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Direct Sum Theorems

[Does computing f(x) on k copies scale with k? J

Direct Sum Theorem: Computing k copies of f

requires k times the resources

Direct Product Theorem: Success prob. of

computing k copies of f with << k resources is 2-Q(k)

(Strong Direct Sum: computing k copies of f(x) requires
k*log(k) times the resources

. J




Query Complexity

aka Decision Tree Complexity

Decision Tree for f: {0,1} — {0,1}:
- internal nodes labeled w/input bits xi
- leaves labeled w/output or ABORT
-+ cost(T): depth of T == worst-case #queries

Randomized DT:
- distribution A on decision trees
- cost(A) = maxr cost(T)

Distributional QC D;.:(f) : min cost(T) s.t. Pr[abort] < 6 and Pr[error] < ¢

Randomized QC R;:(f): minimum cost of randomized algorithm s.t.
Pr[abort] < 6 and Pr[error] < €

( (g, 0, €)-algorithm: g queries, abort prob. 5, error prob. e)




Query Complexity w/aborts

[Minimax Lemma: D.;.:(f) = Rs(f) = D}2.2(f)

[Error Reduction: R..,...(f) = O(log(t)R....())

N/




Previous Work

[MWY13, MWY15]:
- strong direct sum for information complexity w/aborts + error
- applications for streaming/sketching algorithms

[Druckeri2]:
» direct product theorems for randomized query complexity

[GPW15, ABBLSS17]:
- query complexity separations based on pointer functions
+ polynomial separation Ro(f) vs R:(f)

(Theorem: Suppose any T-query algorithm computing f has
success < 1-g under p. Then, any (¢Tk)/2-query algorithm for

computing fk has success < (1-/2)k under pk [Drucker 12]
. J




Our Results

[Strong Direct Sum Theorem: DB’,ks(fk) = Q(kD'1/5.40¢/(f))

(Scaling with £: Thereis f: {0,1}N — {0,1} such that for all
g > 2-oaN)*2 , we have R;.(f)= ©(N’log(1/¢))

.

[Corollary: There is f such that R:(fk) = Q(klog(k)R«(f))

(Query-resistant codes: probabilistic encoding G: = —{0,1}N
such that N/2 bits of G(x) needed to learn anything about x
g




Query Resistant Codes

Definition: a 6N-query resistant code of Z is a set of distribs {G(x)}
- For each x e Z, G(x) is a distribution on {0,1}N
- { support(G(x)) : x e Z} partition {O0,1}N
- For all S ¢ [N] with [S| < 6N, all z € {0,1}Sl and all x # x’,

distributions G(x), G(x’) conditioned on S-bits = z are equal
- “decoding function” h(y) := x iff y € support(G(x))

\

(Lemma: For any Z, there is a (N/2)-query resistant code
with N = |Z|. Furthermore, conditional distributions

G(x)|s=z are uniform.
.




Query Resistance

For f: 2n —+{0,1}, define F : {O,1}"N —{0,1} as:
F(y1,---,Yn) = f(h(Y1),, h(yn))

[Theorem: R3:(f) < (2/N)R:«(F) ]

Proof: Let A be a (q, o, £)-algorithm for F.

Algorithm B(x1,..,%Xn) {
emulate A(G(x1),..,G(Xn))
when A queries G(xi) for kth time:
if k N/2, sample G(xi) cond. on prev. queries

if k N/2, sample x;
if k =2 N/2, sample G(xi) cond. on prev. history.




Functions

GaplD: {0,1}» —{0,1}.

— — n —

(Conclusion: R..(EncFcn) = (N/2) Reell,.(PtrFcn)
> (N/2) R..(BlueRed)
> (Nm/14) R....-(GapID)

> Q(Nmlog(1/g))

-+ BlueRed(y) = 0O if half colored entries Red, half Blue
+ theorem: R....(GaplD) < (7/m)*R..(BlueRed)

Theorem: R..(EncFcn) = O(Nmlog(1/¢)) [ABBLSS17]J

EncFcn: query resistant code+PtrFcn
- theorem: Reell,.(PtrFcn) < (2/N)R..(EncFcn)



GaplD Lower Bound

[Theorem: R..(GapID) = Q(log(1/€))

Hard Distribution X ~ p:
w/prob o := max(s, 1.001¢g), X=0n

w/prob 7-a, X uniform on |x|=n/2

Fix (log((7-x)/€),6,€)-algorithm T for GaplD
wlog output NO if Xi =1 queried

When all queries = 0:

- abort: Pr[abort] > ax =6

- output O: Prlerror] = a > ¢

- output 1: Pr[error] = (1-a)2-9 > ¢

[In all cases, abort prob. > 6 or error prob. > ¢.




BlueRed Lower Bound

[Theorem: R...(GaplD) < (7/m)*R.(BlueRed)

Emulate (q,0,€)-algorithm A for BlueRed

- each colored entry in uniform row

- pick each ij € [m] uniformly

- map 0 =& Red, 1— Blue

- abort if A queries > 7g/m colored entries

[Claim: Pr[> 7a/m colored entries probed] < 1/10.




BlueRed Lower Bound

[Claim: Pr[> 7a/m colored entries probed] < 1/10.

* For any column, Pr[colored entry found on k-th query] = 1/m
- For any leaf w/t colored entries found, Pr[leaf] < m-t
- there are {q choose t} leaves w/t colored entries found

Pr[> 7g/m colored entries] < Z:- 7¢m {q choose t}m-t
< 2t>7q/m (€/mt)t
< 2t>7q/m (€/7)t
< 1/10.



PtrFcn Lower Bound

[Theorem: R..(BlueRed) < Reell, (PtrFcn)

Partially emulate (q,0,&)-algorithm A for PtrFcn:

- map Black — [1,1,1...,1]
- map Red = [0,1,1...,1]
- Blue: halt, output NO

Claim: Let x e BlueRed-1(0). Then Pr[no Blue entries queried] < 2¢
Proof:

- Let z € PtrFcn-1(1) be consistent with x.

- 2z’ := z, w/value of special entry = 0.

- A(z)=A(Z’) unless special entry queried.

- Pr[no blue entries queried] < Pr[special entry not queried] < 2¢



[Strong Direct Sum Theorem: Di:(fk) = (kD150 /k(f))

Let A be an g-error algorithm for fk.

Lety = (V1,..., VK).
Embedl(y,i,x) :=y, w/i-th coord replaced by x.

Algorithm B(x) {
carefully select y,1i
emulate A(EMBED(y,1,Xx))

abort if problems found

}




[Strong Direct Sum Theorem: Dg,k.c_(fk) = (kD1/5.50¢/k())

1-¢ < PrlA(Y) = f&(Y)] = ﬁ PrIA(Y)i = f<(Y)i | A(Y)<i = f<(Y)<]

Y ~pk
- at least 2k/3 i give Pr[A(Y)i = f&(Y)i | A(Y)<i = f&(Y)<i]l =10 e/k (1)
- qi(Y): # queries of Y]
- q = Zi Ev[qi(Y)] = = 2k/3 i have E[qi(Y)] < 3a/k (2)

Fix i* to get (1) and (2). Y* := Embed(Y,i*,x).

This 1* satisfies:

1. Ev~uk[ Prx~u[A(Y*)<i 2 TK(Y*)<i]l 1 < €

2. Ev[Prx-u[A(Y*)i # fk(Y*)i| A(Y)<i = fk(Y)<i] < 10 €/k
3. Ev[ Ex[qi(Y*)]] = 3g/k



[Strong Direct Sum Theorem: D):(fk) = Q(kD'i/5.10¢/k()) ]

This 1* satisfies:

1. Ev~uk[ Prx~p[A(Y*)<i # FX(Y*)<i] ] = €

2. Ev[Prx-u[A(Y*)i # Tk(Y*)i| A(Y)<i = f%(Y)«i] < 10 €/k
3. Ev[ Ex[qi(Y*)] ] =3d/k

Markov Inequality: there is y* such that

1. Prx-p[A(Y*)«i # fK(Y*)<i] =< 4e

2. Pre-u[A(Y*)i # f&(Y*)i| A(Y)<i = fK(Y)<«i] < 40 €/k

3. Ex [qi(Y*)] = 12g9/k

Algorithm B(x) {
z := EMBED(y*,i*,x)
emulate A(z)

rabort probability: 1/10 + 4 < 1/5 1

CLEPARR R I CA IR ¥ L L2 3 | error probability: 40¢/k
abort if A(z)<i+ # fk(z)<ir N J




Open Problems

1. Give a more efficient query resistant code
2. Characterize tunctions robust to aborts
3. Strong Direct Sum for Composed Functions

4. How does R;«(f) compare to other QC measures?



Thanks!
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(Fact: If f ¢ ACCPO then f has NOF protocol with poly(log n) )
communication and k = poly(log n) players

. J

R..(GaplD)




