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Warm-up

Consider the following dynamic problem:

• edges are inserted into an initially empty graph G on n vertices

• must output a spanning forest when queried

Goal: minimize space

Space complexity: Θ(n log n) bits

• maintain list of edges in the spanning forest: O(n log n)

• when the final graph is a tree itself, have to output the whole

graph: Ω(n log n)

what if we allow edge deletions?
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Fully dynamic spanning forest

Maintain a dynamic graph on n vertices, supporting

• edge insertions,

• edge deletions, and

• spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor’12)

... solvable using O(n log3 n) bits of space with error probability

1/poly(n).

only two more log factors! why two more?
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Main result I

Theorem (This paper)

Any data structure for fully dynamic spanning forest with error

probability δ must use Ω(n log(n/δ) log2 n) bits of memory, for

any 2−n
0.99

< δ < 0.99.

δ is a constant =⇒ Ω(n log3 n) bits of space:

need exactly two more log factors!
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Simultaneous communication

The [Ahn, Guha, McGregor’12] solution also solves the following

n-player communication problem

A (fixed) graph on n vertices is given to n players w. shared

randomness:

• each player only sees one vertex and its neighborhood

• each player sends a message to a referee

• referee outputs a spanning forest w.p. 1− δ

Goal: minimize communication

(compute a global function given small “sketches” of “local

information”)
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AGM sketch for simultaneous communication

A graph on n vertices is given to n players w. shared randomness:

• each player only sees one vertex and its neighborhood

• each player sends a message to a referee

• referee outputs a spanning forest w.p. 1− δ

Goal: minimize communication

Theorem (AGM’12)

... solvable using (worst-case) O(log(n/δ) log2 n) bits of

communication per player with error probability δ.

Trivial: Ω(log n) since the referee has to learn Ω(n log n) bits
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Main result II

Theorem (This paper)

Any simultaneous communication protocol for spanning forest

with error probability 0.99 must use Ω(log3 n) bits of

communication on average.

exactly two more log factors needed than the trivial information

theoretical lower bound

Open: higher lower bounds when error probability δ is lower?
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Graph sketching for spanning forest

[AGM’12] designed a (randomized) linear sketch:

S : Nn2 → NO(n log2 n)

such that

• S is a linear mapping with poly-bounded coefficients

• S(G ) is a concatenation of S1(G ), S2(G ), . . . ,Sn(G ),

each Si (G ) has O(log2 n) dimensions,

and it is computed from the neighborhood of vertex i

• S(G ) determines a spanning forest with probability 1− 1/nc
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Streaming algorithm

Store S(G ) in memory:

• update: S(G ± (u, v)) = S(G )± S((u, v))

• at end of stream: S(G ) determines a spanning forest w.h.p.

Use O(n log3 n) bits of space

8



Communication protocol

Given graph G :

• Player i computes Si (G ), and sends it to referee

• referee concatenates all Si (G ), obtains S(G )

• referee outputs a spanning forest w.h.p.

Use O(log3 n) bits of communication per player
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Simultaneous communication

complexity of spanning forest
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Recall...

An n-vertex graph is given to n players with shared randomness:

• each player only sees one vertex and its neighborhood

• each player sends a message to a referee

• referee outputs a spanning forest w.p. 1− δ

Goal: prove an average player must send Ω(log3 n) bits for

constant δ

Starting point: Universal Relation UR⊃...
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Universal Relation UR⊃

shared random bits...

Alice: S ⊆ [n] Bob: T ⊂ S
M

output any x ∈ S \ T

Theorem (KNPWWY’17)

For failure probability δ > 2−n
0.99

, the optimal length of M is

Θ(log(1/δ) log2 n).

In particular, 1/nc failure probability, optimal length is Θ(log3 n).
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Connection to UR⊃

v

u1

u2 · · ·
uk

referee
Mv

v is only neighbor

S : neighbors of v T : vertices that v is only neighbor

Referee has to find some element in S \ T .

Why not already an Ω(log3 n) LB? Mu1 may also reveal (v , u1)...
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Hard instances

n1−ε

|Vr | = nε

nε

Vi
vi

vertices randomly permuted

Si
Ti

For vertex vi , its neighbors encode set Si , its neighbors on the left

encode set Ti .

Spanning forest contains an edge between vi and Vr .
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Hard distribution

Generating hard instances:

1. Fix {vi} arbitrarily, randomly partition the rest into {Vi}, Vr ;

2. For each vi , generate Si ,Ti from hard distribution for UR⊃;

3. Connect each vi to |Ti | random vertices in Vi ;

4. Connect each vi to |Si \ Ti | random vertices in Vr .

Vr

Vi
vi

Ti Si

15
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Reduction from UR⊃

Make a reduction from UR⊃, main idea to solve UR⊃:

embed input (S ,T ) into one of (Si ,Ti),

then simulate the spanning forest protocol.

Goals:

1. Generate a graph G that “looks like” a hard instance

2. Spanning forest tells us an element in S \ T
3. Low communication cost and preserve success probability

16
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Solving UR⊃

Given (S ,T ) over universe [nε], generate a random graph G :

1. Sample a random vi , a random injection f : [nε]→ V \ {vi}i

2. Connect vi to f (S)

3. Vi := f (T ) ∪ (nε − |T | other vertices)
4. Vr := f ([nε] \ T ) ∪ (|T | other vertices)
5. Randomly partition other vertices into V1, . . . ,Vi−1,Vi+1, . . .,

sample the neighborhoods of v1, . . . , vi−1, vi+1, . . .

vi

Vi

f (T )

Vr = f ([nε] \ T ) ∪ (|T | other vertices)

f (S)

17
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UR⊃ protocol

Given (S ,T ) over universe [nε]

A: send Mvi based on f (S)

B: analyze the distribution of G conditioned on f ,T ,Mvi

B: find u ∈ Vr that is a neighbor of vi with the highest prob.,

output f −1(u)

Vr = f ([nε] \ T ) ∪ (|T | other vertices)

Vi

vi
f (T )

f (S)

18



Analyzing the protocol

The protocol for UR⊃ has

• communication cost |Mvi |, and

• failure probability ≤ δ + 1/n0.1.

By [KNPWWY’17], |Mvi | ≥ Ω(log(1/δ) log2 n)

(Ω(log3 n) lower bound when δ = 1/nc)
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Open question

Lower bounds for simultaneous communication when error

probability is small? Ω(log(n/δ) log2 n)?

Proving the same lower bounds for maintaining connected

components? and for connectivity: “if the whole graph is

connected”?

Thank you!
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