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Direct Sum Theorems

Direct Sum Theorem: Computing k copies of f 

requires k times the resources

Direct Product Theorem: Success prob. of 

computing k copies of f with << k resources is 2-Ω(k)

Does computing f(x) on k copies scale with k?

Strong Direct Sum: computing k copies of f(x) requires 
k*log(k) times the resources



Query Complexity
aka Decision Tree Complexity

Decision Tree for f: {0,1}n → {0,1}: 
• internal nodes labeled w/input bits xi 
• leaves labeled w/output or ABORT

• cost(T): depth of T == worst-case #queries


Randomized DT: 
• distribution A on decision trees

• cost(A) = maxT cost(T)

Distributional QC           :  min cost(T) s.t.  Pr[abort] ≤ 𝛿 and Pr[error] ≤ εD𝛿,ε(f)μ

Randomized QC           :  minimum cost of randomized algorithm s.t.

Pr[abort] ≤ 𝛿 and Pr[error] ≤ ε

R𝛿,ε(f)

(q, 𝛿, ε)-algorithm:  q queries, abort prob. 𝛿,  error prob. ε

x1

x3

x8

0

0

1

abort



Query Complexity w/aborts
Minimax Lemma: D2𝛿,2ε(f)μ D𝛿/2,ε/2(f)μ≤ R𝛿,ε(f) ≤

Error Reduction: R            (f) ≤ O(log(t)R1/2, 1/3(f)) O(1/t, O(1/t)



Previous Work
[MWY13, MWY15]: 
• strong direct sum for information complexity w/aborts + error 
• applications for streaming/sketching algorithms


[Drucker12]: 
• direct product theorems for randomized query complexity


[GPW15, ABBLSS17]: 
• query complexity separations based on pointer functions 
• polynomial separation R0(f) vs Rε(f)

Theorem:  Suppose any T-query algorithm computing f has 
success ≤ 1-ε under μ.  Then, any (εTk)/2-query algorithm for 
computing fk has success < (1-ε/2)k under μk             [Drucker 12]



Our Results
Strong Direct Sum Theorem:  D0,ε(fk) = Ω(kD1/5,40ε/k(f)) μk μ

Scaling with ε:  There is f : {0,1}N → {0,1} such that for all   
ε > 2-log(N)^2 , we have R       = ϴ(N’log(1/ε)) 𝛿,ε(f)

Corollary:  There is f such that Rε(fk) = 𝛀(klog(k)Rε(f))

Query-resistant codes:  probabilistic encoding G: Σ →{0,1}N 
such that N/2 bits of G(x) needed to learn anything about x



Query Resistant Codes
Definition: a 𝛿N-query resistant code of Σ is a set of distribs {G(x)}

• For each x ϵ Σ, G(x) is a distribution on {0,1}N 
• { support(G(x)) : x ϵ Σ} partition {0,1}N

• For all S ⊆ [N] with |S| ≤ 𝛿N, all z ϵ {0,1}|S| and all x ≠ x’,  

distributions G(x), G(x’) conditioned on S-bits = z are equal

• “decoding function” h(y) := x iff y ϵ support(G(x)) 

Lemma: For any Σ, there is a (N/2)-query resistant code 
with N = |Σ|.  Furthermore, conditional distributions 

G(x)|S=z are uniform.



Query Resistance
For f : Σn →{0,1}, define F : {0,1}nN →{0,1} as: 


                             F(y1,…,yn) := f(h(y1),…, h(yn))

Theorem: R𝛿,ε(f) ≤ (2/N)R𝛿,ε(F)cell

Proof:  Let A be a (q, 𝛿, ε)-algorithm for F.
Algorithm B(x1,…,xn) {
  emulate A(G(x1),…,G(xn))
  when A queries G(xi) for kth time:
    if k < N/2, sample G(xi) cond. on prev. queries
    if k = N/2, sample xi
    if k ≥ N/2, sample G(xi) cond. on prev. history.
}



GapID: {0,1}n →{0,1}.  

• GapID(x) = 1 if x = 0n, 0 if |x|=n/2 
• theorem: R𝛿,ε(GapID) = Ω(log(1/ε)) 

BlueRed: {Black,Blue,Red}mn →{0,1} 
• promise: each column has unique colored (nonblack) entry

• BlueRed(y) = 1 if all colored entries Red

• BlueRed(y) = 0 if half colored entries Red, half Blue

• theorem: R𝛿+0.1,ε(GapID) ≤ (7/m)*R𝛿,ε(BlueRed) 

PtrFcn: see board 
• theorem: R𝛿,2ε(BlueRed) ≤ Rcell𝛿,ε(PtrFcn) 

EncFcn: query resistant code+PtrFcn 
• theorem: Rcell𝛿,ε(PtrFcn) ≤ (2/N)R𝛿,ε(EncFcn)

Functions

Conclusion: R𝛿,ε(EncFcn) ≥ (N/2) Rcell𝛿,ε(PtrFcn)  
                         ≥ (N/2) R𝛿,2ε(BlueRed) 
                         ≥ (Nm/14) R𝛿+0.1,2ε(GapID) 
                         ≥ 𝛀(Nmlog(1/ε)) 

Theorem: R0,ε(EncFcn) = O(Nmlog(1/ε))               [ABBLSS17]



GapID Lower Bound
Theorem: R𝛿,ε(GapID) = Ω(log(1/ε))

In all cases,  abort prob. > 𝛿 or error prob. > ε .  

Hard Distribution X ~ μ:

  w/prob 𝛂 := max(𝛿, 1.001ε), X=0n

  w/prob 1-𝛂, X uniform on |x|=n/2
Fix (log((1-𝛂)/ε),𝛿,ε)-algorithm T for GapID

  wlog output NO if Xi =1 queried
When all queries = 0:

• abort:  Pr[abort] > 𝛂 ≥ 𝛿 
• output 0: Pr[error] = 𝛂 > ε   
• output 1: Pr[error] ≅ (1-𝛂)2-q > ε



BlueRed Lower Bound
Theorem: R𝛿+0.1,ε(GapID) ≤ (7/m)*R𝛿,ε(BlueRed)

Claim:  Pr[> 7q/m colored entries probed] ≤ 1/10.  

 Emulate (q,𝛿,ε)-algorithm A for BlueRed 

• each colored entry in uniform row

• pick each ij ϵ [m] uniformly

• map 0 → Red, 1→ Blue 
• abort if A queries > 7q/m colored entries



Claim:  Pr[> 7q/m colored entries probed] ≤ 1/10.  

BlueRed Lower Bound

• For any column, Pr[colored entry found on k-th query] = 1/m 
• For any leaf w/t colored entries found, Pr[leaf] ≤ m-t

• there are {q choose t} leaves w/t colored entries found

Pr[> 7q/m colored entries] ≤ Σt > 7q/m {q choose t}m-t 
                                              ≤ Σt > 7q/m (qe/mt)t 
                                              < Σt > 7q/m (e/7)t 
                                              < 1/10.



PtrFcn Lower Bound
Theorem: R𝛿,2ε(BlueRed) ≤ Rcell

𝛿,ε(PtrFcn)

 Partially emulate (q,𝛿,ε)-algorithm A for PtrFcn: 

• map Black → [1,⊥,⊥…,⊥] 
• map Red → [0,⊥,⊥…,⊥] 
• Blue:  halt, output NO

Claim: Let x ϵ BlueRed-1(0). Then Pr[no Blue entries queried] < 2ε 
Proof:

• Let z ϵ PtrFcn-1(1) be consistent with x.

• z’ := z, w/value of special entry = 0. 
• A(z)=A(z’) unless special entry queried. 
• Pr[no blue entries queried] ≤ Pr[special entry not queried] ≤ 2ε



Strong Direct Sum Theorem:  D0,ε(fk) = (kD1/5,40ε/k(f)) μk μ

Let A be an ε-error algorithm for fk.

Let y = (y1,…, yk). 

Embed(y,i,x) := y, w/i-th coord replaced by x.

Algorithm B(x) {
  carefully select y,i
  emulate A(EMBED(y,i,x))
  abort if problems found
}



Strong Direct Sum Theorem:  D0,ε(fk) = (kD1/5,40ε/k(f)) μk μ

1-ε ≤ Pr[A(Y) = fk(Y)] = ∏ Pr[A(Y)i = fk(Y)i | A(Y)<i = fk(Y)<i]
Y~μk Y~μki=1

k

• at least 2k/3 i give Pr[A(Y)i = fk(Y)i | A(Y)<i = fk(Y)<i] ≤ 10 ε/k    (1)

• qi(Y): # queries of Yi

• q ≥ Σi EY[qi(Y)]  ⇒ ≥ 2k/3 i have E[qi(Y)] ≤ 3q/k                        (2) 

Fix i* to get (1) and (2).  Y* := Embed(Y,i*,x). 
This i* satisfies:

1. EY~μk[ Prx~μ[A(Y*)<i ≠ fk(Y*)<i] ] ≤ ε 
2. EY[Prx~μ[A(Y*)i ≠ fk(Y*)i | A(Y)<i = fk(Y)<i] ≤ 10 ε/k 
3. EY[ EX [qi(Y*)] ] ≤ 3q/k 



Algorithm B(x) {
  z := EMBED(y*,i*,x)
  emulate A(z)
  abort if qi*(z) > 120q/k
  abort if A(z)<i* ≠ fk(z)<i*
}

Strong Direct Sum Theorem:  D0,ε(fk) = 𝛀(kD1/5,40ε/k(f)) μk μ

This i* satisfies:

1. EY~μk[ Prx~μ[A(Y*)<i ≠ fk(Y*)<i] ] ≤ ε 
2. EY[Prx~μ[A(Y*)i ≠ fk(Y*)i | A(Y)<i = fk(Y)<i] ≤ 10 ε/k 
3. EY[ EX [qi(Y*)] ] ≤ 3q/k 
Markov Inequality:  there is y* such that 

1. Prx~μ[A(Y*)<i ≠ fk(Y*)<i]  ≤ 4ε 
2. Prx~μ[A(Y*)i ≠ fk(Y*)i | A(Y)<i = fk(Y)<i] ≤ 40 ε/k 
3. EX [qi(Y*)]  ≤ 12q/k

abort probability:  1/10 + 4ε < 1/5 
error probability:   40ε/k 



Open Problems
1. Give a more efficient query resistant code 

2. Characterize functions robust to aborts 
3. Strong Direct Sum for Composed Functions 

4. How does R𝛿,ε(f) compare to other QC measures?



Thanks!



slide of common stuff

Fact: If f ∈ ACC0 then f has NOF protocol with poly(log n) 
communication and k = poly(log n) players

 [Y90], [HG91], [BT94]  

R𝛿,ε(GapID)

𝛿εϵμ≥ → ≤ΣϴΩ𝞨𝛀⊥𝛂R𝛿,εD𝛿,ε
μ

D𝛿,ε
μ R𝛿,ε


