NETWORK CODING IN UNDIRECTED GRAPHS IS EITHER VERY HELPFUL OR NOT HELPFUL AT ALL

Sumegha Garg

Joint work with Mark Braverman and Ariel Schwartzman

Princeton University

MULTICOMMODITY FLOW

- Graph G = (V, E)
- Capacity function $c: E \to R^+$
- Set I of k commodities: $\{(s_i, t_i), i \in [k]\}$
- Rate is r:
 - Flow between source-sink pair is atleast r
 - Total flow through an edge is upper bounded by its capacity
- MCF(G) denotes the multicommodity flow rate

FLOWS OF PACKETS

- No re-encodings at intermediate nodes
- The Question: Can we get better information rate if the commodities are bits and we use bit tricks on them?

NETWORK CODING

- First introduced in [ACLY '00]
- $M = \{M_i\}_{i \in [k]}$ is the messages by sources
- Each edge has $f: M \to \Delta(e)$ (alphabet for e)
 - Function of alphabets on incoming edges
 - Entropy(e) is upper bounded by capacity
- Each sink edge t_i carries M_i

NETWORK CODING RATE

- NC(G) denotes the network coding rate
 - $r = \lim_{b \to \infty} \left(\frac{\max r_b}{b}\right)$ (All capacities are multiplied by b)

NETWORK CODING RATE

- NC(G) denotes the network coding rate
 - $r = \lim_{b \to \infty} \left(\frac{\max r_b}{b}\right)$ (All capacities are multiplied by b)

NETWORK CODING RATE

- NC(G) denotes the network coding rate
 - $r = \lim_{b \to \infty} \left(\frac{\max r_b}{b}\right)$ (All capacities are multiplied by b)
- Decidable?
- Gap(G) = NC(G)/MCF(G)
- Is there a G with Gap(G) > 1?

DIRECTED GRAPHS

- Yes! [HKL '04] [LL '04]
- NC/MCF gap can be as large as O(|G|)

8

• $U \subseteq V$, Sparsity $(U, V \setminus U) = \frac{Capacity(U, V \setminus U)}{Demand(U, V \setminus U)}$

•
$$U \subseteq V$$
, Sparsity $(U, V \setminus U) = \frac{Capacity(U, V \setminus U)}{Demand(U, V \setminus U)}$

U V\U

• $U \subseteq V$, Sparsity $(U, V \setminus U) = \frac{Capacity(U, V \setminus U)}{Demand(U, V \setminus U)}$ • Sparsity $(G) = \min_{U \subseteq V} Sparsity(U, V \setminus U)$

10 <u>2</u>

U V\U

MAXIMUM GAP IN UNDIRECTED GRAPHS

 $\frac{NC(G)}{O(\log |G|)} \leq \frac{Sparsity(G)}{O(\log |G|)} \leq MCF(G) \leq NC(G)$

- Maximum gap can be $O(\log |G|)$
- Li and Li **conjectured** that $MCF(G) = NC(G) \forall G$ [LL '04]
 - Coding gives no advantage

RELATED WORKS

• [SYC '03] [KS '03] [K '03] [JVY '05] [KS '06] [HKL '06]

produced techniques for lower and upper bounding NC

OUR RESULT

Either the conjecture is true or it must be nearly 'completely false'

▶ Theorem 1. Given a graph G that achieves a gap of $1 + \epsilon$ between the multicommodity flow rate and the network coding rate, we can construct an infinite family of graphs \tilde{G} that achieve a gap of $O\left(\log |\tilde{G}|\right)^c$ for some constant c < 1 that depends on the original graph G.

BUILDING BLOCK

- Given two graphs G_1 and G_2 with gaps $(1 + \epsilon_1)$ and $(1 + \epsilon_2)$ respectively, we construct a new graph G with gap $(1 + \epsilon_1)(1 + \epsilon_2)$ while keeping a check on size of G
- Apply this construction repeatedly on the starting graph with the gap

• Replace each edge of G_1 by a source-sink pair of G_2

• Replace each edge of G_1 by a source-sink pair of G_2

• Keep the source/sink pairs of G_1 and edges of G_2

 $G_1 \otimes G_2$ Gadget

• Keep the source/sink pairs of G_1 and edges of G_2

IDEA

- Idea: Effective capacity seen by G_1 under network coding is greater than that seen under flows
- Information transferred grows linearly with capacity
 - Gaps should multiply

NOT THERE YET

- For G_2 , there is a gap only when all source-sink pairs send flows simultaneously
- We have multiple copies of G_1 and each source-sink pair in a copy of G_2 replaces an edge in a different copy of G_1

UPDATED GRAPH TENSOR

UPDATED GRAPH TENSOR

MAIN THEOREM

• Start with a graph $G_0 = G$ with gap $(1 + \epsilon)$

▶ **Theorem 2.** Given a graph G of size n with a gap of $1 + \epsilon$ between the multicommodity flow rate and the network coding rate, we can create another graph G' of size n^{c^2} and a gap of $(1 + \epsilon)^2$, where c depends on the diameter of the graph G.

ITERATIVE TENSORING

- For iteration $j, G_j = G_{j-1} \otimes G_{j-1}$ (Applying theorem 2 to G_{j-1} to get G_j)
- Gap = $(1 + \epsilon)^{2^J}$
- Size grows like $n^{c^{2^{j}}}$

• Gap grows as $O(\log |G_j|)^{c_1}$ where c_1 is a constant < 1!

OPEN PROBLEMS

- Proving/ Disproving the Li and Li conjecture
 - Even for linear codes?
- Computing optimal network coding for directed graphs

ENTROPIC REGION [CG '08]

- *n* Random variables $X_1, X_2, ..., X_n$ (joint distribution)
- Entropic vector is $2^n 1$ dimensional vector with S^{th} coordinate holding $H(X_{i_1}, X_{i_2}, \dots, X_{i_k})$ where $S = \{i_1, i_2, \dots, i_k\} \subseteq [n]$
 - n = 2, $[H(X_1), H(X_2), H(X_1X_2)]$

ENTROPIC REGION [CG '08]

- *n* Random variables $X_1, X_2, ..., X_n$ (joint distribution)
- Entropic vector is $2^n 1$ dimensional vector with S^{th} coordinate holding $H(X_{i_1}, X_{i_2}, \dots, X_{i_k})$ where $S = \{i_1, i_2, \dots, i_k\} \subseteq [n]$
 - n = 2, $[H(X_1), H(X_2), H(X_1X_2)]$
- Entropic region is the set of all such vectors
 - $H(X_1) \le H(X_1X_2) \le H(X_1) + H(X_2)$

ENTROPIC REGION [CG '08]

- *n* Random variables $X_1, X_2, ..., X_n$ (joint distribution)
- Entropic vector is $2^n 1$ dimensional vector with S^{th} coordinate holding $H(X_{i_1}, X_{i_2}, \dots, X_{i_k})$ where $S = \{i_1, i_2, \dots, i_k\} \subseteq [n]$
 - n = 2, $[H(X_1), H(X_2), H(X_1X_2)]$
- Entropic region is the set of all such vectors
 - $H(X_1) \le H(X_1X_2) \le H(X_1) + H(X_2)$
- Given a $2^n 1$ dimensional vector, is it ϵ -close to a vector in entropic region? (Even decidability)

THANKS