Optimal Lower Bounds for Distributed and Streaming Spanning Forest Computation

Huacheng Yu Oct 18, 2018

Harvard University

Joint work with Jelani Nelson

Consider the following dynamic problem:

• edges are inserted into an initially empty graph G on n vertices

Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Goal: minimize space

Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Goal: minimize space

Space complexity: $\Theta(n \log n)$ bits

- maintain list of edges in the spanning forest: $O(n \log n)$
- when the final graph is a tree itself, have to output the whole graph: Ω(n log n)

Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Goal: minimize space

Space complexity: $\Theta(n \log n)$ bits

- maintain list of edges in the spanning forest: $O(n \log n)$
- when the final graph is a tree itself, have to output the whole graph: Ω(n log n)

what if we allow edge deletions?

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor'12) ... solvable using $O(n \log^3 n)$ bits of space with error probability 1/poly(n).

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor'12) ... solvable using $O(n \log^3 n)$ bits of space with error probability 1/poly(n).

only two more log factors!

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor'12) ... solvable using $O(n \log(n/\delta) \log^2 n)$ bits of space with error probability δ .

only two more log factors!

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor'12) ... solvable using $O(n \log(n/\delta) \log^2 n)$ bits of space with error probability δ .

only two more log factors! why two more?

Any data structure for fully dynamic spanning forest with error probability δ must use $\Omega(n \log(n/\delta) \log^2 n)$ bits of memory, for any $2^{-n^{0.99}} < \delta < 0.99$.

Any data structure for fully dynamic spanning forest with error probability δ must use $\Omega(n \log(n/\delta) \log^2 n)$ bits of memory, for any $2^{-n^{0.99}} < \delta < 0.99$.

 δ is a constant $\Longrightarrow \Omega(n \log^3 n)$ bits of space: need exactly two more log factors!

The [Ahn, Guha, McGregor'12] solution also solves the following *n*-player communication problem

The [Ahn, Guha, McGregor'12] solution also solves the following *n*-player communication problem

A (fixed) graph on *n* vertices is given to *n* players w. shared randomness:

• each player only sees one vertex and its neighborhood

The [Ahn, Guha, McGregor'12] solution also solves the following *n*-player communication problem

A (fixed) graph on *n* vertices is given to *n* players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee

The [Ahn, Guha, McGregor'12] solution also solves the following *n*-player communication problem

A (fixed) graph on *n* vertices is given to *n* players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

The [Ahn, Guha, McGregor'12] solution also solves the following *n*-player communication problem

A (fixed) graph on *n* vertices is given to *n* players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

Goal: minimize communication

The [Ahn, Guha, McGregor'12] solution also solves the following *n*-player communication problem

A (fixed) graph on *n* vertices is given to *n* players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

Goal: minimize communication

(compute a global function given small "sketches" of "local information")

AGM sketch for simultaneous communication

A graph on n vertices is given to n players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

Goal: minimize communication

AGM sketch for simultaneous communication

A graph on n vertices is given to n players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

Goal: minimize communication

Theorem (AGM'12)

... solvable using (worst-case) $O(\log(n/\delta)\log^2 n)$ bits of communication per player with error probability δ .

AGM sketch for simultaneous communication

A graph on n vertices is given to n players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

Goal: minimize communication

Theorem (AGM'12)

... solvable using (worst-case) $O(\log(n/\delta)\log^2 n)$ bits of communication per player with error probability δ .

Trivial: $\Omega(\log n)$ since the referee has to learn $\Omega(n \log n)$ bits

Any simultaneous communication protocol for spanning forest with error probability 0.99 must use $\Omega(\log^3 n)$ bits of communication on average.

Any simultaneous communication protocol for spanning forest with error probability 0.99 must use $\Omega(\log^3 n)$ bits of communication on average.

exactly two more log factors needed than the trivial information theoretical lower bound

Any simultaneous communication protocol for spanning forest with error probability 0.99 must use $\Omega(\log^3 n)$ bits of communication on average.

exactly two more log factors needed than the trivial information theoretical lower bound

Open: higher lower bounds when error probability δ is lower?

$$S: \mathbb{N}^{n^2} \to \mathbb{N}^{O(n\log^2 n)}$$

such that

$$S: \mathbb{N}^{n^2} \to \mathbb{N}^{O(n\log^2 n)}$$

such that

• **S** is a linear mapping with poly-bounded coefficients

$$S: \mathbb{N}^{n^2} \to \mathbb{N}^{O(n\log^2 n)}$$

such that

- S is a linear mapping with poly-bounded coefficients
- S(G) is a concatenation of S₁(G), S₂(G), ..., S_n(G), each S_i(G) has O(log² n) dimensions, and it is computed from the neighborhood of vertex i

$$S: \mathbb{N}^{n^2} \to \mathbb{N}^{O(n\log^2 n)}$$

such that

- S is a linear mapping with poly-bounded coefficients
- S(G) is a concatenation of S₁(G), S₂(G),..., S_n(G), each S_i(G) has O(log² n) dimensions, and it is computed from the neighborhood of vertex i
- S(G) determines a spanning forest with probability $1 1/n^c$

Store S(G) in memory:

- update: $S(G \pm (u, v)) = S(G) \pm S((u, v))$
- at end of stream: S(G) determines a spanning forest w.h.p.

Use $O(n \log^3 n)$ bits of space

Given graph G:

- Player *i* computes $S_i(G)$, and sends it to referee
- referee concatenates all $S_i(G)$, obtains S(G)
- referee outputs a spanning forest w.h.p.

Use $O(\log^3 n)$ bits of communication per player

Simultaneous communication complexity of spanning forest

An n-vertex graph is given to n players with shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. 1δ

Goal: prove an average player must send $\Omega(\log^3 n)$ bits for constant δ

An n-vertex graph is given to n players with shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

Goal: prove some player must send $\Omega(\log^3 n)$ bits for $\delta = 1/n^c$

An n-vertex graph is given to n players with shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1-\delta$

Goal: prove some player must send $\Omega(\log^3 n)$ bits for $\delta = 1/n^c$

Starting point: Universal Relation UR^{\supset} ...

Universal Relation UR[⊃]

Universal Relation UR[⊃]

Theorem (KNPWWY'17)

For failure probability $\delta > 2^{-n^{0.99}}$, the optimal length of M is $\Theta(\log(1/\delta)\log^2 n)$.
Universal Relation UR[⊃]

Theorem (KNPWWY'17)

For failure probability $\delta > 2^{-n^{0.99}}$, the optimal length of M is $\Theta(\log(1/\delta)\log^2 n)$.

In particular, $1/n^c$ failure probability, optimal length is $\Theta(\log^3 n)$.

Referee has to find some element in $S \setminus T$.

Referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB?

Referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB? M_{u_1} may also reveal $(v, u_1)...$

vertices randomly permuted

vertices randomly permuted

For vertex v_i , its neighbors encode set S_i

vertices randomly permuted

For vertex v_i , its neighbors encode set S_i , its neighbors on the left encode set T_i .

vertices randomly permuted

For vertex v_i , its neighbors encode set S_i , its neighbors on the left encode set T_i .

Spanning forest contains an edge between v_i and V_r .

Hard distribution

Generating hard instances:

1. Fix $\{v_i\}$ arbitrarily, randomly partition the rest into $\{V_i\}$, V_r ;

Hard distribution

Generating hard instances:

Fix {v_i} arbitrarily, randomly partition the rest into {V_i}, V_r;
For each v_i, generate S_i, T_i from hard distribution for UR[⊃];

Hard distribution

Generating hard instances:

- 1. Fix $\{v_i\}$ arbitrarily, randomly partition the rest into $\{V_i\}$, V_r ;
- 2. For each v_i , generate S_i , T_i from hard distribution for UR^{\supset};
- 3. Connect each v_i to $|T_i|$ random vertices in V_i ;
- 4. Connect each v_i to $|S_i \setminus T_i|$ random vertices in V_r .

embed input (S, T) into one of (S_i, T_i) ,

then simulate the spanning forest protocol.

embed input (S, T) into one of (S_i, T_i) ,

then simulate the spanning forest protocol.

Goals:

1. Generate a graph G that "looks like" a hard instance

embed input (S, T) into one of (S_i, T_i) ,

then simulate the spanning forest protocol.

Goals:

- 1. Generate a graph G that "looks like" a hard instance
- 2. Spanning forest tells us an element in $S \setminus T$

embed input (S, T) into one of (S_i, T_i) ,

then simulate the spanning forest protocol.

Goals:

- 1. Generate a graph G that "looks like" a hard instance
- 2. Spanning forest tells us an element in $S \setminus T$
- 3. Low communication cost and preserve success probability

Given (S, T) over universe $[n^{\epsilon}]$, generate a random graph G:

1. Sample a random v_i , a random injection $f : [n^{\epsilon}] \rightarrow V \setminus \{v_i\}_i$

Solving UR^{\supset}

- 1. Sample a random v_i , a random injection $f : [n^{\epsilon}] \rightarrow V \setminus \{v_i\}_i$
- 2. Connect v_i to f(S)

Solving UR^{\supset}

- 1. Sample a random v_i , a random injection $f : [n^{\epsilon}] \rightarrow V \setminus \{v_i\}_i$
- 2. Connect v_i to f(S)
- 3. $V_i := f(T) \cup (n^{\epsilon} |T| \text{ other vertices})$

Solving UR[⊃]

- 1. Sample a random v_i , a random injection $f: [n^{\epsilon}] \to V \setminus \{v_i\}_i$
- 2. Connect v_i to $f(\mathbf{S})$
- 3. $V_i := f(T) \cup (n^{\epsilon} |T| \text{ other vertices})$
- 4. $V_r := f([n^{\epsilon}] \setminus T) \cup (|T| \text{ other vertices})$

Solving UR[⊃]

- 1. Sample a random v_i , a random injection $f : [n^{\epsilon}] \rightarrow V \setminus \{v_i\}_i$
- 2. Connect v_i to f(S)
- 3. $V_i := f(T) \cup (n^{\epsilon} |T| \text{ other vertices})$
- 4. $V_r := f([n^{\epsilon}] \setminus T) \cup (|T| \text{ other vertices})$
- 5. Randomly partition other vertices into $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots$, sample the neighborhoods of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots$

Solving UR^{\supset}

Given (S, T) over universe $[n^{\epsilon}]$, generate a random graph G:

- 1. Sample a random v_i , a random injection $f : [n^{\epsilon}] \rightarrow V \setminus \{v_i\}_i$
- 2. Connect v_i to f(S)
- 3. $V_i := f(T) \cup (n^{\epsilon} |T| \text{ other vertices})$
- 4. $V_r := f([n^{\epsilon}] \setminus T) \cup (|T| \text{ other vertices})$
- 5. Randomly partition other vertices into $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots$, sample the neighborhoods of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots$

Distribution of G is the hard distribution.

Solving UR^{\supset}

Given (S, T) over universe $[n^{\epsilon}]$, generate a random graph G:

- 1. Sample a random v_i , a random injection $f: [n^{\epsilon}] \to V \setminus \{v_i\}_i$
- 2. Connect v_i to $f(\mathbf{5})$
- 3. $V_i := f(T) \cup (n^{\epsilon} |T| \text{ other vertices})$
- 4. $V_r := f([n^{\epsilon}] \setminus T) \cup (|T| \text{ other vertices})$
- 5. Randomly partition other vertices into $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots$, sample the neighborhoods of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots$

Distribution of G is the hard distribution.

Let u be one v_i 's neighbor in V_r , then $f^{-1}(u) \in S \setminus T$.

$\mathsf{U}\mathsf{R}^{\supset} \text{ protocol}$

Given (S, T) over universe $[n^{\epsilon}]$

- A: send M_{v_i} based on f(S)
- **B**: analyze the distribution of *G* conditioned on f, T, M_{v_i}
- B: find $u \in V_r$ that is a neighbor of v_i with the highest prob., output $f^{-1}(u)$

The protocol for UR^{\supset} has

- communication cost $|M_{v_i}|$, and
- failure probability $\leq \delta + 1/n^{0.1}$.

By [KNPWWY'17], $|M_{v_i}| \ge \Omega(\log(1/\delta)\log^2 n)$

 $(\Omega(\log^3 n)$ lower bound when $\delta = 1/n^c$)

Lower bounds for simultaneous communication when error probability is small? $\Omega(\log(n/\delta) \log^2 n)$?

Lower bounds for simultaneous communication when error probability is small? $\Omega(\log(n/\delta) \log^2 n)$?

Proving the same lower bounds for maintaining connected components? and for connectivity: "if the whole graph is connected"?

Lower bounds for simultaneous communication when error probability is small? $\Omega(\log(n/\delta) \log^2 n)$?

Proving the same lower bounds for maintaining connected components? and for connectivity: "if the whole graph is connected"?

Thank you!