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• Computational [Berthet & Rigollet 13, Ma & Wu 15, Brennan et 
al. 18, Feldman et al. 18] 

• Privacy [Dwork et al. 06, Hardt & Talwar 09, Duchi et al. 13] 
• Robustness [Huber 81, Hardt & Moitra 13, Diakonikolas et al. 16] 
• Memory / communication [Duchi et al. 14, Braverman et al. 

15, Steinhardt & Duchi 16]
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f convexwhere

given mean-zero noisy gradient information

g = rf(x) + ⇠

computational complexity for these problems?



Stochastic Gradient methods

gk = rf(xk) + ⇠k

xk+1 = xk � ↵kgk

Iterate (for k = 1, 2, …)



Stochastic Gradient methods

gk = rf(xk) + ⇠k

xk+1 = xk � ↵kgk

Iterate (for k = 1, 2, …)

g1 g2 g3 g4 g5 g6 g7 g8 g9

x1 x2 x3 x4 x5 x6 x7 x8 x9



Stochastic Gradient methods

gk = rf(xk) + ⇠k

xk+1 = xk � ↵kgk

Iterate (for k = 1, 2, …)

g1 g2 g3 g4 g5 g6 g7 g8 g9

x1 x2 x3 x4 x5 x6 x7 x8 x9

Theorem (Nemirovski & Yudin 83; Nemirovski et al. 09; Agarwal et al. 11)
After k iterations, we have (optimal) convergence

E[f(xk)]� f? . 1p
k
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Parellelization and 
interactivity?

g1 g2 g3 g4 g5 g6 g7 g8 g9

x1 x2 x3 x4 x5 x6 x7 x8 x9

g1
g2
g3

g4
g5
g6

g7
g8
g9

x1 x2 x3

Requires many iterations, lots of interaction, no parallelism

Trade off breadth for depth?
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Batched optimization?
Medical trials

Ideal: get patient, give treatment, observe outcome

1 year 1 year 1 year 1 year 1 year 1 year 100s of years

Reality:

[Perchet et al. 16, Hardwick & Stout 02, Stein 45]
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Problem Statement
Problem: given M rounds of adaptation and n computations, 
   what is the optimal error in optimization?

AM,n
Algorithms with M rounds of computation 
    and n (noisy) gradient computations=

F = Function class of interest

MM,n(F) := inf
bx2AM,n

sup
f2F

{E[f(bx)]� f?}

Study minimax optimization error
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optimal regret achievable with M = O(log log n)

• [Nemirovski et al. 09, Ghadimi & Lan 12]  Stochastic 
strongly convex optimization:

f(bx)� f? . kx0 � x?k2 exp(�M/
p
Cond(f)) +

Var(⇠)
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or
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• [Smith, TU 17] To solve convex optimization, need

M & log
1

✏
rounds
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How do we prove lower bounds?
1. Two functions, where optimizing one means not 

optimizing the other [Agarwal BRW 13, Duchi 17] 
2. Make information available to algorithm to 

distinguish them small

Lower bound

inf
bx

max
v2{0,1}

E [fv(bx)� f?
v ]

� dist(f0, f1)

2
inf

Alg A
P (A distinguishes f0, f1)

| {z }
=1�kP0�P1kTV
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Lower bound: recursive packing

�1

�2

1

2
� �1 � �2 � · · · � �M

U (1) = �1 packing of 
initial set

U (t)
u = 2�t packing of

ball centered at u

Idea:
1. define functions 

recursively on balls 
2. optimization means 

identifying ball
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Function constructions
• Index functions by path down u1:M = (u1, . . . , uM )

1

2
� �1 � �2 � · · · � �M

f (1)
u1:M

(x) = f (0)
u1:M

(x) x 62 uM + �MB

f (±1)
u1:M

(x) = f (±1)
u1:t,ũt+1:M

(x) x 62 ut + �tB

u1

u2

u3

Optimizing well means 
identifying sequence  
defining function



Function construction

MINIMAX BOUNDS ON STOCHASTIC BATCHED CONVEX OPTIMIZATION

h1(x)h2(x)

@
@R

�
� 

f(x)

f1(x)f2(x)

(a) (b)

Figure 3: Construction of Lipschitz convex functions. (a) Function f(x) = 1
3 |x|, h1(x) =

1
9 |x� 0.15|+ 1

12
and h2(x) = 1

9 |x + 0.15| + 1
12 . All are Lipschitz, with Lipschitz constants 1

3 , 1
9 , and 1

9 , respectively. (b)
Functions f1(x) = max{f(x), h1(x)} and f2(x) = max{f(x), h2(x)}. Noticeably, the function f1(x) and
f2(x) are different only within the region x 2 [�.5, .5]. Functions f1 and f2 are indistinguishable based only
on function value/gradient information calculated outside [�.5, .5].

f1(x)

f2(x)

max{f1(x), f2(x)}
f1(x)

f2(x)

f(x)

(a) (b)

Figure 4: The smooth technique for construction of strongly convex and smooth functions. (a) Function
f1(x) = (x � 1)2 + 14 and f2(x) = 2x2. (b) A smoothed version of the maximum max{f1, f2}, with
gradients interpolated in the region x 2 [2, 4].

3.2.1. THE INFORMATION RECURSION

These functions are then hard to distinguish for iterative procedures: suppose a procedure, by query-
ing the function fu1:M , has “identified” u1:t, but is oblivious to ut+1:M . Then, given batch of n
points at which to compute function information, it is possible to distinguish two different functions
only if one samples a point near ut+1, which has exponentially small probability. Let us extend
this heuristic a bit to give intuition for the lower bounds we prove. Consider a batch-based algo-
rithm, querying n points in computational round t, attempting to distinguish functions fu1:t,ut+1 and
fu1:t,eut+1 . As the functions are identical outside of Bp

ut
(�t), we may consider sampling procedures

that without loss of generality sample only in the ball Bp
ut
(�t). Now, consider the amount of in-

formation that function evaluation queries can release when function values are perturbed by (say)
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fu1(x) =
1

2
kx� u1k2

fu1:t(x) = SmoothMax{fu1:t�1(x), kx� utk2 + bt}
Recurse:
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DKL(rfu1:M (x) + ⇠||rfu1:t,ũt+1:M (x) + ⇠) . �2t

At each round t (of M):

Choose radius for “constant” information per round:

�2t
n�dt
�dt�1

⇡ 1

�M = n� 1
d+2 �

d
d+2

M�1 = n
� 1

2

⇣
1�( d

d+2 )
M

⌘
Solution for lower bound:


