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Multiple Hypothesis Testing

Setting: hypotheses H1, . . . ,Hn with p-values p1, . . . , pn

Notation:
• H0 = {i : Hi is true}: null hypotheses
• S = {i : Hi is rejected}: set of rejections (discoveries)
• R = |S| total rejections (discoveries)
• V = |S ∩ H0| incorrect rejections (false discoveries)

False Discovery Proportion FDP = V
R∨1

Goal: control False Discovery Rate [Benjamini and Hochberg, 1995]

FDR = E[FDP] ≤ α
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Side Information
Observe side information xi ∈ X for each Hi

[Ferkingstad et al., 2008, Ignatiadis et al., 2016, Li and Barber, 2016b]
x1, . . . , xn treated as fixed

Ordered multiple testing
[Foster and Stine, 2008, G’Sell et al., 2015, Li and Barber, 2016a]

• H1 most “promising,” then H2, . . . ,Hn (xi = i)
• Focus power on early hypotheses

Examples:
• Sample variance / total count
• Data for gene i from one or more similar experiments
• Spatiotemporal location / location on a graph
• “Collaborative filtering” e.g. Hij : drug i kills cancer j

Idea: if we learn a region of X has many non-nulls, can relax
multiplicity correction in that region
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Motivating Example: Gene/Drug Response Data

Li and Barber [2016a] proposed ingenious ordered analysis of gene
expression data [Coser et al., 2003, Davis and Meltzer, 2007]

Expression in breast cancer cells in response to estrogen
• n = 22283 genes, 25 trials at 5 doses incl. control
• Hi : no differential response in low-dose vs. control
• pi computed via two-sample permutation t-test

Ordered by p̃i, permutation p-value comparing high-dose vs. pooled
sample of low-dose + control

Can show pi independent of p̃i if Hi true

xi = Rank(p̃i) ∈ {1, . . . , n}
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Gene/Drug response Data
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Gene/Drug Response Data

Empirical Bayes: estimate fdr(p | x) = P(Hi false|xi = x, pi = p)

Reject p-values with small f̂dr(pi | xi)

Key questions:
• Which level curve?
• Can we control FDR despite “double-dipping”?
• Is there a “price” for adaptivity?
• What if eBayes model is wrong?
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Adaptive p-Value Thresholding (AdaPT)

Iterative method: steps t = 0, 1, 2, . . .

Step t: consider rejection threshold st(x), compute:

Rt = |{i : pi ≤ st(xi)}|
At = |{i : pi ≥ 1− st(xi)}|

F̂DPt =
1 +At
Rt ∨ 1

If F̂DPt ≤ α, stop and reject {Hi : pi ≤ st(xi)}

Else, choose stricter threshold st+1(x) ≤ st(x) and continue

Update rule must be chosen based on partially masked data
(Keeps us from cheating!)
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AdaPT, Visualized
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AdaPT, “Analyst View”
Define partially masked p-values:

p̃t,i =

{
pi st(xi) < pi < 1− st(xi)
{pi, 1− pi} otherwise.
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To select st+1(x), we can only use:
• x1, . . . , xn
• p̃t,1, . . . , p̃t,n
• At, Rt

(and same for t′ < t)

Any such update rule is OK
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Filtrations
Key questions of selective inference

What did the analyst know, and when did she know it?

σ-field formalizes “what we know” at time t:

Ft = σ((xi)
n
i=1, (p̃t,i)

n
i=1, At, Rt)

, {S ⊆ (X × [0, 1])n : analyst knows if (xi, pi) ∈ S at time t}

Filtration formalizes increasing knowledge over time

F0 ⊆ F1 ⊆ · · ·

Stopping time: {t̂ ≤ t} ∈ Ft

Supermartingale: Mt known by Ft, E[Mt+1 | Ft] ≤Mt a.s.

Optional stopping theorem: E[Mt̂] ≤M0 a.s.
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Animation: Gene/Drug Response Data
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AdaPT: Finite-Sample FDR Control

Theorem 1 (Lei and F, 2016).

Assume that, conditional on (xi)
n
i=1 and (pi)i/∈H0

, the null p-values
(pi)i∈H0 are independent and mirror-conservative. Then AdaPT
controls FDR at level α.

Finite-sample, no assumptions on update rule

Mirror-conservative: f(p) ≤ f(1− p), ∀ p ≤ 0.5. Includes:
• Uniform
• Discrete p-values after randomization
• Permutation test p-values
• One-sided tests for

• MLR families (e.g. log-concave location, exponential family)
• Symmetric unimodal location families

17 / 41



Proof Sketch (* uniform nulls case)
Define

Vt = |{i ∈ H0 : pi ≤ st(xi)}|
Ut = |{i ∈ H0 : pi ≥ 1− st(xi)}| ≤ At
F+
t = σ((pi)i∈HC0

,Ft)

Ingredients:
1 Mt = Vt/(1 + Ut) is F+

t -supermartingale (*)
2 t̂ is F+

t -stopping time

3 EM0 ≤ 1, F̂DPt ≤ α
4 Mt · F̂DPt = 1+At

1+Ut
· FDPt ≥ FDPt

Then:
FDR ≤ E

[
Mt̂ · F̂DPt̂

]
≤ αEMt̂ ≤ α

Similar argument in Storey et al. [2004], Barber and Candès [2015b]
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Prior Work on FDR Control with Side Information

Methods using generic xi to learn data-adaptive weights for
weighted BH:

Independent Hypothesis Weighting (IHW): [Ignatiadis et al., 2016]

• Bin xi, estimate optimal stepwise rejection thresholds
• Asymptotic FDR control
• Problem: how to choose bin width?

Structure-Adaptive BH Algorithm (SABHA): [Li and Barber, 2016b]

• Estimate π0(x) using truncated pi1{pi > τ}
• Can’t reject pi > τ , can’t learn from pi ≤ τ
• Correct α for Rademacher complexity of π̂0
• Finite-sample control of FDR
• Problem: No way to estimate alternative distribution
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Review of Existing Methods: General Recipe
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• p-values p1, . . . , pn

• Rejection Set: a rectangular
region indexed by s ∈ [0, 1]
and k ∈ {1, . . . , n}

• Estimator F̂DP(k, s)

• Gradually reduce k or s until
F̂DP ≤ α

• Reject {Hi : i ≤ k̂, pi < ŝ}
(red points)

Methods differ on sequence of rectangles, formula for F̂DP
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Benjamini–Hochberg Procedure [Benjamini and Hochberg,
1995]

F̂DPBH =
ns

R(s)

Benjamini−Hochberg
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• R(s) = |{i : pi ≤ s}|
• Optional stopping argument

[Storey et al., 2004]

• Conservative: FDR ≤ απ0
(π0 = |H0|/n)
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Storey–BH Procedure [Storey et al., 2004]

F̂DPSBH =
ns

R(s)
· A(λ) + 1

(1− λ)n

Storey−BH
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• R(s) = |{i : pi ≤ s}|
• A(λ) = |{i : pi ≥ λ}|
• A estimates |H0|/n, FDR ≤ α
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Selective SeqStep [Barber and Candès, 2015a]

F̂DPSS =
ks

R(k, s)
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k(1− s)
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Adaptive SeqStep [Lei and F, 2016]

F̂DPAS =
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R(k, s)
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Conditional Two-Groups Model

Frame threshold choice in terms of conditional two-groups model:

Hi | xi ∼ Bernoulli(π1(xi))

pi | Hi, xi ∼

{
Unif if Hi = 0

f1(p | xi) if Hi = 1
.

Mixture density f(p | x) → conditional local fdr [Efron et al., 2001]

fdr(p | x) = P(Hi is null | xi = x, pi = p) =
1− π1(x)

f(p | x)

Estimate f̂dr(p | x) using models for π1(x), f1(· | x)

Impute masked pi using (e.g.) EM
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AdaPT–GLM

Simple choice of model, given featurization φ : X → Rd

Logistic regression for π1, 1-parameter beta GLM for f1

log
P(H = 1 | x)

P(H = 0 | x)
= β′φ(x)

f1(p | x,H = 1) =
1

γ′φ(x)
pγ

′φ(x)−1 (0 < p < 1)

For 1-dimensional examples, φ typically a natural cubic spline basis

Expectation–Maximization: alternate between
• Impute Hi and masked pi (both binary, knowing Ft)
• Estimate β, γ via glm or glmnet (regularized)

adaptMT R package: adapt_glm, adapt_glmnet
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Updating the Threshold

Theorem 2 (Lei and F, 2016).

Under mild assumptions, the optimal threshold s(x) is a level
surface of local FDR.

Step 1. Use your favorite method to fit your favorite model
Step 2. Estimate level surfaces of local FDR
Step 3. Move the threshold to a smaller level surface, re-fit
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Gene/Drug response Data: Power Comparison

Compared AdaPT to competing methods using three orderings:
• Random ordering
• Moderate dose ordering (dose 2 vs. pooled doses 0 & 1)
• High dose ordering (dose 4 vs. pooled doses 0 & 1)

Natural-spline GLM for π1(x), f1(p | x) (fit by EM)

Random ordering
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Gene/Drug response Data: Moderate Dose Ordering
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Gene/Drug response Data: High Dose Ordering
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Convergence of fdr estimates

f̂dr(pi | xi) at step t → f̂dr(pi | xi) estimated using all data

Corr ≥ 90% once F̂DP ≤ 0.3.
Correlation of Estimated Local FDR
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Dependent p-values

Can deal with some forms of dependence using ideas from knockoff
filter [Barber and Candès, 2015a]

Assume we observe correlated z-values Z ∼ Nd(µ,Σ)

Find diagonal D � Σ, generate noise ε ∼ Nd(0, D − Σ):(
Z + ε

W

)
∼ N

((
µ

(I − ΣD−1)µ

)
,

(
D 0
0 ∗

))
where W = Z − ΣD−1(Z + ε)

Compute pi = 2− 2Φ(|Zi + εi|), use filtration

Ft = σ(W, (xi)
n
i=1, (p̃t,i)

n
i=1, At, Rt)
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STAR: Multiple Testing With Structural Constraint

Lihua Lei (Berkeley Statistics) Aaditya Ramdas (CMU Statistics)
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STAR: Multiple Testing With Structural Constraint

Extension with Lihua Lei and Aaditya Ramdas

Want to detect a subset of hypotheses subjected to certain
structural constraint, i.e. {xi : Hi rejected} ∈ K ⊆ 2[n]:

• (spatial-temporal multiple testing)
xi: geographic location, K: all convex sets;

• (hierarchical testing)
xi: node of a tree, K: all subtrees;

• (Selection under strong/weak heredity principles)
xi: node of a DAG, K: all subgraphs st. heredity principles
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Animation: STAR in Convex Region Detection
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Summary

AdaPT: Interactive multiple testing with side information

Estimate local fdr using partially masked data (impute pi)

Unrestricted estimation of optimal threshold

Finite-sample FDR control
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Thanks!
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