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This talk

a “worst-case Bayesian” model
of adaptive data analysis

* Importance of information symmetry
* Some lower bounds; more open problems

* Based on [Elder’| 6+] and discussions/work with Jon
Ullman, Thomas Steinke, Kobbi Nissim, Uri Stemmer
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» Definition

» The “only” problem: High-variance posteriors

Game-theoretic perspective
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Lower bounds for the Bayesian model
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Worst-case model allows A to choose P
» Known lower bounds rely on this!

What happens when we allow &

> M to see the code of A?
» M to know ‘“‘as much as” A about P?

First attempt: what if M knows P exactly!?
» Not interesting: Mp can ignore data and answer a; = q;(P)

M has more

‘““Bayesian’’ setting:
» Consider a “hyperdistribution” Gen that selects P power, so
» What if M and A know Gen but not P? error can
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* Pros

» One model of “benign” analyst behavior
» Captures widely-promoted statistical practice
 c.f. Inferactive Data Analysis, Bi, Markovic, Xia, Taylor, 2017
» Maybe: algorithms with greater resistance to adaptive queries

* Basically no nontrivial, universal lower bounds!

* Cons

» May not model analyst with multiple data sets (composition)
» Less robust?
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Example:

“Bayesian” mechanisms H-biased

*» coin flip Posterior
* Given Gen, and X4, ..., X, ~ pon. given 15 heads
out of 25

» Consider posterior distribution on P|X |.
* Induces distribution on true mean q(P)|X
* Posterior-based mechanisms:
On input g;...

» Posterior expected mean: a; = E(q;(P)|X)
> Noisy posterior mean: q; = [E(qj(P)|X) + N(0,0%)
» Posterior confidence interval:
aj = (quantileO_OS(qj (P)|X), quantileo_gs(qj (P)|X))
* Consistency [Elder]: When P ~ Gen and X ~ P®™,
posterior-based mechanisms are “never wrong”
» E.g. confidence interval captures q;(P) w.p. 90%

» No matter if queries are adaptive, as long as queries
depend on P only via X.

Only possible problem: high-variance posterior




Why do “tracing queries” fail?

° Set up
> Universe U = {1, ..., 20("")}
» P is uniform over T € U , where |[T| = N
» Mechanism sees X € T of size n but doesn’t know T

* Analyst knows T, chooses queries...
» At first: With bias p; on T, but bias 1/2 on U\T

* Key fact: Accurate answers based only on X leak information about X
* Large universe makes it hard to identify T

* Analysts learns X € X

» Later: with bias p; on T\X, but bias 1/2 on X U (U\T)

° Bayesian setting

» Mechanism knows T, can ignore X



{.  Example:
Impossibility Results | —plased +
>, coin flip P .
osterior
Only possible problem: high-variance B |5 heads
. out of 25
posterior
« prior
What can we say about variance!
* Nonadaptive linear queries
» Posterior mean/median have error O(logk /+/n)
°* How many queries can we answer adaptively?
> Empirical mean + Gaussian: can answer (Q(n?)
» Posterior mean: O(n) queries cause problems

> Posterior mean + Gaussian: _ 0 (n?®)queries [S,Steinke,UlIman]
> Posterior mean + arbitrary: _ 0(n*) queries [Elder]
» Poly-time mechanisms: 0(n?) queries [Nissim,Stemmer]

> General mechanisms: 20 queries—same as for nonadaptive @
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Three player game

|. Population player generates P
» Random strategy is “hyperdistribution” over P

2. Mechanism player selects (randomized) M
3. Analyst selects (randomized) A
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* “Worst-case” distribution model [DFHPRR/HUJ:
» First randomized M, then (P, A) together
iﬁf supsup [Ey._pn (m,axlai - Cli(P)|)
l

P A coins
» This is a Nash equilibrium, so can switch order:

first joint distribution over (P, A), then M



Three player game

|. Population player generates P
» Random strategy is “hyperdistribution” over P

2. Mechanism player selects (randomized) M
3. Analyst selects (randomized) A

4—
Gen **‘l"—>®—> M _>‘_> A
Value = everﬁhing ( mel)X la; — q;(P)] )

° Bayesian model [Elder]

» First Gen, then M and A separately.
e P and A selected independently

» For each Gen, Nash equilibrium allows swapping M, A



* How do the values of these games compare?

» Bayesian setting is easier for mechanism

> So
value(Bayesian) < value(worst — case)

* Bayesian setting: May as well show code of analyst to
mechanism
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Lower Bounds as Estimation
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* Proving lower bounds corresponds to finding Gen, f and

» Positive result: k adaptive queries to SQ oracle allow
approximating f (P)

» Negative result: n samples from P do not.

* Current lower bounds involve extra side information
visible to A but not oracle
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What if analyst sees the raw data?

Gen »%j — M

Example |: Coin flips

Domain = {0,1}¢
» Coordinates are independent
» P described by biases py, ..., P4

» Gen: Each bias p; €p {%,%}, ii.d.

Don’t know how to find
a ’bad” coordinate
using linear queries

: : . (102
* If some coordinate has n/2 onhes, then posterior distribution is {5,5}

Example 2: Parities ..

> Analyst finds a bad query (w.h.p.) when d = 2%

Domain = {0,1}¢

Can’t extract info

» P, : Uniformon {u: z® u = 0}
> Gen: select Z € {0,1}¢
If x has d — 1 linearly independent vectors,
> then Z|x is uniform {z;, z, }
» Analyst can ask query with different values on z;, z,

— about z using poly
many SQ queries

If n = d, probability of exactly d — 1 linear constraints is 1/4



What about using linear queries?

* Replace parities with coding construction[Elder]

° Setup

> Consider linear error-correcting code C C FN, dimension d
2

» Gen: Select ¢ € C, output P, uniform on {(i,c;):i € [N]}
°* When can we find high-variance queries!?

» X gives a set of linear constraints on ¢
» Suppose they have rank d — 1

e Then c|x is uniform on {c;,c,} = bad query
> Pr(rank(x) = d— Q(l)) = 0(1/yn)
°* How can we extract x from answers to linear queries?

> Let sh(x) € {0,—1,+1}" denote “signed histogram” for x
e sh(x); =0 if position is absent, and +1 otherwise

» Posterior distribution sh(P)|x equals %Sh(x)

» Ask linear queries on sh.

Posterior mean + arbitrary: 0(n*) queries
Posterior mean + Gaussian: 0(n?>)queries




Computationally bounded me
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* Suppose M is polynomial time

* Use public-key crypto to conceal T in tracing attack
[Nissim Stemmer]

» Public info: pkq, vk, ..., pky,
»U ={(i,sk;):i=1,..,N}
> X ={(i,sk;):i € S} where |S| =n
» Attacker encrypts query values with public keys
* Mechanism sees only query restricted to X
°* Theorem: In Bayesian setting, polynomial-time
mechanisms can answer k = 0(n?) in worst case
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Example:
Impossibility Results | —plased +
- coinlip Posterior
Only possible problem: high-variance B | heads
. out of 25
posterior
« prior
What can we say about variance!
* Nonadaptive linear queries
» Posterior mean/median have error 0(\/logk /n)
°* How many queries can we answer adaptively!?
> Empirical mean + Gaussian: can answer ((n?)
» Posterior mean: O(n) queries cause problems

> Posterior mean + Gaussian: _ 0 (n?®)queries [S,Steinke,UlIman]

> Posterior mean + arbitrary: _ 0(n*) queries [Elder]

» Poly-time mechanisms: 0(n?) queries [Nissim,Stemmer]

» General mechanisms: 20 queries—same as for nonadaptive @
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Bayesian setting @

o OO
-— 3
( —
Gen »*M—»@—» M <=: A
* Pros

» One model of “benign” analyst behavior

» Captures widely-promoted statistical practice
* Inferactive Data Analysis, Bi, Markovic, Xia, Taylor

» Maybe: algorithms with greater resistance to adaptive queries
* Basically no nontrivial, universal lower bounds!
* Cons
» May not model analyst with multiple data sets (composition)
» Less robust!?

* Open: A better understanding of the setting
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