### Strong Direct Sum for Randomized Query Complexity

Joshua Brody Swarthmore College Eric Blais University of Waterloo

Interactive Complexity Workshop Simons Institute for the Theory of Computing UC Berkeley 10/16/18

## **Direct Sum Theorems**

**Does computing f(x) on k copies scale with k?** 

Direct Sum Theorem: Computing k copies of f

requires  ${\bf k}$  times the resources

Direct Product Theorem: Success prob. of



computing **k** copies of **f** with << k resources is  $2^{-\Omega(k)}$ 

Strong Direct Sum: computing k copies of f(x) requires k\*log(k) times the resources

## Query Complexity

aka Decision Tree Complexity



#### Decision Tree for f: $\{0,1\}^n \rightarrow \{0,1\}$ :

- · internal nodes labeled w/input bits  $\mathbf{x}_i$
- leaves labeled w/output or ABORT
- cost(T): depth of T == worst-case #queries

#### **Randomized DT:**

- distribution A on decision trees
- · cost(A) = max<sub>T</sub> cost(T)

**Distributional QC D\_{\delta,\epsilon}^{\mu}(f):** min **cost(T)** s.t. **Pr[abort]**  $\leq \delta$  and **Pr[error]**  $\leq \epsilon$ 

**Randomized QC**  $\mathbf{R}_{\delta,\epsilon}(\mathbf{f})$ : minimum cost of randomized algorithm s.t.

**Pr[abort]**  $\leq \delta$  and **Pr[error]**  $\leq \varepsilon$ 

(q,  $\delta$ ,  $\epsilon$ )-algorithm: q queries, abort prob.  $\delta$ , error prob.  $\epsilon$ 

## Query Complexity w/aborts

Minimax Lemma:  $D_{2\delta,2\epsilon}^{\mu}(f) \leq R_{\delta,\epsilon}(f) \leq D_{\delta/2,\epsilon/2}^{\mu}(f)$ 

Error Reduction:  $R_{0(1/t, 0(1/t)}(f) \leq O(\log(t)R_{1/2, 1/3}(f))$ 

## Previous Work

#### [MWY13, MWY15]:

- strong direct sum for information complexity w/aborts + error
- applications for streaming/sketching algorithms

#### [Drucker12]:

direct product theorems for randomized query complexity

#### [GPW15, ABBLSS17]:

- query complexity separations based on pointer functions
- polynomial separation R<sub>0</sub>(f) vs R<sub>ε</sub>(f)

Theorem: Suppose any T-query algorithm computing f has success  $\leq 1-\varepsilon$  under  $\mu$ . Then, any  $(\varepsilon Tk)/2$ -query algorithm for computing f<sup>k</sup> has success  $< (1-\varepsilon/2)^k$  under  $\mu^k$  [Drucker 12]

## Our Results

Strong Direct Sum Theorem:  $D_{0,\epsilon}^{\mu^{\kappa}}(f^{k}) = \Omega(kD_{1/5,40\epsilon/k}^{\mu}(f))$ 

Scaling with  $\varepsilon$ : There is f: {0,1}<sup>N</sup>  $\rightarrow$  {0,1} such that for all  $\varepsilon > 2^{-\log(N)^2}$ , we have  $R_{\delta,\varepsilon}(f) = \Theta(N'\log(1/\varepsilon))$ 

**Corollary:** There is f such that  $R_{\varepsilon}(f^{k}) = \Omega(klog(k)R_{\varepsilon}(f))$ 

Query-resistant codes: probabilistic encoding G:  $\Sigma \rightarrow \{0,1\}^{N}$  such that N/2 bits of G(x) needed to learn anything about x

## Query Resistant Codes

**Definition:** a  $\delta N$ -query resistant code of  $\Sigma$  is a set of distribs {G(x)}

- For each  $x \in \Sigma$ , G(x) is a distribution on  $\{0,1\}^{N}$
- { *support*(G(x)) : x ∈ Σ} partition {0,1}<sup>N</sup>
- For all  $S \subseteq [N]$  with  $|S| \le \delta N$ , all  $z \in \{0,1\}^{|S|}$  and all  $x \ne x'$ , distributions G(x), G(x') conditioned on S-bits = z are equal
- "decoding function" h(y) := x iff y e support(G(x))

**Lemma:** For any  $\Sigma$ , there is a **(N/2)**-query resistant code with  $N = |\Sigma|$ . Furthermore, conditional distributions  $G(x)|_{S=z}$  are uniform.

## Query Resistance

For  $f: \Sigma^n \rightarrow \{0,1\}$ , define  $F: \{0,1\}^{nN} \rightarrow \{0,1\}$  as:

 $F(y_1,...,y_n) := f(h(y_1),..., h(y_n))$ 

Theorem:  $\mathbf{R}^{cell}_{\delta,\epsilon}(\mathbf{f}) \leq (2/N)\mathbf{R}_{\delta,\epsilon}(\mathbf{F})$ 

#### **Proof:** Let **A** be a (q, $\delta$ , $\varepsilon$ )-algorithm for **F**.

```
Algorithm B(x_1,...,x_n) {
emulate A(G(x_1),...,G(x_n))
when A queries G(x_i) for kth time:
if k < N/2, sample G(x_i) cond. on prev. queries
if k = N/2, sample x_i
if k \ge N/2, sample G(x_i) cond. on prev. history.
```

## Functions



- BlueRed(y) = 0 if half colored entries Red, half Blue
- theorem:  $\mathbf{R}_{\delta+0.1,\epsilon}$ (GapID)  $\leq$  (7/m)\* $\mathbf{R}_{\delta,\epsilon}$ (BlueRed)

Theorem:  $R_{0,\varepsilon}(EncFcn) = O(Nmlog(1/\varepsilon))$ 

[ABBLSS17]

EncFcn: query resistant code+PtrFcn

theorem: R<sup>cell</sup><sub>δ,ε</sub>(PtrFcn) ≤ (2/N)R<sub>δ,ε</sub>(EncFcn)

## GapID Lower Bound

#### Theorem: $R_{\delta,\epsilon}(GapID) = \Omega(log(1/\epsilon))$

Hard Distribution  $X \sim \mu$ :

w/prob α := max(δ, 1.001ε), X=0<sup>n</sup>

w/prob **1**- $\alpha$ , **X** uniform on  $|\mathbf{x}|=\mathbf{n}/2$ 

Fix  $(log((1-\alpha)/\varepsilon), \delta, \varepsilon)$ -algorithm T for GapID wlog output NO if  $X_i = 1$  queried

When all queries = 0:

- abort: **Pr[abort]** >  $\alpha \ge \delta$
- output 0:  $\Pr[error] = \alpha > \varepsilon$
- output 1: **Pr[error]**  $\approx$  (1- $\alpha$ )2<sup>-q</sup> >  $\varepsilon$

#### In all cases, abort prob. > $\delta$ or error prob. > $\varepsilon$ .

## BlueRed Lower Bound

#### Theorem: $R_{i+0.1,\epsilon}(GapID) \leq (7/m)^*R_{i,\epsilon}(BlueRed)$

Emulate (**q**,δ,ε)-algorithm **A** for **BlueRed** 

- each colored entry in uniform row
- pick each i<sub>j</sub> e [m] uniformly
- map  $0 \rightarrow \text{Red}, 1 \rightarrow \text{Blue}$
- abort if A queries > 7q/m colored entries

#### Claim: $Pr[> 7q/m colored entries probed] \le 1/10.$

## BlueRed Lower Bound

#### Claim: $Pr[> 7q/m \ colored \ entries \ probed] \le 1/10.$

- For any column, Pr[colored entry found on k-th query] = 1/m
- For any leaf w/t colored entries found, Pr[leaf] ≤ m<sup>-t</sup>
- there are {q choose t} leaves w/t colored entries found

# $$\begin{split} \text{Pr[> 7q/m colored entries]} &\leq \Sigma_{t > 7q/m} \{q \text{ choose }t\}m^{-t} \\ &\leq \Sigma_{t > 7q/m} (qe/mt)^t \\ &< \Sigma_{t > 7q/m} (e/7)^t \\ &< 1/10. \end{split}$$

## PtrFcn Lower Bound

#### **Theorem: R**<sub>δ,2</sub>ε(**BlueRed**) ≤ **R**<sup>cell</sup><sub>δ,ε</sub>(**PtrFcn**)

*Partially* emulate  $(q, \delta, \varepsilon)$ -algorithm **A** for **PtrFcn**:

- map **Black**  $\rightarrow$  [1, $\perp$ , $\perp$ ..., $\perp$ ]
- map Red  $\rightarrow$  [0, $\perp$ , $\perp$ ..., $\perp$ ]
- Blue: halt, output NO

**Claim:** Let **x & BlueRed**<sup>-1</sup>(0). Then **Pr[no Blue entries queried] < 2***ɛ* **Proof:** 

- Let z e PtrFcn<sup>-1</sup>(1) be consistent with x.
- z' := z, w/value of special entry = 0.
- A(z)=A(z') unless special entry queried.
- **Pr[no blue entries queried]**  $\leq$  **Pr[special entry not queried]**  $\leq$  2 $\epsilon$

Strong Direct Sum Theorem:  $D_{0,\epsilon}^{\mu^{k}}(f^{k}) = (kD_{1/5,40\epsilon/k}^{\mu}(f))$ 

Let **A** be an  $\varepsilon$ -error algorithm for **f**<sup>k</sup>.

```
Let y = (y_1, ..., y_k).
```

Embed(y,i,x) := y, w/i-th coord replaced by x.

```
Algorithm B(x) {
   carefully select y,i
   emulate A(EMBED(y,i,x))
   abort if problems found
}
```

#### Strong Direct Sum Theorem: $D_{0,\epsilon}^{\mu^{k}}(f^{k}) = (kD_{1/5,40\epsilon/k}^{\mu}(f))$

k

$$1-\varepsilon \leq \Pr_{Y \sim \mu^{k}}[A(Y) = f^{k}(Y)] = \prod_{i=1}^{n} \Pr_{Y \sim \mu^{k}}[A(Y)_{i} = f^{k}(Y)_{i} \mid A(Y)_{$$

• at least 2k/3 i give  $Pr[A(Y)_i = f^k(Y)_i | A(Y)_{<i} = f^k(Y)_{<i}] \le 10 \varepsilon/k$  (1)

(2)

- $q_i(Y)$ : # queries of  $Y_i$
- $q \ge \Sigma_i E_Y[q_i(Y)] \implies \ge 2k/3 i \text{ have } E[q_i(Y)] \le 3q/k$
- Fix **i**\* to get **(1)** and **(2)**. **Y**\* := **Embed(Y,i\*,x)**. This **i**\* satisfies:
- 1.  $E_{Y \sim \mu k}$  [  $Pr_{x \sim \mu}$  [  $A(Y^*)_{<i} \neq f^k(Y^*)_{<i}$  ] ] ≤  $\varepsilon$
- 2.  $E_{Y}[Pr_{x \sim \mu}[A(Y^{*})_{i} \neq f^{k}(Y^{*})_{i} | A(Y)_{<i} = f^{k}(Y)_{<i}] \leq 10 \epsilon/k$
- 3.  $E_{Y}[E_{X}[q_{i}(Y^{*})]] \le 3q/k$

#### Strong Direct Sum Theorem: $D_{0,\epsilon}^{\mu^{\kappa}}(f^{k}) = \Omega(kD_{1/5,40\epsilon/k}^{\mu}(f))$

This **i**\* satisfies:

- **1.**  $E_{Y \sim \mu k}[Pr_{x \sim \mu}[A(Y^*)_{<i} \neq f^k(Y^*)_{<i}]] \leq \varepsilon$
- 2.  $E_{Y}[Pr_{x \sim \mu}[A(Y^{*})_{i} \neq f^{k}(Y^{*})_{i} | A(Y)_{<i} = f^{k}(Y)_{<i}] \leq 10 \epsilon/k$
- 3.  $E_{Y}[E_{X}[q_{i}(Y^{*})]] \le 3q/k$

Markov Inequality: there is y\* such that

- 1.  $Pr_{x\sim\mu}[A(Y^*)_{<i} \neq f^k(Y^*)_{<i}] \leq 4\varepsilon$
- 2.  $Pr_{x \sim \mu}[A(Y^*)_i \neq f^k(Y^*)_i | A(Y)_{<i} = f^k(Y)_{<i}] \le 40 \epsilon/k$
- 3.  $E_X [q_i(Y^*)] \le 12q/k$

```
Algorithm B(x) {
  z := EMBED(y*,i*,x)
  emulate A(z)
  abort if qi*(z) > 120q/k
  abort if A(z)<i* ≠ f<sup>k</sup>(z)<i*</pre>
```

abort probability:  $1/10 + 4\varepsilon < 1/5$ 

error probability: 40*c*/k

## Open Problems

- 1. Give a more efficient query resistant code
- 2. *Characterize* functions robust to **aborts**
- 3. Strong Direct Sum for Composed Functions
- 4. How does  $R_{\delta,\epsilon}(f)$  compare to other QC measures?

Thanks!

## slide of common stuff



**Fact:** If  $f \in ACC^{0}$  then f has NOF protocol with poly(log n) communication and k = poly(log n) players

#### R<sub>6,ε</sub>(GapID)