixed point

X'y — p'(prox,,(\y + S))} =
(Ay + 8*) — M/ (prox,,(\y + S)) =

Prox properties yield

2= A (proxy, () = proxy,(2) = prox,,(Ay +8) = X"

= X'y (Xp)}=0
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Mathematical Ingredients

Why this algorithm?

Assume \; = A (constant). If {3*, §*} fixed point

X'y — p'(prox,,(\y + S))} =
(Ay + 8*) — M/ (prox,,(\y + S)) =

Prox properties yield

2= Mp'(proxy,(2)) = proxy,(2) = prox,,(Ay + §) = X"

= X'y (Xp)}=0

Fixed point 8* obeys KKT conditions (MLE)

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

State evolution

Starting from «, 0, define for t =0,1,...
(1) A solution to
20'(Q1)
1+ Ap”(prox,,(Q%))

(2) updates ay11,0¢41

}:1_,{ (Q4, QL) ~ N(0,%(av, o))

gt = + % E [20/(Q1)Q4 A (prox,, , (Q4))]

o1 = 5 E [20/(Q1) (! (proxs, ,(@4))’]

@ {ay,o4, A} is called the State Evolution sequence.

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

State evolution

Starting from «, 0, define for t =0,1,...
(1) A solution to
20'(Q1)
1+ Ap”(prox,,(Q%))

(2) updates ay11,0¢41

}:1_,{ (Q4, QL) ~ N(0,%(av, o))

gt = + % E [20/(Q1)Q4 A (prox,, , (Q4))]

o1 = 5 E [20/(Q1) (! (proxs, ,(@4))’]

@ {ay,o4, A} is called the State Evolution sequence.

(%, y)-region where MLE exists is where (1)—(2) converge to unique fixed point
(s, 04, A ) /solution to our system

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Marginals via approximate message passing (AMP)

@ Consider an iterative algorithm with ,3 as fixed point
@ Track iterates 3! at each stage via state evolution (SE)

@ Show ,C:)t converges to ﬁ in an appropriate sense

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Correctness of SE

Set ap = (i, 00 = 0%~ Qp = Qy, 0 = 04, A\t = Ay Torall t

Theorem

) |

Assume 3° is s.t.

\‘®/>

1 0
lim f||ﬂ0—a*ﬂ||2 — lim (B

n,p—00 P < n—oo n

:a*

In region where MLE exists, for any pseudo-Lipschitz 1), AMP trajectory obeys

p

D (B — By, B;) 2 Elp(042, B)]

Jj=1

Z~N@O1) LB~ (recall Y20, b5, /p S 10)

3)
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Mathematical Ingredients

Correctness of SE

Set ap = (i, 00 = 0%~ Qp = Qy, 0 = 04, A\t = Ay Torall t

Theorem

) |

Assume 3° is s.t.

\‘®/>

1 0
lim f||ﬂ0—a*ﬂ||2 — lim (B

n,p—00 P < n—oo n

:a*

In region where MLE exists, for any pseudo-Lipschitz 1), AMP trajectory obeys

p

Zw(ﬁﬁ — a.B;, B5) =2 E (0.2, B)] (3)

Jj=1

Z~N@O1) LB~ (recall Y20, b5, /p S 10)

~~ Takeaway: {aw,o.} tracks bias and variance of AMP iterates
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Mathematical Ingredients

Marginals via approximate message passing (AMP)

@ Consider an iterative algorithm with ,3 as fixed point
@ Track iterates ,é't at each stage via state evolution (SE)

@ Show Bf' converges to B in an appropriate sense
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Mathematical Ingredients

Convergence to the MLE

Theorem

) |

Assume 3° is s.t.

lim f||ﬁ07a*ﬁ||2 % lim 8% 8) = .

n,p—00 P Y4 n—oo n

In region where MLE exists

lim lim wa ﬁt a.fj, ) = lim *Ziﬂ — a.fBj,B;)

t—00 n—o0 p n— 00 p
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Mathematical Ingredients

Convergence to the MLE

Theorem

) |

Assume 3° is s.t.

lim f||ﬁ07a*ﬁ||2 % lim 8% 8) = .

n,p—00 P Y4 n—oo n

In region where MLE exists

lim lim wa ﬁt a.fj, ) = lim *Ziﬂ — a.fBj,B;)

t—00 n—o0 p n— 00 p

All info. about large sample bias & variance of Bt may be transferred to MLE

— Bias = o, Variance = o*f
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Mathematical Ingredients

Analysis of LRT

—log LRT; = £(B(_j)) — £(B) =: Q2 + Qs.

n

= 15 (x8) (30, xi5)
=1

Qs = %ipm(%) (X{,_jé—j - X{B)?) Vi € (X]_;B-;,XB)
=1

Pragya Sur (Stanford) Modern Likelihood Theory



Mathematical Ingredients

Analysis of LRT

—log LRT; = £(B(_j)) — £(B) =: Q2 + Qs.

n

= 15 (x8) (30, xi5)
=1

Qs = %ZH:PW(%) (Xz‘/,—j/é—j - X{B)?) Vi € (X]_;B-;,XB)
=1

° B,B_j high-dimensional and dependent.

@ How do we track the differences X .3_; — X357
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Mathematical Ingredients

Leave-one-out representation

@ Replace B by a surrogate, starting from B_j. For instance, if j = 1 is null,

B[]+ o]

@ Call RHS leave-one-out (L-O-O) representation of 3.

@ Carefully tailored choice of surrogate required—problem specific.

Inspired by El Karoui, Bean, Bickel, Lim and Yu ('13), El Karoui('13)
See also cavity method from statistical physics (Zhou's talk)
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Mathematical Ingredients

Leave-one-out representation

@ Replace B by a surrogate, starting from B_j. For instance, if j = 1 is null,

B[]+ o]

@ Call RHS leave-one-out (L-O-O) representation of 3.

@ Carefully tailored choice of surrogate required—problem specific.

Consequence

If 8; =0 and b_; is the L-O-O representation of ,é starting from B,j, w.h.p.

18 = b_j|l < Cn~1/2+e®

sup |X<’7_jf3_j — X!B| < Cn~1/2+e()
1<i<n

Inspired by El Karoui, Bean, Bickel, Lim and Yu ('13), El Karoui('13)
See also cavity method from statistical physics (Zhou's talk)
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1) R — P 3 3
(1) Recall —log LRT; = Q2 + @3, sup;<;<,, | X] ;8- — X/B| < Cn—1/2+0(1)

— Q3 = Op(l)



Mathematical Ingredients

Main steps: LRT

(1) Recall —log LRT; = Q2+ @3, sup;<;<, |X£,_jﬁ:j — X!B| < Cn~1/2te)
= Q3 =op(l)
(2) Use L-O-O representation to simplify Qo

PO 1435]2-

2Q2 := (B - B_;)'VUB)(B - B-;) =
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Mathematical Ingredients

Main steps: LRT

(1) Recall —log LRT; = Q2+ @3, sup;<;<, |X£,_jB,j — X!B| < Cn~1/2te)
= Q3 =op(l)
(2) Use L-O-O representation to simplify Qo

PO K:BJQ-

2Q2 := (B - B_;)'VUB)(B - B-;) =

(3) Analysis of scaling A\l
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Mathematical Ingredients

Main steps: LRT

(1) Recall —log LRT; = Q2+ Q3, sup;<;<, |XZ(’_jij _X;B| < COnp~1/2+0(1)
— Qg e Op(l)

(2) Use L-O-O representation to simplify Qo

K (32
2Qy = (B—B_,)VUB)(B-B;) = Y 7] +op(1)
—J
(3) Analysis of scaling A\l
/\[,j] =Tr |:(V2€_j(,é_j)) :| ﬂ )\*

(4) Use L-O-O representation to analyze null marginals: Bj 4 N(0,02)
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Mathematical Ingredients

Main steps: LRT

(1) Recall —log LRT; = Q2+ Q3, sup;<;<, |XZ(’_jij _X;B| < COnp~1/2+0(1)
— Qg e Op(l)

(2) Use L-O-O representation to simplify Qo

K (32
2Qy = (B—B_,)VUB)(B-B;) = Y 7] +op(1)
—J
(3) Analysis of scaling A\l
/\[,j] =Tr |:(V2€_j(,é_j)) :| ﬂ )\*

(4) Use L-O-O representation to analyze null marginals: Bj 4 N(0,02)

(5) Variance inflation 02 and spread in eigenvalues of Hessian \,
~ rescaling factor ko2 /\,
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Mathematical Ingredients

Recap

System solutions interpretations

@ Introduced system of equations with solutions (., 0, Ax)
@ System was parametrized by k&, .

@ Bias of MLE: «.

@ Variance of MLE: o,

@ LRT distribution: (o, As).
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Mathematical Ingredients

Recap

System solutions interpretations

@ Introduced system of equations with solutions (., 0, Ax)
@ System was parametrized by k&, .

@ Bias of MLE: «.

@ Variance of MLE: o,

@ LRT distribution: (o, As).

But, SNR v is unknown in applications!
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Would need to know dimensionality k and SNR ~y
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Would need to know dimensionality k and SNR ~y
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Would need to know dimensionality k and SNR ~y
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Would need to know dimensionality k and SNR ~y
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Would need to know dimensionality k and SNR ~y

20

0.1 0.2 0.11(3 04 05 06



Would need to know dimensionality k and SNR ~y

20- |




Would need to know dimensionality k and SNR ~y

20

15

=10




1) Subsample

(

(2) Test whether MLE exists via LP =10
(3) Record transition point

(

4) Read off ¥

0.1 02 0.1:3 04 05 06

Acknowledgement: Discussions between E. Candeés, R. Barber and B. Nadler
(Oberwolfach, March 2018)



ProbeFrontier: Towards Accurate Inference

Empirical performance: null LLR p-values

A
=
o
Q

N
P-vals based on k8%/A
o o
(1] ~
S

o
)
a

o
o
Q

0.00 0.25 0.50 0.75 1.00
P-values based on Koé/)\g
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ProbeFrontier: Towards Accurate Inference

Empirical performance: null LLR p-values

1.00- 0.0100
%50.75- %0.0075-
(] o

T T

-20.50 -20.0050-
= 3

£ £

i 0.25- ui0.0025

0.00_~ ] ‘ ] ] 0.0000-
000 025 050 075  1.00 0.0000 0.0025 0.0350 0.0075 0.010
t

Extreme tail
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ProbeFrontier: Towards Accurate Inference

Empirical performance: de-biasing the MLE

MLE
I o o [y
IS =) o o

Probabilities (True and predicted)
o
o

-20

o
=)

-10 0 ] 10
True signal

o, = 1.499 (red line) and ProbeFrontier gives & = 1.511 (green line)
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Summary

Summary and future research

Asymptotic normality of MLE marginals

@ Asymptotically exact quantification of MLE bias and variance

(]

Asymptotic distribution of the LRT, valid p-values
@ Extremely accurate in finite samples

@ Estimation of unknown parameters for practical applications
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Summary

Summary and future research

Asymptotic normality of MLE marginals

@ Asymptotically exact quantification of MLE bias and variance

(]

Asymptotic distribution of the LRT, valid p-values
@ Extremely accurate in finite samples

@ Estimation of unknown parameters for practical applications

Open questions | Decorr. | Corr.

@ Penalized estimators? (Ongoing)

B =0 (SCC, '17) < <
@ Correlated covariates?

@ Other GLMs ? B#0(SC '18) | (2
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Thank You!

All papers available at: https://web.stanford.edu/~pragya/
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