round elimination & triangular discrimination

amir yehudayoff

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

round elimination [...Miltersen-Nisan-Safra-Wigerson...]

triangular discrimination [Topsøe]

round elimination

computational process with R rounds

input X

in round *i* some data $M_i(X, M_{< i})$ is recorded

 M_R should provide some info on X

problem: lower bounds on R...

round elimination

construct $X^{(R)}$ and $f^{(R)}$ so that solution for them in R rounds yields solution for $X^{(R-1)}$ and $f^{(R-1)}$ in R-1 round

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $X^{(0)}$ and $f^{(0)}$ are non trivial

error increases in every step

example: communication complexity

alice gets X and bob gets Y

they talk: $M_1(X), M_2(Y, M_1), M_3(X, M_1, M_2), \dots, M_r$

round elimination

. . .

level 0: alice gets X, bob gets Y, compute f(X, Y)

level 1: alice gets (X_1, \ldots, X_n) , bob gets $X_{\leq j}$, Y, compute $f(X_j, Y)$

suggestion: do not eliminate rounds

bound amount of info collected

for all *i*

$$\mathop{\mathbb{E}}_{M_{\leq i}} dist(p_{X^{(R-i)}} | m_{\leq i}, p_{X^{(R-i)}}) \leq i \cdot \epsilon$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

choice of *dist* is important

triangular discrimination

measures of "distance" between distributions p, q are useful

each measure due to unique properties

f-divergence [Csiszar, Morimoto, Ali, Silvey]

$$D_f(p||q) = \sum_{\omega} q(\omega) f\left(rac{p(\omega)}{q(\omega)}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with f convex so that f(1) = 0

examples

$$\ell_1$$
 distance $|p-q|_1$ with $|1-x|$

KL-divergence D(p||q) with $x \log_2 x$

triangular discrimination $\Delta(p,q)$ with $\frac{(1-x)^2}{1+x}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

properties

non-negativity $D_f(p||q) \ge 0$

convexity $D_f(p||q)$ is convex in (p,q)

data processing $D_f(p_X||p_Y) \ge D_f(p_{g(X)}||p_{g(Y)})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

relations

[Pinsker] $|p - q|_1 \leq \sqrt{2D(p||q)}$

extremely useful in information theoretic proofs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

simple $\Delta(p,q) \leq |p-q|_1 \leq \sqrt{2\Delta(p,q)}$

 $\Delta(p,q) = \sum_{\omega} \frac{(p(\omega)-q(\omega))^2}{p(\omega)+q(\omega)}$

[Topsøe] $\Delta(p,q) \leq 2D(p||q)$

dual/operational meaning

ℓ_1 & statistical distance

$$|p-q|_1 = \max_{\|g\|_\infty \le 1} |\mathop{\mathbb{E}}_p g - \mathop{\mathbb{E}}_q g$$

 $\Delta \& \ell_2$

$$\Delta(
ho,q) = \max_{\mathbb{E}_{
ho} g^2 + \mathbb{E}_{q} g^2 \leq 1} (\mathbb{E}_{
ho} g - \mathbb{E}_{q} g)^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

applications

 Δ was recently used

* construct group homomorphisms [Erschler, Karlsson]

* study harmonic functions on groups [Benjamini, Duminil-Copin, Kozma, Yadin]

 \star Gromov's theorem on groups of polynomial growth $[\mbox{Ozawa}]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

an example

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

assume X takes values in $\{0,1\}^n$ and has entropy n-k:

 $D(p_X||u_n) = k$

subadditivity

if I is a uniform coordinate then X_I is close to uniform:

$$\mathop{\mathbb{E}}_{I} D(p_{X_i}||u_1) \leq k/n$$

Pinsker

$$\mathop{\mathbb{E}}_{I} |p_{X_i} - u_1|_1 \leq \sqrt{2k/n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

stability?

$X \sim \{0,1\}^n$, $D(p_X || u_n) = k$, $I \sim U([n])$

let $J \sim [n]$ be of high entropy

 $D(p_J||p_I) \leq \epsilon$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is X_J close to uniform?

stability?

 $X \sim \{0,1\}^n$, $D(p_X || u_n) = k$, $I \sim U([n])$

let $J \sim [n]$ be of high entropy

 $D(p_J||p_I) \leq \epsilon$

is X_J close to uniform?

yes $\mathbb{E}_J |p_{X_j} - u_1|_1 \le |p_J - p_I|_1 + \mathbb{E}_I |p_{X_i} - u_1|_1 \le \sqrt{2\epsilon} + \sqrt{2k/n}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

stability?

 $X \sim \{0,1\}^n$, $D(p_X || u_n) = k$, $I \sim U([n])$

let $J \sim [n]$ be of high entropy

 $D(p_J||p_I) \leq \epsilon$

is X_J close to uniform?

yes $\mathbb{E}_J |p_{X_i} - u_1|_1 \le |p_J - p_I|_1 + \mathbb{E}_I |p_{X_i} - u_1|_1 \le \sqrt{2\epsilon} + \sqrt{2k/n}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

yes $\mathbb{E}_J \Delta(p_{X_i}, u_1) \leq 4\epsilon + 10k/n$

$$X \sim \{0,1\}^n$$
, $D(p_X||u_n) = k$, $I \sim U([n])$, $D(p_J||p_I) \leq \epsilon$

for
$$s \in [n]$$
 let $g(s) = \Delta(p_{X_s}, u_1)$

write

$$\mathop{\mathbb{E}}_{J} \Delta(p_{X_{j}}, u_{1}) = \mathop{\mathbb{E}}_{J} g = \mathop{\mathbb{E}}_{I} g + (\mathop{\mathbb{E}}_{J} g - \mathop{\mathbb{E}}_{I} g)$$

the left term

$$\mathop{\mathbb{E}}_{I} g \leq \mathop{\mathbb{E}}_{I} 2D(p_{X_i}||u_1) \leq \frac{2k}{n}$$

・ロト・日本・ヨト・ヨー うへの

remains to upper bound the right term $au = \mathbb{E}_J g - \mathbb{E}_I g$

 $X \sim \{0,1\}^n$, $D(p_X||u_n) = k$, $I \sim U([n])$, $D(p_J||p_I) \le \epsilon$ for $s \in [n]$ let $g(s) = \Delta(p_{X_s}, u_1)$

upper bound $au = \mathbb{E}_J g - \mathbb{E}_I g$ by

$$|\tau| = \sum_{s} \frac{(p_J(s) - p_I(s))}{\sqrt{p_J(s) + p_I(s)}} \sqrt{g(s)} \cdot \sqrt{p_J(s) + p_I(s)} \sqrt{g(s)}$$

 $X \sim \{0,1\}^n$, $D(p_X||u_n) = k$, $I \sim U([n])$, $D(p_J||p_I) \le \epsilon$ for $s \in [n]$ let $g(s) = \Delta(p_{X_s}, u_1)$

upper bound $au = \mathbb{E}_J g - \mathbb{E}_I g$ by

$$\tau | = \sum_{s} \frac{(p_J(s) - p_I(s))}{\sqrt{p_J(s) + p_I(s)}} \sqrt{g(s)} \cdot \sqrt{p_J(s) + p_I(s)} \sqrt{g(s)}$$

$$\leq \sqrt{\sum_{s} \frac{(p_J(s) - p_I(s))^2}{p_J(s) + p_I(s)}} \frac{g(s)}{\sqrt{\sum_{s} (p_J(s) + p_I(s))g(s)}} \sqrt{\frac{1}{2}} \frac{(p_J(s) - p_I(s))^2}{p_J(s) + p_I(s)}} \sqrt{\frac{1}{2}} \frac{(p_J(s) - p_I(s))^2}{p_J(s)$$

 $X \sim \{0,1\}^n$, $D(p_X||u_n) = k$, $I \sim U([n])$, $D(p_J||p_I) \le \epsilon$ for $s \in [n]$ let $g(s) = \Delta(p_{X_s}, u_1)$

upper bound $au = \mathbb{E}_J g - \mathbb{E}_I g$ by

$$\begin{aligned} \tau | &= \sum_{s} \frac{(p_{J}(s) - p_{I}(s))}{\sqrt{p_{J}(s) + p_{I}(s)}} \sqrt{g(s)} \cdot \sqrt{p_{J}(s) + p_{I}(s)} \sqrt{g(s)} \\ &\leq \sqrt{\sum_{s} \frac{(p_{J}(s) - p_{I}(s))^{2}}{p_{J}(s) + p_{I}(s)}} \sqrt{\sum_{s} (p_{J}(s) + p_{I}(s))g(s)} \\ &\leq \sqrt{2\sum_{s} \frac{(p_{J}(s) - p_{I}(s))^{2}}{p_{J}(s) + p_{I}(s)}} \sqrt{\sum_{s} (p_{J}(s) + p_{I}(s))g(s)} \end{aligned}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $X \sim \{0,1\}^n$, $D(p_X||u_n) = k$, $I \sim U([n])$, $D(p_J||p_I) \le \epsilon$ for $s \in [n]$ let $g(s) = \Delta(p_{X_s}, u_1)$

upper bound $au = \mathbb{E}_J g - \mathbb{E}_I g$ by

$$\begin{aligned} |\tau| &= \sum_{s} \frac{(p_{J}(s) - p_{I}(s))}{\sqrt{p_{J}(s) + p_{I}(s)}} \sqrt{g(s)} \cdot \sqrt{p_{J}(s) + p_{I}(s)} \sqrt{g(s)} \\ &\leq \sqrt{\sum_{s} \frac{(p_{J}(s) - p_{I}(s))^{2}}{p_{J}(s) + p_{I}(s)}} g(s) \sqrt{\sum_{s} (p_{J}(s) + p_{I}(s))g(s)} \\ &\leq \sqrt{2\sum_{s} \frac{(p_{J}(s) - p_{I}(s))^{2}}{p_{J}(s) + p_{I}(s)}} \sqrt{\sum_{s} (p_{J}(s) + p_{I}(s))g(s)} \\ &= \sqrt{2\Delta(p_{J}, p_{I})} \sqrt{\tau + 2\sum_{I} g} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $X \sim \{0,1\}^n$, $D(p_X||u_n) = k$, $I \sim U([n])$, $D(p_J||p_I) \le \epsilon$ for $s \in [n]$ let $g(s) = \Delta(p_{X_s}, u_1)$

upper bound $au = \mathbb{E}_J g - \mathbb{E}_I g$ by

$$\begin{aligned} |\tau| &= \sum_{s} \frac{(p_J(s) - p_I(s))}{\sqrt{p_J(s) + p_I(s)}} \sqrt{g(s)} \cdot \sqrt{p_J(s) + p_I(s)} \sqrt{g(s)} \\ &\leq \sqrt{\sum_{s} \frac{(p_J(s) - p_I(s))^2}{p_J(s) + p_I(s)}} g(s)} \sqrt{\sum_{s} (p_J(s) + p_I(s))g(s)} \\ &\leq \sqrt{2\sum_{s} \frac{(p_J(s) - p_I(s))^2}{p_J(s) + p_I(s)}} \sqrt{\sum_{s} (p_J(s) + p_I(s))g(s)} \\ &= \sqrt{2\Delta(p_J, p_I)} \sqrt{\tau + 2\mathop{\mathbb{E}} g} \leq \sqrt{2\epsilon} \sqrt{\tau + 4k/n} \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

high level

problem: need to analyze $\mathbb{E}_p g$ for "complicated" p

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

possible solution: analyze $\mathbb{E}_q g$ for q that is

- "simple"
- Δ -close to p

need to control variances of g

summary

round elimination

lower bound on number of rounds consider not eliminating

f-divergences

useful collections of "distances"

triangular discrimination

may help to avoid square-root loss

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで