Bayesian Models and Information Symmetry in Adaptive Data Analysis

Adam Smith

Boston University

Simons Workshop on Adaptive Data Analysis July 25, 2018

a "worst-case Bayesian" model of adaptive data analysis

- Importance of information symmetry
- Some lower bounds; more open problems
- Based on [Elder'16+] and discussions/work with Jon Ullman, Thomas Steinke, Kobbi Nissim, Uri Stemmer

Adaptive linear query model

- Definition
- > The "only" problem: High-variance posteriors
- Game-theoretic perspective
- Lower bounds as estimation
- Lower bounds for the Bayesian model

Pros

- One model of "benign" analyst behavior
- Captures widely-promoted statistical practice
 - c.f. Inferactive Data Analysis, Bi, Markovic, Xia, Taylor, 2017
- > Maybe: algorithms with greater resistance to adaptive queries
 - Basically no nontrivial, universal lower bounds!

Cons

> May not model analyst with multiple data sets (composition)

Nonadaptive >> Less robust?

"Bayesian" mechanisms

• Given Gen, and $X_1, \dots, X_n \sim P^{\otimes n}$:

 \succ Consider posterior distribution on P|X

- Induces distribution on true mean q(P)|X
- Posterior-based mechanisms: On input q_j ...

Example: biased biased coin flip biased prior biased biased biased prior biased biased prior biased biased biased biased prior biased biased biased biased biased biased biased coin flip biased biase

➢ Posterior expected mean: $a_j = \mathbb{E}(q_j(P)|X)$

> Noisy posterior mean: $a_j = \mathbb{E}(q_j(P)|X) + N(0, \sigma^2)$

Posterior confidence interval:

 $a_{j} = \left(quantile_{0.05}(q_{j}(P)|X), quantile_{0.95}(q_{j}(P)|X)\right)$

- Consistency [Elder]: When P ~ Gen and X ~ P^{⊗n}, posterior-based mechanisms are "never wrong"
 - \succ E.g. confidence interval captures $q_j(P)$ w.p. 90%
 - No matter if queries are adaptive, as long as queries depend on P only via X.

Only possible problem: high-variance posterior

Why do "tracing queries" fail?

• Set up

$$\succ$$
 Universe $U = \{1, \dots, 2^{O(kn)}\}$

 $\succ P$ is uniform over $T \subseteq U$, where |T| = N

➢ Mechanism sees X ⊆ T of size n but doesn't know T

- Analyst knows T, chooses queries...
 - > At first: With bias p_j on T, but bias 1/2 on $U \setminus T$
 - Key fact: Accurate answers based only on X leak information about X
 - Large universe makes it hard to identify T
 - Analysts learns $\hat{X} \subseteq X$

≻ Later: with bias p_j on $T \setminus \hat{X}$, but bias 1/2 on $\hat{X} \cup (U \setminus T)$

Bayesian setting

 \succ Mechanism knows *T*, can ignore *X*

Impossibility Results

Only possible problem: high-variance posterior

What can we say about variance?

• Nonadaptive linear queries

> Posterior mean/median have error $O(\log k / \sqrt{n})$

• How many queries can we answer adaptively?

> Empirical mean + Gaussian: can answer $\Omega(n^2)$

- \succ Posterior mean: _____ O(n) queries cause problems
- > Posterior mean + Gaussian: $O(n^{2.5})$ queries [S,Steinke,Ullman]
- > Posterior mean + arbitrary: $O(n^4)$ queries [Elder]
- > Poly-time mechanisms: _____ $O(n^2)$ queries [Nissim,Stemmer]
- > General mechanisms: $2^{O(n)}$ queries—same as for nonadaptive \mathfrak{V}

Adaptive linear query model

- Definition
- > The "only" problem: High-variance posteriors
- Game-theoretic perspective
- Lower bounds as estimation
- Lower bounds for the Bayesian model

Three player game

I. Population player generates P

 \blacktriangleright Random strategy is "hyperdistribution" over P

- 2. Mechanism player selects (randomized) M
- 3. Analyst selects (randomized) A

$$Value = \mathbb{E}_{everything} \left(\max_{i} |a_i - q_i(P)| \right)$$

"Worst-case" distribution model [DFHPRR/HU]:

First randomized *M*, then (*P*, *A*) together $\inf_{M} \sup_{P} \sup_{A} \mathbb{E}_{X \sim P^{n}} \left(\max_{i} |a_{i} - q_{i}(P)| \right)$

This is a Nash equilibrium, so can switch order: first joint distribution over (P, A), then M

Three player game

I. Population player generates P

 \blacktriangleright Random strategy is "hyperdistribution" over P

- 2. Mechanism player selects (randomized) M
- 3. Analyst selects (randomized) A

$$Value = \mathop{\mathbb{E}}_{everything} \left(\max_{i} |a_{i} - q_{i}(P)| \right)$$

- Bayesian model [Elder]
 - \succ First *Gen*, then *M* and *A* separately.
 - *P* and *A* selected independently
 - \succ For each *Gen*, Nash equilibrium allows swapping *M*, *A*

How do the values of these games compare?
➢ Bayesian setting is easier for mechanism
➢ So
value(Bayesian) ≤ value(worst - case)

Bayesian setting: May as well show code of analyst to mechanism

Adaptive linear query model

- Definition
- > The "only" problem: High-variance posteriors
- Game-theoretic perspective
- Lower bounds as estimation
- Lower bounds for the Bayesian model

Lower Bounds as Estimation

• Proving lower bounds corresponds to finding *Gen*, *f* and

> Positive result: k adaptive queries to SQ oracle allow approximating f(P)

 \succ Negative result: *n* samples from *P* do not.

 Current lower bounds involve extra side information visible to A but not oracle

Adaptive linear query model

- Definition
- > The "only" problem: High-variance posteriors
- Game-theoretic perspective
- Lower bounds as estimation
- Lower bounds for the Bayesian model

What if analyst sees the raw data?

Example I: Coin flips

- Domain = $\{0,1\}^d$
 - Coordinates are independent
 - \triangleright P described by biases p_1, \dots, p_d
 - > Gen: Each bias $p_j \in_R \left\{\frac{1}{2}, \frac{2}{2}\right\}$, i.i.d.

If some coordinate has n/2 ones, then posterior distribution is $\{\frac{1}{2}, \frac{2}{2}\}$

> Analyst finds a bad query (w.h.p.) when $d = 2^{\Omega(n)}$

- **Example 2: Parities**
- Domain = $\{0,1\}^d$
 - ▶ P_z : Uniform on $\{u: z \odot u = 0\}$
 - \succ Gen: select $Z \in_R \{0,1\}^d$
- If x has d-1 linearly independent vectors,
 - \blacktriangleright then Z|x is uniform $\{z_1, z_2\}$
 - \blacktriangleright Analyst can ask query with different values on z_1, z_2
- If n = d, probability of exactly d 1 linear constraints is 1/4

Can't extract info about z using poly many SQ queries

Don't know how to find

a "bad" coordinate

using linear queries

What about using linear queries?

- Replace parities with coding construction[Elder]
- Set up
 - > Consider linear error-correcting code $C \subset F_2^N$, dimension d
 - $\succ U = [N] \times F_2$
 - ≻ Gen: Select $c \in_R C$, output P_c uniform on $\{(i, c_i): i \in [N]\}$

When can we find high-variance queries?

- $\succ X$ gives a set of linear constraints on c
- \succ Suppose they have rank d-1
 - Then c|x is uniform on $\{c_1, c_2\} \implies$ bad query $Pr(mank(x) = d = O(1)) = O(1/\sqrt{n})$
- $\succ \Pr(rank(x) = d \Omega(1)) = \Theta(1/\sqrt{n})$

• How can we extract x from answers to linear queries?

- ≻ Let $sh(x) \in \{0, -1, +1\}^N$ denote "signed histogram" for x
 - $sh(x)_i = 0$ if position is absent, and ± 1 otherwise

> Posterior distribution sh(P)|x equals $\frac{1}{N}sh(x)$

> Ask linear queries on sh.

Posterior mean + arbitrary: $\tilde{O}(n^4)$ queries Posterior mean + Gaussian: $\tilde{O}(n^{2.5})$ queries

- Suppose M is polynomial time
- Use public-key crypto to conceal T in tracing attack [Nissim Stemmer]
 - \succ Public info: pk_1, pk_2, \dots, pk_n

$$\succ U = \{(i, sk_i): i = 1, ..., N\}$$

 $\succ X = \{(i, sk_i): i \in S\}$ where |S| = n

> Attacker encrypts query values with public keys

- Mechanism sees only query restricted to X
- Theorem: In Bayesian setting, polynomial-time mechanisms can answer $k = \tilde{O}(n^2)$ in worst case

Impossibility Results

Only possible problem: high-variance posterior

What can we say about variance?

Nonadaptive linear queries

- > Posterior mean/median have error $O(\sqrt{\log k / n})$
- How many queries can we answer adaptively?

 \succ Empirical mean + Gaussian: can answer $\Omega(n^2)$

- \succ Posterior mean: _____ O(n) queries cause problems
- > Posterior mean + Gaussian: $O(n^{2.5})$ queries [S,Steinke,Ullman]
- > Posterior mean + arbitrary: $O(n^4)$ queries [Elder]
- > Poly-time mechanisms: _____ $O(n^2)$ queries [Nissim,Stemmer]
- > General mechanisms: $2^{O(n)}$ queries—same as for nonadaptive \bigotimes

Adaptive linear query model

- Definition
- The "only" problem: High-variance posteriors
- Game-theoretic perspective
- Lower bounds as estimation
- Lower bounds for the Bayesian model

Pros

> One model of "benign" analyst behavior

Captures widely-promoted statistical practice

- Inferactive Data Analysis, Bi, Markovic, Xia, Taylor
- > Maybe: algorithms with greater resistance to adaptive queries
 - Basically no nontrivial, universal lower bounds!

Cons

May not model analyst with multiple data sets (composition)
Less robust?

• Open: A better understanding of the setting