Minimax rates for Batched Stochastic Optimization

John Duchi based on joint work with Feng Ruan and Chulhee Yun

Stanford University

- Major problem in theoretical statistics: how do we characterize statistical optimality for problems with constraints?
	- Computational [Berthet & Rigollet 13, Ma & Wu 15, Brennan et al. 18, Feldman et al. 18]
	- Privacy [Dwork et al. 06, Hardt & Talwar 09, Duchi et al. 13]
	- Robustness [Huber 81, Hardt & Moitra 13, Diakonikolas et al. 16]
	- Memory / communication [Duchi et al. 14, Braverman et al. 15, Steinhardt & Duchi 16]

Problem Setting

minimize $f(x)$

where *f* convex

given mean-zero noisy gradient information

$$
g = \nabla f(x) + \xi
$$

Problem Setting

minimize *f*(*x*)

where *f* convex

given mean-zero noisy gradient information

$$
g = \nabla f(x) + \xi
$$

computational complexity for these problems?

Stochastic Gradient methods

Iterate (for $k = 1, 2, ...$)

$$
g_k = \nabla f(x_k) + \xi_k
$$

 $x_{k+1} = x_k - \alpha_k g_k$

Stochastic Gradient methods

Iterate (for $k = 1, 2, ...$)

$$
g_k = \nabla f(x_k) + \xi_k
$$

 $x_{k+1} = x_k - \alpha_k g_k$

Stochastic Gradient methods

Iterate (for $k = 1, 2, ...$)

 $g_k = \nabla f(x_k) + \xi_k$

 $x_{k+1} = x_k - \alpha_k g_k$

Theorem (Nemirovski & Yudin 83; Nemirovski et al. 09; Agarwal et al. 11) After k iterations, we have (optimal) convergence

$$
\mathbb{E}[f(\overline{x}_k)] - f^* \lesssim \frac{1}{\sqrt{k}}
$$

Parellelization and interactivity?

Requires many iterations, lots of interaction, no parallelism

Parellelization and interactivity?

Requires many iterations, lots of interaction, no parallelism

Trade off breadth for depth?

Batched optimization?

Medical trials [Perchet et al. 16, Hardwick & Stout 02, Stein 45]

Batched optimization?

Medical trials [Perchet et al. 16, Hardwick & Stout 02, Stein 45]

Ideal: get patient, give treatment, observe outcome

Batched optimization?

Medical trials [Perchet et al. 16, Hardwick & Stout 02, Stein 45]

Ideal: get patient, give treatment, observe outcome

Local Differential Privacy

-
-
- -
-
-

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} =$ Algorithms with *M* rounds of computation and *n* (noisy) gradient computations

 $F =$ Function class of interest

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} =$ Algorithms with *M* rounds of computation and *n* (noisy) gradient computations

 $F =$ Function class of interest

 $\mathbb{E}[f(\widehat{x})] - f^*$ Study minimax optimization error

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} =$ Algorithms with *M* rounds of computation and *n* (noisy) gradient computations

 $F =$ Function class of interest

 $\sup_{f \in \mathcal{F}} {\{\mathbb{E}[f(\widehat{x})] - f^{\star}\}}$ $f \in \mathcal{F}$ Study minimax optimization error

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} =$ Algorithms with *M* rounds of computation and *n* (noisy) gradient computations

 $F =$ Function class of interest

inf \widehat{x} E $\mathcal{A}_{M,n}$ sup $f \in \mathcal{F}$ $\{\mathbb{E}[f(\hat{x})] - f^{\star}\}$ Study minimax optimization error

Problem: given M rounds of adaptation and n computations, what is the optimal error in optimization?

 $A_{M,n} =$ Algorithms with *M* rounds of computation and *n* (noisy) gradient computations

 $F =$ Function class of interest

 $\mathfrak{M}_{M,n}(\mathcal{F}):=\inf_{\widehat{x}\in A_{M,n}}% \mathfrak{M}_{M,n}(\widehat{A})\mathfrak{m}_{M,n}(\widehat{A})\;=\;\displaystyle\inf_{\widehat{A}}\mathfrak{m}_{M,n}(\widehat{A})\mathfrak{m}_{M,n}(\widehat{A})\;=\;\displaystyle\inf_{\widehat{A}}\mathfrak{m}_{M,n}(\widehat{A})\mathfrak{m}_{M,n}(\widehat{A})\;$ \widehat{x} E $\mathcal{A}_{M,n}$ sup $f \in \mathcal{F}$ $\{\mathbb{E}[f(\hat{x})] - f^{\star}\}$ Study minimax optimization error

-
-
- -
	-
-

• [Perchet, RCS 18] Batched Bandits. For 2 armed bandit, optimal regret achievable with $M = O(\log \log n)$

- [Perchet, RCS 18] Batched Bandits. For 2 armed bandit, optimal regret achievable with $M = O(\log \log n)$
- [Nemirovski et al. 09, Ghadimi & Lan 12] Stochastic strongly convex optimization:

$$
f(\hat{x}) - f^{\star} \lesssim ||x_0 - x^{\star}||^2 \exp(-M/\sqrt{\text{Cond}(f)}) + \frac{\text{Var}(\xi)}{\lambda n}
$$

or

 $M \gtrsim \sqrt{\text{Cond}(f) \log n}$ rounds

- [Perchet, RCS 18] Batched Bandits. For 2 armed bandit, optimal regret achievable with $M = O(\log \log n)$
- [Nemirovski et al. 09, Ghadimi & Lan 12] Stochastic strongly convex optimization:

$$
f(\widehat{x}) - f^* \lesssim ||x_0 - x^*||^2 \exp(-M/\sqrt{\text{Cond}(f)}) + \frac{\text{Var}(\xi)}{\lambda n}
$$

$$
M \gtrsim \sqrt{\text{Cond}(f)} \log n \text{ rounds}
$$

• [Smith, TU 17] To solve convex optimization, need

$$
M \gtrsim \log \frac{1}{\epsilon} \text{ rounds}
$$

 $\mathcal{F}_{H,\lambda} := \{ \lambda \text{ strongly convex}, H \text{ smooth } f \}$

 $\mathcal{F}_{H,\lambda} := \{ \lambda \text{ strongly convex}, H \text{ smooth } f \}$

Theorem (D., Ruan, Yun 18) $\mathfrak{M}_{M,n}(\mathcal{F}_{H,\lambda}) \geq C(d,n) \cdot n^{-1}$ $\sqrt{2}$ $1 - \left(\frac{d}{d+2}\right)$ $M \setminus$ where $C(d, n) \gg$ 1 poly(*n*)

 $\mathcal{F}_{H,\lambda} := \{ \lambda \text{ strongly convex}, H \text{ smooth } f \}$

Theorem (D., Ruan, Yun 18) $\mathfrak{M}_{M,n}(\mathcal{F}_{H,\lambda}) \geq C(d,n) \cdot n^{-1}$ $\sqrt{2}$ $1 - \left(\frac{d}{d+2}\right)$ $M \setminus$ where $C(d, n) \gg$ 1 poly(*n*)

Theorem (D., Ruan, Yun 18) \mathbb{P} $\sqrt{2}$ $f(\hat{x}) - f^* \geq Cn^ \sqrt{2}$ $1 - \left(\frac{d}{d+2}\right)$ $M \setminus$ log *n* ◆ $\rightarrow 0$ If $M \leq (d/2) \log \log n$ then there is an algorithm s.t.

For convex functions f,

$$
x^* \in \{ y \mid \langle \nabla f(x), y - x \rangle \le 0 \}
$$

For convex functions f,

$$
x^* \in \{ y \mid \langle \nabla f(x), y - x \rangle \le 0 \}
$$

*M*aintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, \ldots, m$

*M*aintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, \ldots, m$

get parallel (noisy) gradients

$$
\begin{array}{c}\n\bigcap \widehat{\nabla} f(x_1) \\
\vdots \\
\widehat{\nabla} f(x_m)\n\end{array}
$$

*M*aintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, \ldots, m$

get parallel (noisy) gradients

$$
\begin{array}{c}\n\bigcap \widehat{\nabla} f(x_1) \\
\vdots \\
\widehat{\nabla} f(x_m)\n\end{array}
$$

w.h.p.

$$
x^* \in \{ y \mid \langle \hat{\nabla} f(x_i), y - x \rangle \le \epsilon \| y - x \|\}
$$

*M*aintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, \ldots, m$

get parallel (noisy) gradients

$$
\begin{array}{c}\n\bigcap \widehat{\nabla} f(x_1) \\
\vdots \\
\widehat{\nabla} f(x_m)\n\end{array}
$$

w.h.p.

 $x^* \in \{y \mid \langle \widehat{\nabla}f(x_i), y - x \rangle \leq \epsilon \|y - x\| \}$

*M*aintain feasible box $\mathcal{B}_t = c_t + [-r_t, r_t]^d$ with center c_t At round t, take points $x_i \in \mathcal{B}_t, i = 1, \ldots, m$

get parallel (noisy) gradients

$$
\begin{array}{c}\n\bigcap \widehat{\nabla} f(x_1) \\
\vdots \\
\widehat{\nabla} f(x_m)\n\end{array}
$$

w.h.p.

$$
x^* \in \{ y \mid \langle \hat{\nabla} f(x_i), y - x \rangle \le \epsilon \| y - x \|\}
$$

$$
r_t \le \nu r_{t-1}^{\beta}
$$

$$
r_t \le \nu r_{t-1}^{\beta}
$$

$$
r_t \le \nu r_{t-1}^{\beta}
$$

$$
r_t \le \nu r_{t-1}^{\beta}
$$

$$
r_t \le \nu r_{t-1}^{\beta}
$$

Box radius decreases as

$$
r_t \le \nu r_{t-1}^{\beta}
$$

or, recursively

$$
r_t \le \nu r_{t-1}^{\beta} \le \nu^{1+\beta} r_{t-2}^{\beta^2} \le \cdots \le \nu^{\sum_{j=0}^{t-1} \beta^j} r_0^{\beta^t} \approx \nu^{\frac{\beta^t - 1}{\beta - 1}}
$$

Box radius decreases as

$$
r_t \le \nu r_{t-1}^{\beta}
$$

or, recursively

$$
r_t \le \nu r_{t-1}^{\beta} \le \nu^{1+\beta} r_{t-2}^{\beta^2} \le \cdots
$$

$$
\le \nu^{\sum_{j=0}^{t-1} \beta^j} r_0^{\beta^t} \approx \nu^{\frac{\beta^t - 1}{\beta - 1}}
$$

for us, dimension d

$$
\beta = \frac{d}{d+2} \quad \nu = n^{-\frac{1}{d+2}}
$$

Box radius decreases as $r_t \le \nu r_{t-1}^{\beta}$ with $\beta = \frac{d}{d+2}$ or, recursively $r_t \leq \nu$ $\frac{\beta^t-1}{2}$ $\beta-1$ *d*+2

Box radius decreases as $r_t \le \nu r_{t-1}^{\beta}$ with $\beta = \frac{d}{d+2}$ or, recursively $r_t \leq \nu$ $\frac{\beta^t-1}{2}$ $\beta-1$ *d*+2

and

$$
\nu^{\frac{\beta^t-1}{\beta-1}}\lesssim \frac{1}{n}\quad \text{iff}\quad \beta^t\lesssim \frac{1}{\log n}
$$

Box radius decreases as $r_t \le \nu r_{t-1}^{\beta}$ with $\beta = \frac{d}{d+2}$ or, recursively $r_t \leq \nu$ $\frac{\beta^t-1}{2}$ $\beta-1$ *d*+2

and

$$
\nu^{\frac{\beta^t-1}{\beta-1}}\lesssim \frac{1}{n}\quad \text{iff}\quad \beta^t\lesssim \frac{1}{\log n}
$$

Solution:
$$
t \gtrsim \frac{\log \log n}{\log 1/\beta} = \frac{\log \log n}{\log(1 + d/2)}
$$

*r*1

*r*2

*r*3

 $\mathcal{F}_{H,\lambda} := \{ \lambda \text{ strongly convex}, H \text{ smooth } f \}$

Theorem (D., Ruan, Yun 18) $\mathfrak{M}_{M,n}(\mathcal{F}_{H,\lambda}) \geq C(d,n) \cdot n^{-1}$ $\sqrt{2}$ $1 - \left(\frac{d}{d+2}\right)$ $M \setminus$ where $C(d, n) \gg$ 1 poly(*n*)

Theorem (D., Ruan, Yun 18) \mathbb{P} $\sqrt{2}$ $f(\hat{x}) - f^* \geq Cn^ \sqrt{2}$ $1 - \left(\frac{d}{d+2}\right)$ $M \setminus$ log *n* ◆ $\rightarrow 0$ If $M \leq (d/2) \log \log n$ then there is an algorithm s.t.

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

$$
\inf_{\widehat{x}} \max_{v \in \{0,1\}} \mathbb{E}\left[f_v(\widehat{x}) - f_v^{\star}\right]
$$
\n
$$
\geq \frac{\text{dist}(f_0, f_1)}{2} \inf_{\text{Alg } \mathsf{A}} \mathbb{P}\left(\mathsf{A} \text{ distinguishes } f_0, f_1\right)
$$

- 1. Two functions, where optimizing one means *not* optimizing the other [Agarwal BRW 13, Duchi 17]
- 2. Make information available to algorithm to distinguish them small

$$
\inf_{\widehat{x}} \max_{v \in \{0,1\}} \mathbb{E}\left[f_v(\widehat{x}) - f_v^{\star}\right]
$$
\n
$$
\geq \frac{\text{dist}(f_0, f_1)}{2} \inf_{\text{Alg } A} \mathbb{P}\left(A \text{ distinguishes } f_0, f_1\right)
$$
\n
$$
= 1 - ||P_0 - P_1||_{TV}
$$

1 $\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M$

$$
\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M
$$

 $U^{(1)} = \delta_1$ packing of initial set

$$
\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M
$$

 $\mathcal{U}^{(1)} = \delta_1$ packing of initial set $\mathcal{U}_u^{(t)} = 2\delta_t\,$ packing of

ball centered at *u*

$$
\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M
$$

 $\mathcal{U}^{(1)} = \delta_1$ packing of initial set $\mathcal{U}_u^{(t)} = 2\delta_t\,$ packing of

ball centered at *u*

$$
\frac{1}{2} \ge \delta_1 \ge \delta_2 \ge \cdots \ge \delta_M
$$

 $\mathcal{U}^{(1)} = \delta_1$ packing of initial set $\mathcal{U}_u^{(t)} = 2\delta_t\,$ packing of

ball centered at *u*

Idea:

- 1. define functions recursively on balls
- 2. optimization means identifying ball

• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

$$
f^{(1)}_{u_{1:M}}(x) = f^{(0)}_{u_{1:M}}(x)
$$

$$
u_{1:M}^{(0)}(x) \t x \notin u_M + \delta_M \mathbb{B}
$$

• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

$$
f_{u_{1:M}}^{(1)}(x) = f_{u_{1:M}}^{(0)}(x) \qquad x \notin u_M + \delta_M \mathbb{B}
$$

$$
f_{u_{1:M}}^{(\pm 1)}(x) = f_{u_{1:t}, \tilde{u}_{t+1:M}}^{(\pm 1)}(x) \quad x \notin u_t + \delta_t \mathbb{B}
$$

• Index functions by path down $u_{1:M} = (u_1, \ldots, u_M)$

$$
f_{u_{1:M}}^{(1)}(x) = f_{u_{1:M}}^{(0)}(x) \qquad x \notin u_M + \delta_M \mathbb{B}
$$

$$
f_{u_{1:M}}^{(\pm 1)}(x) = f_{u_{1:t}, \tilde{u}_{t+1:M}}^{(\pm 1)}(x) \quad x \notin u_t + \delta_t \mathbb{B}
$$

Optimizing well means identifying sequence defining function

Function construction

$$
f_{u_1}(x) = \frac{1}{2} ||x - u_1||^2
$$

Because:

 $f_{u_{1:t}}(x) = \text{SmoothMax}\{f_{u_{1:t-1}}(x), ||x - u_t||^2 + b_t\}$

At each round t (of M):

 $D_{KL}(\nabla f_{u_{1:M}}(x) + \xi \|\nabla f_{u_{1:t}, \tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2$

At each round t (of M):

$$
D_{\mathrm{KL}}(\nabla f_{u_{1:M}}(x) + \xi \|\nabla f_{u_{1:t}, \tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2
$$

Choose radius for "constant" information per round:

$$
\delta_t^2 \frac{n}{\# \text{ in packing}} \approx 1
$$

At each round t (of M):

$$
D_{\mathrm{KL}}(\nabla f_{u_{1:M}}(x) + \xi \|\nabla f_{u_{1:t}, \tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2
$$

Choose radius for "constant" information per round:

$$
\delta_t^2 \frac{n \delta_t^d}{\delta_{t-1}^d} \approx 1
$$

At each round t (of M):

$$
D_{\mathrm{KL}}(\nabla f_{u_{1:M}}(x) + \xi \|\nabla f_{u_{1:t}, \tilde{u}_{t+1:M}}(x) + \xi) \lesssim \delta_t^2
$$

Choose radius for "constant" information per round:

$$
\delta_t^2 \frac{n \delta_t^d}{\delta_{t-1}^d} \approx 1
$$

Solution for lower bound:

$$
\delta_M = n^{-\frac{1}{d+2}} \delta_{M-1}^{\frac{d}{d+2}} = n^{-\frac{1}{2} \left(1 - \left(\frac{d}{d+2} \right)^M \right)}
$$