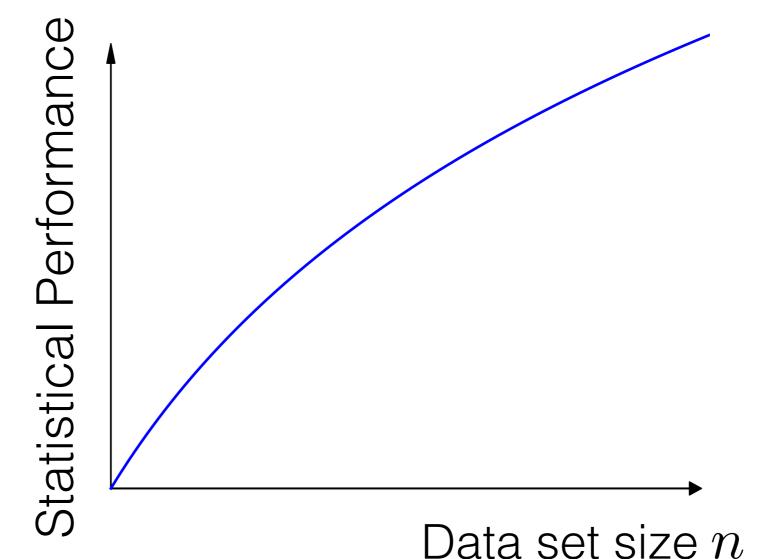
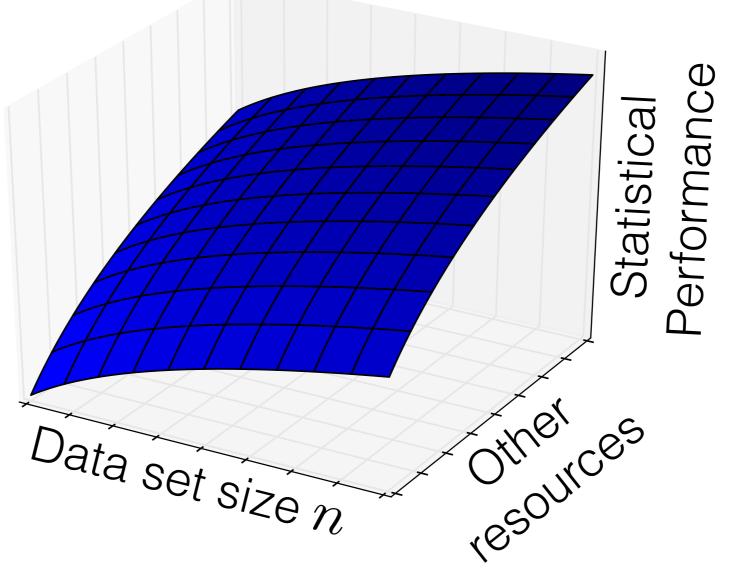
Minimax rates for Batched Stochastic Optimization

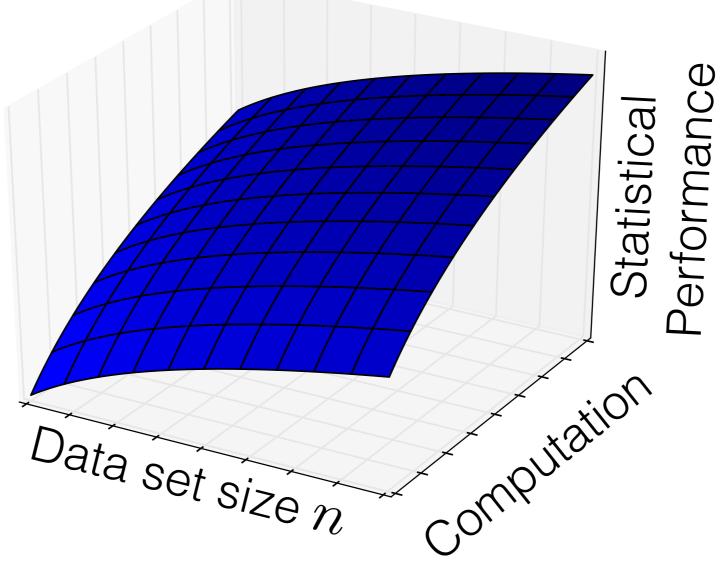
John Duchi based on joint work with Feng Ruan and Chulhee Yun

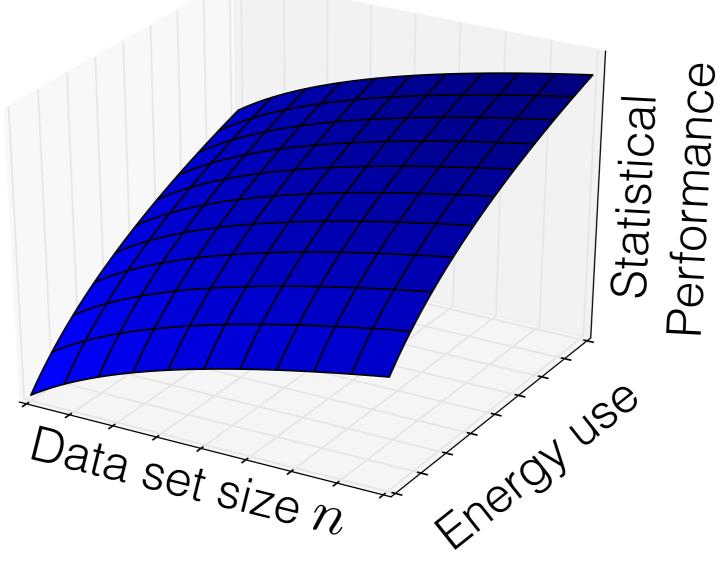
Stanford University

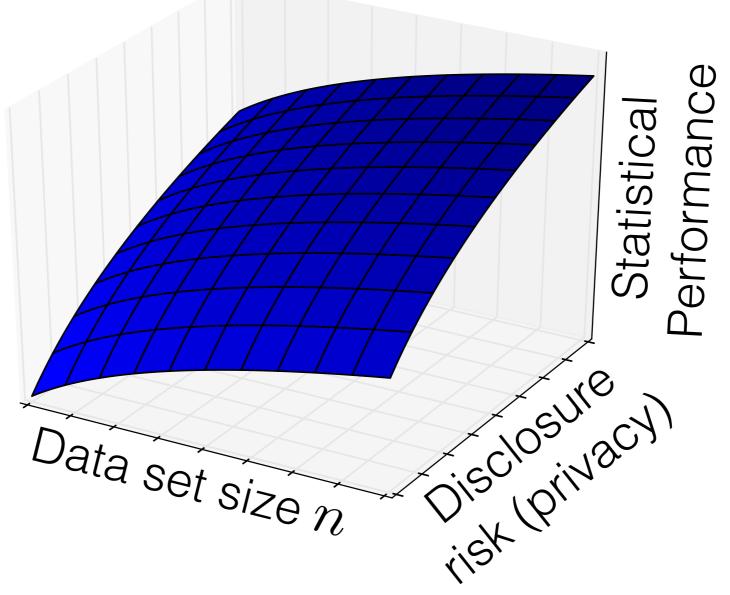
- Major problem in theoretical statistics: how do we characterize statistical optimality for problems with constraints?
 - Computational [Berthet & Rigollet 13, Ma & Wu 15, Brennan et al. 18, Feldman et al. 18]
 - Privacy [Dwork et al. 06, Hardt & Talwar 09, Duchi et al. 13]
 - Robustness [Huber 81, Hardt & Moitra 13, Diakonikolas et al. 16]
 - Memory / communication [Duchi et al. 14, Braverman et al. 15, Steinhardt & Duchi 16]











Problem Setting

minimize f(x)

where f convex

given mean-zero noisy gradient information

$$g = \nabla f(x) + \xi$$

Problem Setting

minimize f(x)

where f convex

given mean-zero noisy gradient information

$$g = \nabla f(x) + \xi$$

computational complexity for these problems?

Stochastic Gradient methods

Iterate (for k = 1, 2, ...)

$$g_k = \nabla f(x_k) + \xi_k$$

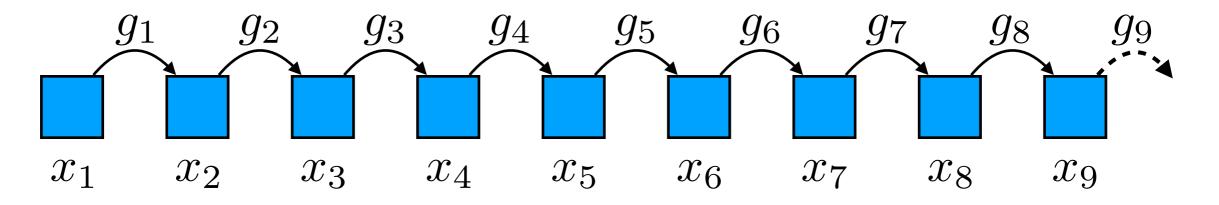
 $x_{k+1} = x_k - \alpha_k g_k$

Stochastic Gradient methods

Iterate (for k = 1, 2, ...)

$$g_k = \nabla f(x_k) + \xi_k$$

 $x_{k+1} = x_k - \alpha_k g_k$

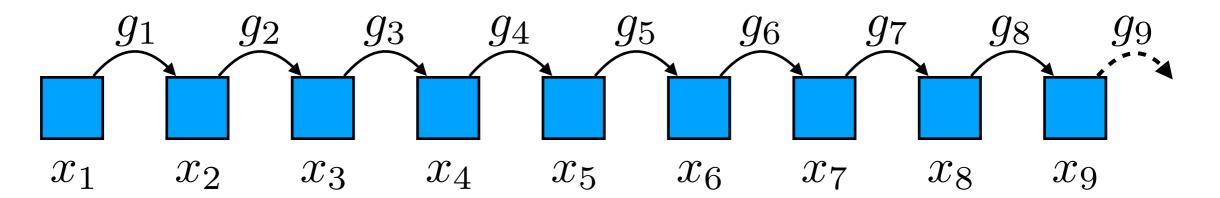


Stochastic Gradient methods

Iterate (for k = 1, 2, ...)

 $g_k = \nabla f(x_k) + \xi_k$

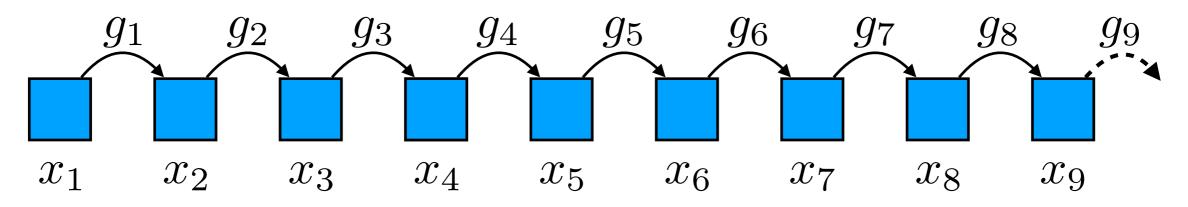
 $x_{k+1} = x_k - \alpha_k g_k$



Theorem (Nemirovski & Yudin 83; Nemirovski et al. 09; Agarwal et al. 11) After k iterations, we have (optimal) convergence

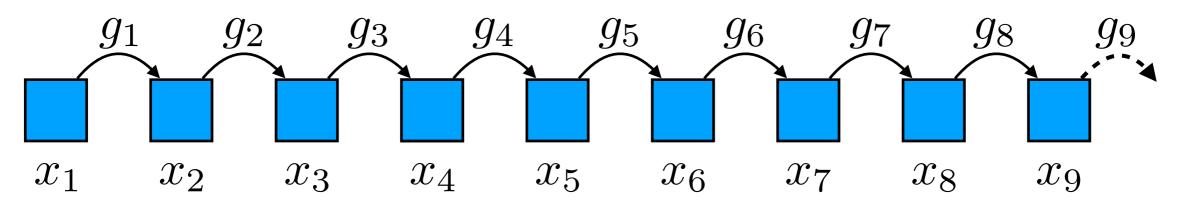
$$\mathbb{E}[f(\overline{x}_k)] - f^* \lesssim \frac{1}{\sqrt{k}}$$

Parellelization and interactivity?

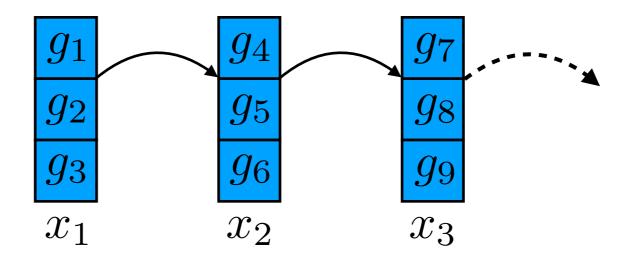


Requires many iterations, lots of interaction, no parallelism

Parellelization and interactivity?



Requires many iterations, lots of interaction, no parallelism



Trade off breadth for depth?

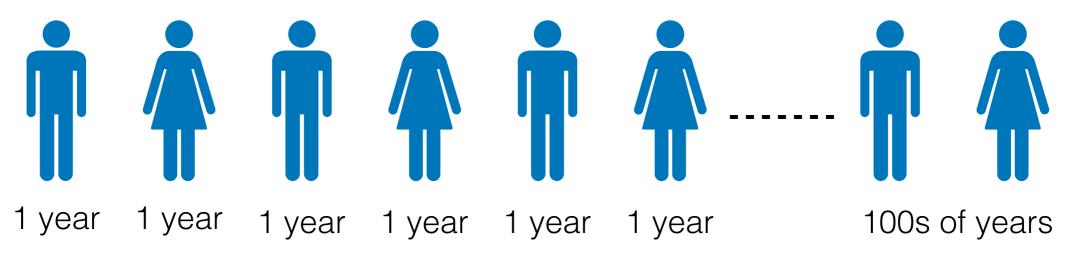
Batched optimization?

Medical trials [Perchet et al. 16, Hardwick & Stout 02, Stein 45]

Batched optimization?

Medical trials [Perchet et al. 16, Hardwick & Stout 02, Stein 45]

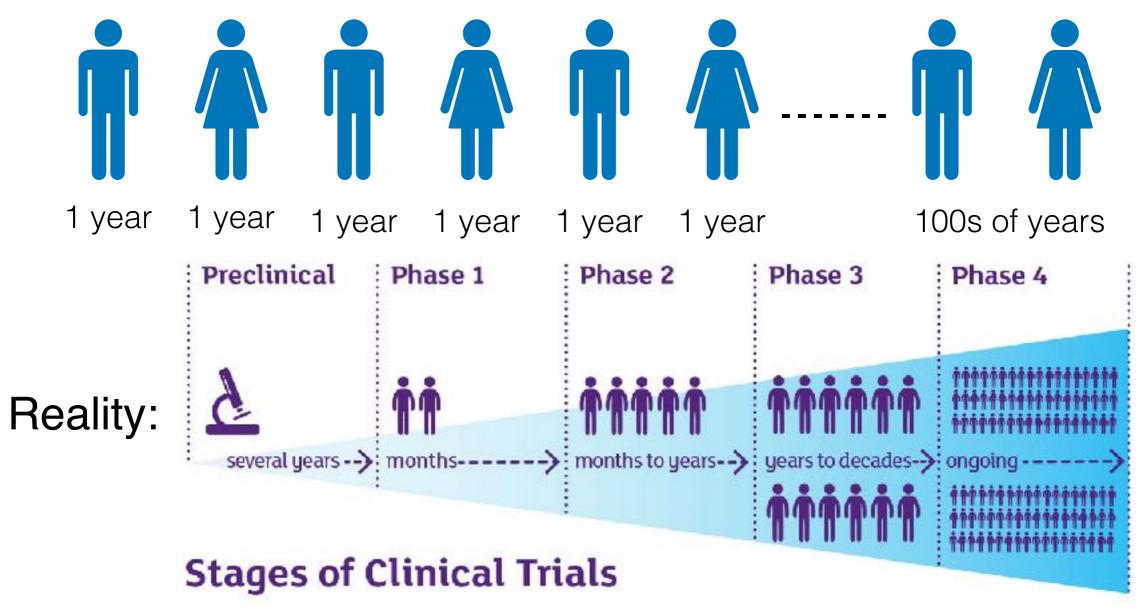
Ideal: get patient, give treatment, observe outcome



Batched optimization?

Medical trials [Perchet et al. 16, Hardwick & Stout 02, Stein 45]

Ideal: get patient, give treatment, observe outcome



Local Differential Privacy

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} = \begin{array}{l} \text{Algorithms with } M \text{ rounds of computation} \\ \text{and } n \text{ (noisy) gradient computations} \end{array}$

 \mathcal{F} = Function class of interest

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} = \begin{array}{l} \text{Algorithms with } M \text{ rounds of computation} \\ \text{and } n \text{ (noisy) gradient computations} \end{array}$

 \mathcal{F} = Function class of interest

Study minimax optimization error $\mathbb{E}[f(\widehat{x})] - f^{\star}$

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} = \begin{array}{l} \text{Algorithms with } M \text{ rounds of computation} \\ \text{and } n \text{ (noisy) gradient computations} \end{array}$

 \mathcal{F} = Function class of interest

Study minimax optimization error $\sup_{f\in\mathcal{F}} \{\mathbb{E}[f(\widehat{x})] - f^{\star}\}$

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} = \begin{array}{l} \text{Algorithms with } M \text{ rounds of computation} \\ \text{and } n \text{ (noisy) gradient computations} \end{array}$

 \mathcal{F} = Function class of interest

Study minimax optimization error $\inf_{\widehat{x}\in\mathcal{A}_{M,n}} \sup_{f\in\mathcal{F}} \left\{ \mathbb{E}[f(\widehat{x})] - f^{\star} \right\}$

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} = \begin{array}{l} \text{Algorithms with } M \text{ rounds of computation} \\ \text{and } n \text{ (noisy) gradient computations} \end{array}$

 \mathcal{F} = Function class of interest

Study minimax optimization error $\mathfrak{M}_{M,n}(\mathcal{F}) := \inf_{\widehat{x} \in \mathcal{A}_{M,n}} \sup_{f \in \mathcal{F}} \{\mathbb{E}[f(\widehat{x})] - f^{\star}\}$

 [Perchet, RCS 18] Batched Bandits. For 2 armed bandit, optimal regret achievable with M = O(log log n)

- [Perchet, RCS 18] Batched Bandits. For 2 armed bandit, optimal regret achievable with M = O(log log n)
- [Nemirovski et al. 09, Ghadimi & Lan 12] Stochastic strongly convex optimization:

$$f(\widehat{x}) - f^* \lesssim ||x_0 - x^*||^2 \exp(-M/\sqrt{\operatorname{Cond}(f)}) + \frac{\operatorname{Var}(\xi)}{\lambda n}$$

Oľ

 $M\gtrsim \sqrt{\operatorname{Cond}(f)}\log n \ \text{ rounds}$

- [Perchet, RCS 18] Batched Bandits. For 2 armed bandit, optimal regret achievable with M = O(log log n)
- [Nemirovski et al. 09, Ghadimi & Lan 12] Stochastic strongly convex optimization:

$$f(\widehat{x}) - f^* \lesssim ||x_0 - x^*||^2 \exp(-M/\sqrt{\operatorname{Cond}(f)}) + \frac{\operatorname{Var}(\xi)}{\lambda n}$$

Or

$$M\gtrsim \sqrt{{
m Cond}(f)}\log n$$
 rounds

• [Smith, TU 17] To solve convex optimization, need

$$M\gtrsim \log \frac{1}{\epsilon} \quad {\rm rounds}$$

Main Results

 $\mathcal{F}_{H,\lambda} := \{\lambda \text{ strongly convex}, H \text{ smooth } f\}$

Main Results

 $\mathcal{F}_{H,\lambda} := \{\lambda \text{ strongly convex}, H \text{ smooth } f\}$

Theorem (D., Ruan, Yun 18)

$$\mathfrak{M}_{M,n}(\mathcal{F}_{H,\lambda}) \ge C(d,n) \cdot n^{-\left(1 - \left(\frac{d}{d+2}\right)^{M}\right)}$$
where $C(d,n) \gg \frac{1}{\operatorname{poly}(n)}$

Main Results

 $\mathcal{F}_{H,\lambda} := \{\lambda \text{ strongly convex}, H \text{ smooth } f\}$

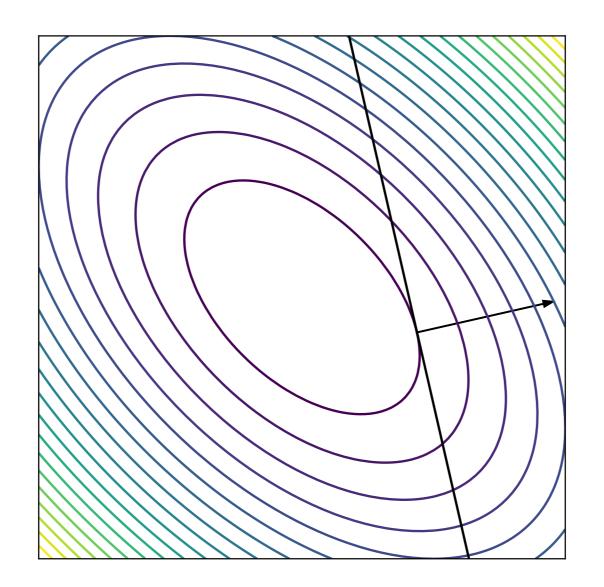
Theorem (D., Ruan, Yun 18)

$$\mathfrak{M}_{M,n}(\mathcal{F}_{H,\lambda}) \ge C(d,n) \cdot n^{-\left(1 - \left(\frac{d}{d+2}\right)^M\right)}$$
where $C(d,n) \gg \frac{1}{\operatorname{poly}(n)}$

Theorem (D., Ruan, Yun 18) If $M \leq (d/2) \log \log n$ then there is an algorithm s.t. $\mathbb{P}\left(f(\widehat{x}) - f^* \geq Cn^{-\left(1 - \left(\frac{d}{d+2}\right)^M\right)} \log n\right) \to 0$

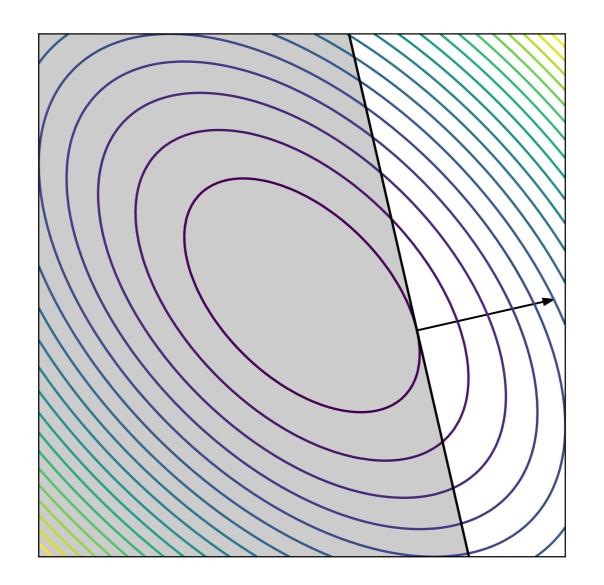
For convex functions f,

$$x^{\star} \in \{ y \mid \langle \nabla f(x), y - x \rangle \le 0 \}$$



For convex functions f,

$$x^{\star} \in \{ y \mid \langle \nabla f(x), y - x \rangle \le 0 \}$$



Maintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, ..., m$

Maintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, \dots, m$

get parallel (noisy) gradients

$$\widehat{\nabla}f(x_1)$$
$$\vdots$$
$$\widehat{\nabla}f(x_m)$$

Achievability

Maintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, ..., m$

get parallel (noisy) gradients

$$\widehat{\nabla}f(x_1) \\
\vdots \\
\widehat{\nabla}f(x_m)$$

w.h.p.

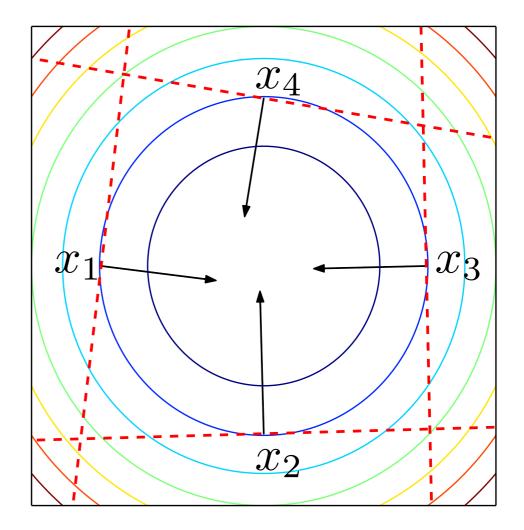
$$x^{\star} \in \{ y \mid \langle \widehat{\nabla} f(x_i), y - x \rangle \le \epsilon \| y - x \| \}$$

Achievability

Maintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, ..., m$

get parallel (noisy) gradients

$$\widehat{\nabla}f(x_1)$$
$$\vdots$$
$$\widehat{\nabla}f(x_m)$$



w.h.p.

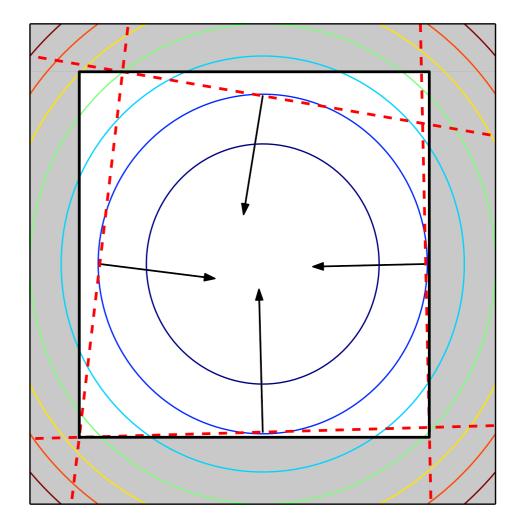
 $x^{\star} \in \{ y \mid \langle \widehat{\nabla} f(x_i), y - x \rangle \le \epsilon \| y - x \| \}$

Achievability

Maintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, ..., m$

get parallel (noisy) gradients

$$\widehat{\nabla}f(x_1)$$
$$\vdots$$
$$\widehat{\nabla}f(x_m)$$

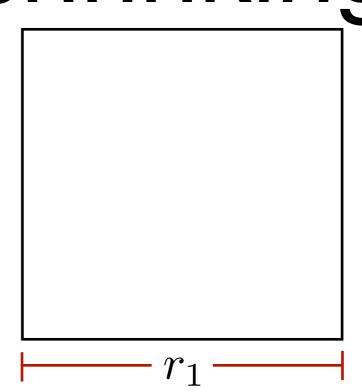


w.h.p.

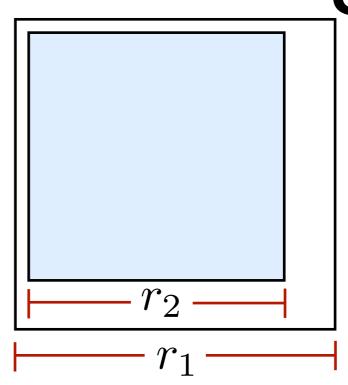
$$x^{\star} \in \{ y \mid \langle \widehat{\nabla} f(x_i), y - x \rangle \le \epsilon \| y - x \| \}$$

$$r_t \le \nu r_{t-1}^\beta$$

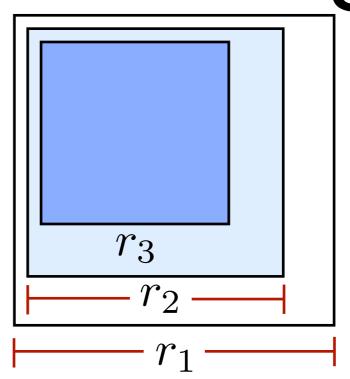
$$r_t \le \nu r_{t-1}^\beta$$



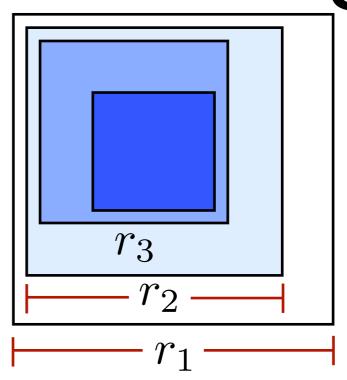
$$r_t \le \nu r_{t-1}^\beta$$



$$r_t \le \nu r_{t-1}^\beta$$



$$r_t \le \nu r_{t-1}^\beta$$

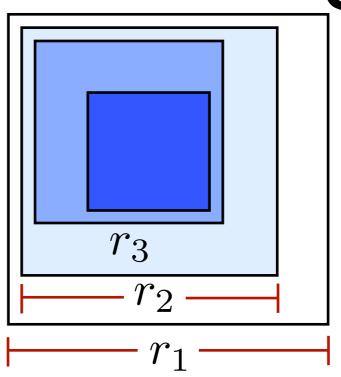


Box radius decreases as

$$r_t \le \nu r_{t-1}^\beta$$

or, recursively

$$\begin{aligned} r_t &\leq \nu r_{t-1}^{\beta} \leq \nu^{1+\beta} r_{t-2}^{\beta^2} \leq \cdots \\ &\leq \nu^{\sum_{j=0}^{t-1} \beta^j} r_0^{\beta^t} \approx \nu^{\frac{\beta^t - 1}{\beta - 1}} \end{aligned}$$



Box radius decreases as

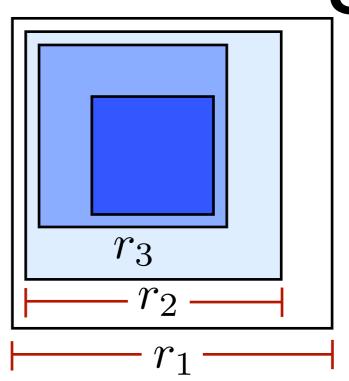
$$r_t \le \nu r_{t-1}^\beta$$

or, recursively

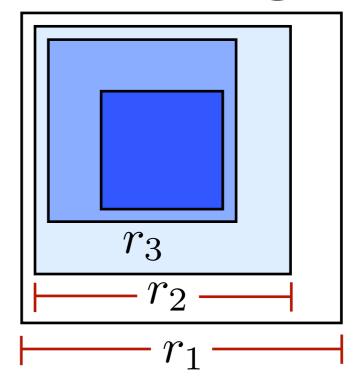
$$\begin{aligned} r_t &\leq \nu r_{t-1}^{\beta} \leq \nu^{1+\beta} r_{t-2}^{\beta^2} \leq \cdots \\ &\leq \nu^{\sum_{j=0}^{t-1} \beta^j} r_0^{\beta^t} \approx \nu^{\frac{\beta^t - 1}{\beta - 1}} \end{aligned}$$

for us, dimension d

$$\beta = \frac{d}{d+2} \quad \nu = n^{-\frac{1}{d+2}}$$



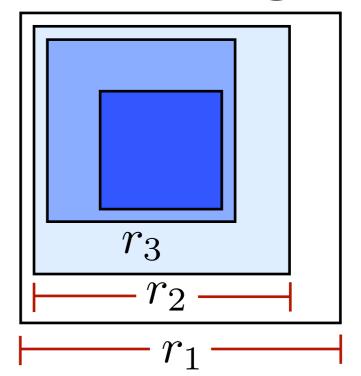
Box radius decreases as $r_t \leq \nu r_{t-1}^{\beta}$ with $\beta = \frac{d}{d+2}$ or, recursively $r_t \leq \nu^{\frac{\beta^t - 1}{\beta - 1}}$



Box radius decreases as $r_t \leq \nu r_{t-1}^{\beta}$ with $\beta = \frac{d}{d+2}$ or, recursively $r_t \leq \nu^{\frac{\beta^t - 1}{\beta - 1}}$

and

$$\nu^{\frac{\beta^t-1}{\beta-1}} \lesssim \frac{1}{n} \quad \text{iff} \quad \beta^t \lesssim \frac{1}{\log n}$$



 r_3

 r_2

 r_1

Box radius decreases as $r_t \leq \nu r_{t-1}^{\beta}$ with $\beta = \frac{d}{d+2}$ or, recursively $r_t \leq \nu^{\frac{\beta^t - 1}{\beta - 1}}$

and

$$\nu^{\frac{\beta^t - 1}{\beta - 1}} \lesssim \frac{1}{n} \quad \text{iff} \quad \beta^t \lesssim \frac{1}{\log n}$$

Solution:
$$t \gtrsim \frac{\log \log n}{\log 1/\beta} = \frac{\log \log n}{\log(1+d/2)}$$

Main Results

 $\mathcal{F}_{H,\lambda} := \{\lambda \text{ strongly convex}, H \text{ smooth } f\}$

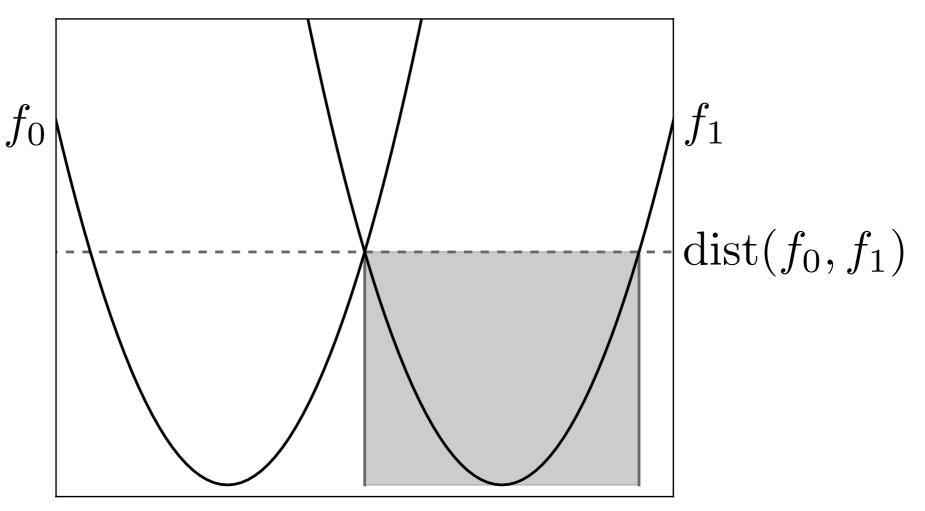
Theorem (D., Ruan, Yun 18)

$$\mathfrak{M}_{M,n}(\mathcal{F}_{H,\lambda}) \ge C(d,n) \cdot n^{-\left(1 - \left(\frac{d}{d+2}\right)^M\right)}$$
where $C(d,n) \gg \frac{1}{\operatorname{poly}(n)}$

Theorem (D., Ruan, Yun 18) If $M \leq (d/2) \log \log n$ then there is an algorithm s.t. $\mathbb{P}\left(f(\widehat{x}) - f^* \geq Cn^{-\left(1 - \left(\frac{d}{d+2}\right)^M\right)} \log n\right) \to 0$

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small



- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

$$\inf_{\widehat{x}} \max_{v \in \{0,1\}} \mathbb{E} \left[f_v(\widehat{x}) - f_v^{\star} \right]$$
$$\geq \frac{\operatorname{dist}(f_0, f_1)}{2} \inf_{\operatorname{Alg} \mathsf{A}} \mathbb{P} \left(\mathsf{A} \text{ distinguishes } f_0, f_1 \right)$$

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

$$\inf_{\widehat{x}} \max_{v \in \{0,1\}} \mathbb{E} \left[f_v(\widehat{x}) - f_v^{\star} \right]$$

$$\geq \frac{\operatorname{dist}(f_0, f_1)}{2} \inf_{\operatorname{Alg } \mathsf{A}} \mathbb{P} \left(\mathsf{A} \text{ distinguishes } f_0, f_1 \right)$$

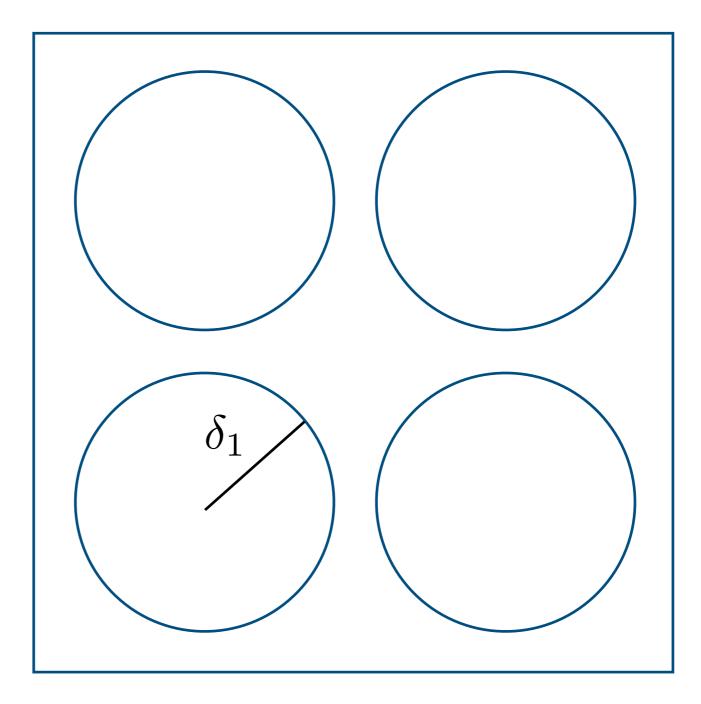
$$= 1 - \|P_0 - P_1\|_{\mathrm{TV}}$$

Lower bound: recursive packing

 $\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \dots \ge \delta_M$

Lower bound: recursive packing

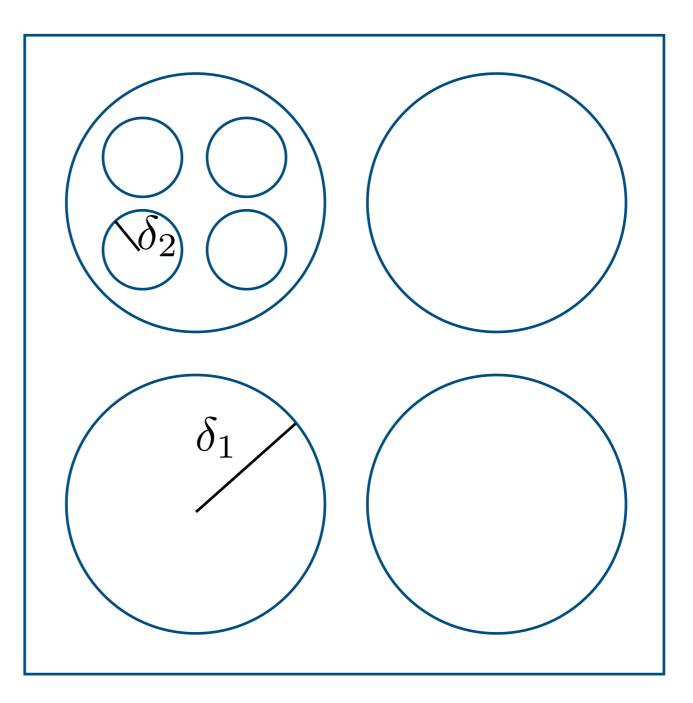
$$\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \dots \ge \delta_M$$



 $\mathcal{U}^{(1)} = \delta_1$ packing of initial set

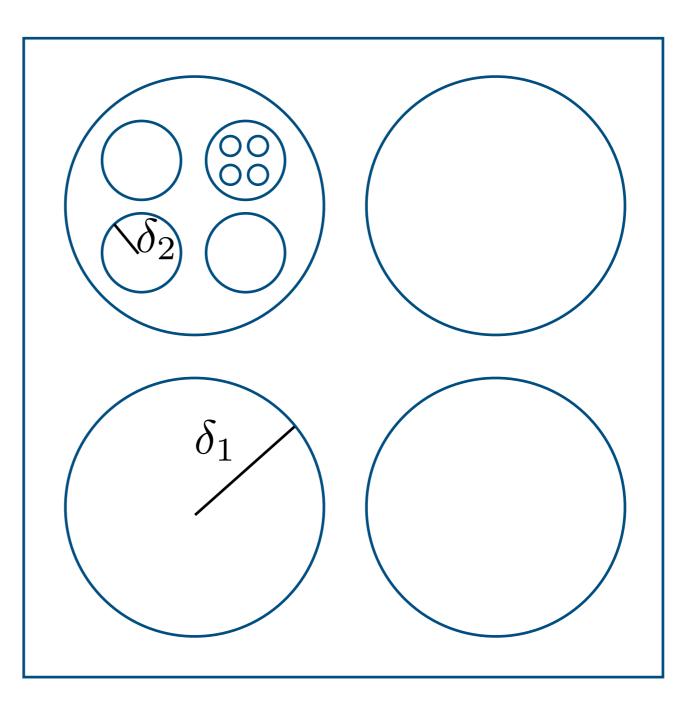
Lower bound: recursive packing $\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M$

 $\mathcal{U}^{(1)} = \delta_1$ packing of initial set $\mathcal{U}^{(t)}_u = 2\delta_t$ packing of ball centered at u



Lower bound: recursive packing $\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M$

 $\mathcal{U}^{(1)} = \delta_1$ packing of initial set $\mathcal{U}^{(t)}_u = 2\delta_t$ packing of ball centered at u



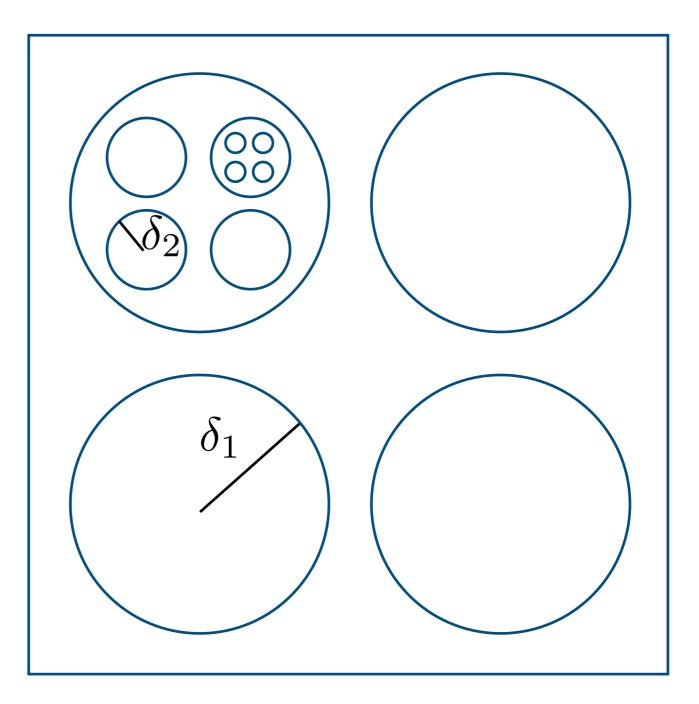
Lower bound: recursive packing $\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M$

 $\mathcal{U}^{(1)} = \delta_1$ packing of initial set $\mathcal{U}^{(t)}_u = 2\delta_t$ packing of

ball centered at u

Idea:

- 1. define functions recursively on balls
- 2. optimization means identifying ball



• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

$$f_{u_{1:M}}^{(1)}(x) = f_{u_{1:M}}^{(0)}(x)$$

$$x \not\in u_M + \delta_M \mathbb{B}$$

• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

$$f_{u_{1:M}}^{(1)}(x) = f_{u_{1:M}}^{(0)}(x) \qquad x \notin u_M + \delta_M \mathbb{B}$$

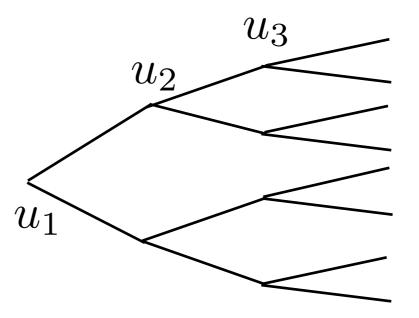
$$f_{u_{1:M}}^{(\pm 1)}(x) = f_{u_{1:t}, \tilde{u}_{t+1:M}}^{(\pm 1)}(x) \qquad x \notin u_t + \delta_t \mathbb{B}$$

• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

$$f_{u_{1:M}}^{(1)}(x) = f_{u_{1:M}}^{(0)}(x) \qquad x \notin u_M + \delta_M \mathbb{B}$$

$$f_{u_{1:M}}^{(\pm 1)}(x) = f_{u_{1:t}, \tilde{u}_{t+1:M}}^{(\pm 1)}(x) \qquad x \notin u_t + \delta_t \mathbb{B}$$

Optimizing well means identifying sequence defining function

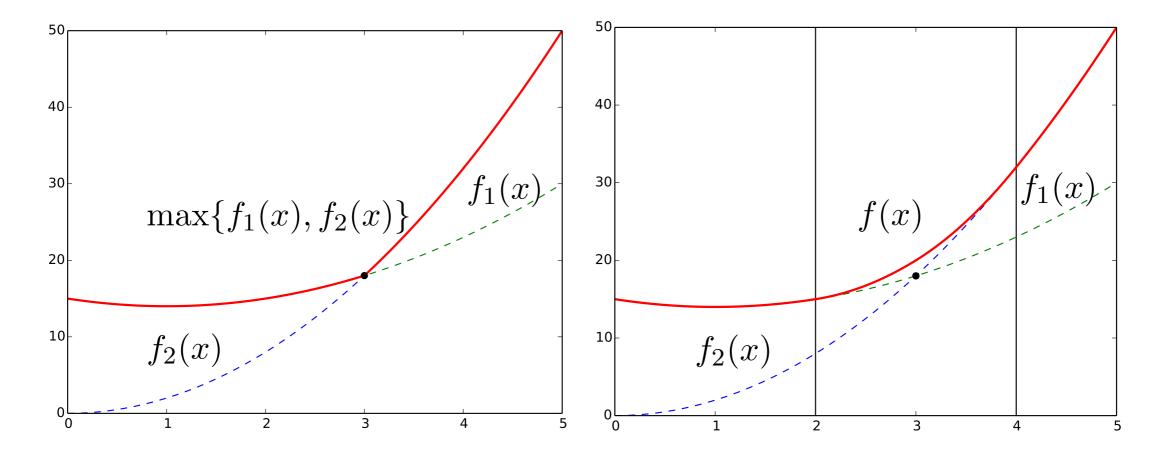


Function construction

$$f_{u_1}(x) = \frac{1}{2} \|x - u_1\|^2$$

Recurse:

 $f_{u_{1:t}}(x) = \text{SmoothMax}\{f_{u_{1:t-1}}(x), \|x - u_t\|^2 + b_t\}$



At each round t (of M):

 $D_{\mathrm{KL}}(\nabla f_{u_{1:M}}(x) + \xi \| \nabla f_{u_{1:t},\tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2$

At each round t (of M):

$$D_{\mathrm{KL}}(\nabla f_{u_{1:M}}(x) + \xi \| \nabla f_{u_{1:t},\tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2$$

Choose radius for "constant" information per round:

$$\delta_t^2 \frac{n}{\# \text{ in packing}} \approx 1$$

At each round t (of M):

$$D_{\mathrm{KL}}(\nabla f_{u_{1:M}}(x) + \xi \| \nabla f_{u_{1:t},\tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2$$

Choose radius for "constant" information per round:

$$\delta_t^2 \frac{n \delta_t^d}{\delta_{t-1}^d} \approx 1$$

At each round t (of M):

$$D_{\mathrm{KL}}(\nabla f_{u_{1:M}}(x) + \xi \| \nabla f_{u_{1:t}, \tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2$$

Choose radius for "constant" information per round:

$$\delta_t^2 \frac{n \delta_t^d}{\delta_{t-1}^d} \approx 1$$

Solution for lower bound:

$$\delta_M = n^{-\frac{1}{d+2}} \delta_{M-1}^{\frac{d}{d+2}} = n^{-\frac{1}{2} \left(1 - \left(\frac{d}{d+2} \right)^M \right)}$$