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outline

round elimination [...Miltersen-Nisan-Safra-Wigerson...]

triangular discrimination [Topsøe]



round elimination



“model”

computational process with R rounds

input X

in round i some data Mi (X ,M<i ) is recorded

MR should provide some info on X

problem: lower bounds on R...



round elimination

construct X (R) and f (R) so that solution for them in R rounds
yields solution for X (R−1) and f (R−1) in R − 1 round

X (0) and f (0) are non trivial

error increases in every step



example: communication complexity

alice gets X and bob gets Y

they talk: M1(X ),M2(Y ,M1),M3(X ,M1,M2), . . . ,Mr

round elimination

level 0: alice gets X , bob gets Y , compute f (X ,Y )

level 1: alice gets (X1, . . . ,Xn), bob gets X<j ,Y , compute f (Xj ,Y )

...



suggestion: do not eliminate rounds

bound amount of info collected

for all i

E
M≤i

dist(pX (R−i) |m≤i , pX (R−i)) ≤ i · ε

choice of dist is important



triangular discrimination



measures of “distance” between distributions p, q are useful

each measure due to unique properties

f -divergence [Csiszar, Morimoto, Ali, Silvey]

Df (p||q) =
∑
ω

q(ω)f

(
p(ω)

q(ω)

)
with f convex so that f (1) = 0



examples

`1 distance |p − q|1 with |1− x |

KL-divergence D(p||q) with x log2 x

triangular discrimination ∆(p, q) with (1−x)2
1+x



properties

non-negativity Df (p||q) ≥ 0

convexity Df (p||q) is convex in (p, q)

data processing Df (pX ||pY ) ≥ Df (pg(X )||pg(Y ))



relations

[Pinsker] |p − q|1 ≤
√

2D(p||q)

extremely useful in information theoretic proofs

simple ∆(p, q) ≤ |p − q|1 ≤
√

2∆(p, q)

∆(p, q) =
∑

ω
(p(ω)−q(ω))2
p(ω)+q(ω)

[Topsøe] ∆(p, q) ≤ 2D(p||q)



dual/operational meaning

`1 & statistical distance

|p − q|1 = max
‖g‖∞≤1

|E
p
g − E

q
g |

∆ & `2
∆(p, q) = max

Ep g2+Eq g2≤1
(E
p
g − E

q
g)2



applications

∆ was recently used

? construct group homomorphisms
[Erschler, Karlsson]

? study harmonic functions on groups
[Benjamini, Duminil-Copin, Kozma, Yadin]

? Gromov’s theorem on groups of polynomial growth
[Ozawa]



an example



assume X takes values in {0, 1}n and has entropy n − k :

D(pX ||un) = k

subadditivity

if I is a uniform coordinate then XI is close to uniform:

E
I
D(pXi

||u1) ≤ k/n

Pinsker

E
I
|pXi
− u1|1 ≤

√
2k/n



stability?

X ∼ {0, 1}n, D(pX ||un) = k, I ∼ U([n])

let J ∼ [n] be of high entropy

D(pJ ||pI ) ≤ ε

is XJ close to uniform?

yes EJ |pXj
− u1|1 ≤ |pJ − pI |1 + EI |pXi

− u1|1 ≤
√

2ε+
√

2k/n

yes EJ ∆(pXj
, u1) ≤ 4ε+ 10k/n
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proof

X ∼ {0, 1}n, D(pX ||un) = k, I ∼ U([n]), D(pJ ||pI ) ≤ ε

for s ∈ [n] let g(s) = ∆(pXs , u1)

write

E
J

∆(pXj
, u1) = E

J
g = E

I
g + (E

J
g − E

I
g)

the left term

E
I
g ≤ E

I
2D(pXi

||u1) ≤ 2k

n

remains to upper bound the right term τ = EJ g − EI g



proof

X ∼ {0, 1}n, D(pX ||un) = k, I ∼ U([n]), D(pJ ||pI ) ≤ ε

for s ∈ [n] let g(s) = ∆(pXs , u1)

upper bound τ = EJ g − EI g by

|τ | =
∑
s

(pJ(s)− pI (s))√
pJ(s) + pI (s)

√
g(s) ·

√
pJ(s) + pI (s)

√
g(s)

≤
√∑

s

(pJ(s)− pI (s))2

pJ(s) + pI (s)
g(s)

√∑
s

(pJ(s) + pI (s))g(s)

≤
√

2
∑
s

(pJ(s)− pI (s))2

pJ(s) + pI (s)

√∑
s

(pJ(s) + pI (s))g(s)

=
√

2∆(pJ , pI )
√
τ + 2E

I
g≤
√

2ε
√
τ + 4k/n
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high level

problem: need to analyze Ep g for “complicated” p

possible solution: analyze Eq g for q that is

– “simple”

– ∆-close to p

need to control variances of g



summary

round elimination
lower bound on number of rounds
consider not eliminating

f -divergences
useful collections of “distances”

triangular discrimination
may help to avoid square-root loss


