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Part 2: Hiding the data
• Three related notions

ØPrivacy
ØAlgorithmic stability
ØBounded information

• All three relate adaptive setting 
to execution on fresh data
ØCommon idea: With limited information about the data, 

cannot overfit

• Larger goal: Prescriptive theory
ØUnderstand how to design algorithms 

to maximize data set’s long-term value
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Adaptive Linear Queries
• Each query is a function

!:# → [0,1]
• Empirical answer 

! * = 1
,-.

! /.

• “Population answer” 
! 0 = 12∼4 ! 5

• Answers have error 6 if 
7. − !. 0 ≤ 6 (∀<)
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• Examples
Ø Contingency tables
Ø Classification error
Ø Optimization via gradient descent
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Outline

• Privacy, Stability, Generalization: Pick Any Three
Ø “Stable algorithms cannot overfit”

• Applications to statistical queries
Ø “Transfer theorems” for stable algorithms

• Information and generalization
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Differential Privacy

• Data set  !
ØDomain D can be numbers, categories, tax forms
ØThink of x as fixed (not random)

• A = randomized procedure
Ø"(!) is a random variable
ØRandomness might come from adding noise, resampling, etc.
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Differential Privacy

• A thought experiment
ØChange one person’s data (or remove them)
ØWill the distribution on outputs change much?
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local random 
coins

A A(x’)

!’ is a neighbor of !
if they differ in one data point

local random 
coins
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Definition:  A is ($, &)-differentially private if, 
for all neighbors (, (’, 
for all subsets S of outputs

Pr + ( ∈ - ≤ /0 Pr + (1 ∈ - + &
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close distributions
on outputs
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Why distributional stability? 
With the right divergence, distributional stability…
• Is closed under processing by arbitrary analyst

ØDon’t need to understand how analyst works

• Degrades gracefully when
algorithms are composed
Ø If each !" is ($", &")-DP,

then ( is ≈ $ *, &* − ,-
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Laplace Mechanism

• Say we want to release a summary ! " ∈ ℝ%
Øe.g., proportion of diabetics: "& ∈ 0,1 and ! " = +

,∑& "&

• Simple approach: add noise to !(")
ØHow much noise is needed?
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Laplace Mechanism

• Global Sensitivity: 

ØExample:   
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Laplace Mechanism

• Global Sensitivity:

ØExample:   

ØLaplace distribution Lap $ has density 

ØChanging one point translates curve
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A rich algorithmic field
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Outline

• Privacy, Stability, Generalization: Pick Any Three
Ø “Stable algorithms cannot overfit”

• Applications to statistical queries
Ø “Transfer theorems” for stable algorithms

• Information and generalization
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Why distributional stability? 
• Implies that the analyst “cannot overfit”. Suppose:

• Analyst chooses !
• Algorithm produces output " = $(&)
• Analyst selects a statistical query ():→ [0,1]
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Meta-Theorem [DFHPRR, …]: 
If $ is 1-stable w.r.t. 2, then: ∀!, ∀ "4"56787:

9:;<= ≲ ?(1, 2)
with high probability.

X $ "

()

Score = () & − () !
Score ≈ () & − () &B

Analyst! i.i.d.



Generalization Lemmas

• ", $ -DP ⟹ &'()* = ,(")
with probability ≈ 1 − *2345 − $/"

• "-TV stable ⟹ 7 &'()* = "
• "8-KL stable ⟹ 7 &'()*8 = ,(")
• "8-”zCDP” ⟹ score = ,(") with high prob.
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X > ?

@A
Score = @A B − @A C where ? = > B
Score ≈ @A B − @A BD

C i.i.d.

[DFHPRR ‘15,
BNSSSU ’16]

[McSherry ??]

[Russo-Zou ’15,
WangLeiFienberg’16]

[Bun, Dwork, Rothblum, Steinke]



Proof idea: Stability
• Lemma: If ! is "-TV stable, then for all distributions #:

$ %∼'(
)∼*(%)

-) . − -) # ≤ "
• Proof: 

Ø Fix distribution #
Ø Compare distributions on two triples

• 2, 4, 5 2 and (2, 4, 5 264, 78 ) where 9:, … , 9<, =9 ∼ # are i.i.d. 

Ø Observation: These have total variation distance ≤ ".
• Expectations of bounded functions are about the same

Ø Consider the bounded function > 8, 4, ? = -A(9B)
where -A is the query selected by analyst on output

Ø Now we have
$ > 2, 4, 5 2 = $ -) 8
$ > 2, 4, 5 264, 78 = $ -) #

Ø So $ -) . − -) # ≤ "
• Need a bit more work to get $ CDEFG ≤ "
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High-Probability Bounds
• To get subgaussian concentration, need stronger 

guarantees than TV or KL stability
Ø (", $)-differential privacy currently the best

• Idea [Nissim-Stemmer]:
ØRun & ≈ 1/$ copies of the game with independent data sets

• If analyst succeeds with probability $, then with constant probability 
one of the copies produced a query that overfit 

ØUse a differentially private algorithm to choose copy with 
“worst” error

ØArgue that composed algorithm… 
• Is differentially private [easy]
• Should not be able to overfit to any of the & data sets [subtle]
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Outline

• Privacy, Stability, Generalization: Pick Any Three
Ø “Stable algorithms cannot overfit”

• Applications to statistical queries
Ø “Transfer theorems” for stable algorithms

• Information and generalization
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Adaptive Linear Queries
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“Transfer” Theorem
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'• The generalization lemmas connect 
accuracy on the population with 
sample accuracy. 

• We say ! is (#, %) sample-accurate if,
for all data sets ',

max+ |-+ − /+(') | ≤ #
with probability ≥ 1 − %.

• Theorem [BNSSSU]: 
If ! is (3, 4)-DP and (#, %)-sample accurate, then

max+ -+ − /+ 5 ≤ 6(# + 3)
with probability ≥ 1 − % − 4/3. 

• Similar theorems possible for weaker stability notions
• Proof relies on “right” way to handle many rounds



From 2 to ! stages: Induction [DFHPRR’15]

• Apply overfitting lemma at each round
ØProbability of overfitting adds up over rounds 
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“Monitor Argument” [BNSSSU’16]

• Stronger bounds
• Generalizes beyond linear queries
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Application 1: Worst-case queries
• One can answer an arbitrary sequence of ! adaptively 

chosen statistical queries such that (w.h.p.)

max% &' − )' * = ,O
. !
/

ØAlternatively, for error 0, a sufficient sample size is 

/ = ,Ο !
02

• Algorithm: On each query, add Laplace (or Gaussian) 

noise with standard deviation 
. 3
4
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Adding noise to many queries
• Suppose we have ! statistical queries "#, … , "&
• Lemma: There is an ((, ))-differentially private 

algorithm that answers each query with sample error

max
.

/. − ". 1 = 34
!
(5 ⋅ ln ! ln 1/)

• Run Laplace mechanism ! times, 
Øwith parameter (; ≈ (/ !
Ø then apply composition theorems

• Corollary (via Transfer Theorem): If = ∼ ?@, then 

max
.

/. − ". ? = A3 !
(5 + ( = A3

C !
5 .
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Application 2: Reusable Holdout [DFHPRR]
• Recall from part 1: we can answer ! queries with error 

nearly independent of !
ØUse “dirty” set " to generate guesses, and 

“clean” set # to verify. 
ØAlgorithm: answer only those queries 

where $% &' − $% &) > + for some +
ØError is + + -. / 012 3

4

• New version: add noise each time you compare to 
threshold

ØObtain error + + -. / 012 3 5/7

4
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Sparse vector mechanism
• Suppose we have ! statistical queries "#, … , "&

Ø Each asks for the average of a [0,1] function over the data
Ø Posed adaptively 

• We want to know which queries exceed a threshold +
Ø E.g. which queries are way above a guessed value
Ø Can we pay only for the number of queries above threshold?

• Sparse Vector Mechanism* (,, "#, "-, … )
Ø /0123 = 0
Ø While(/0123 < 6):

• Receive next query "7
• If "7 , + 91: #

;<= > + :
– Answer “above threshold”
– /0123 ← /0123 + 1

• Else
– Answer “below threshold”

31

Theorem*: For AB ≈ <
D EF #/H

, 

Sparse Vector is
• A, J -DP
• Correct w.h.p. for all K s.t.

"7 , − + ≥ Ω D EF #/H EF &
;<

* Actual algorithm also randomizes +



Similar applications
• Median mechanism

ØCompression analysis !O #$% & ⋅#$% (
)

*/,

Ø Stability-based: -. #$% ( //0 #$% & //1

)

• Ladder algorithm [Hardt17]
ØCompression analysis 2 = #$% (

45

Ø Stability-based: 2 = #$% ( /.7

40.7
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Outline

• Privacy, Stability, Generalization: Pick Any Three
Ø “Stable algorithms cannot overfit”

• Applications to statistical queries
Ø “Transfer theorems” for stable algorithms

• Information and generalization
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Information and Overfitting

• Look at information in ! = # $ about $
• Several measures based on odds ratio

%&,( = log Pr # $ = . | $ = 0
Pr # $ = .

ØMutual information:    expectation of %&,(
ØMax information:        high-probability bound on %&,(
ØMin-entropy leakage:  1(~3 456& %&,(

34

[DFHPRR, Russo-Zou, 
RRST, Xu-Raginsky,…]

#
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Meta-Lemma:  score ≲ "#$%&'()"%# / #

Information and Overfitting

• Look at information in + = - . about .
• Several measures based on odds ratio

/0,2 =
Pr - . = 5 | . = 7

Pr - . = 5
.

35

[DFHPRR, Russo-Zou, 
RRST, Xu-Raginsky,…]
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i.i.d. 9:
Analyst;

X

Theorem: If - is (=, >)-DP*, then max − info ≲ =H#.

(

Theorem: If - is ℓ-compressible, then max − info ≲ ℓ.



From information to hypothesis testing
• Consider adaptive hypothesis selection: analyst makes a 

conjecture !" about #, and chooses a test $ such that 
Pr $ ' = 1 # ∈ !" , ' ∼ #- ≤ /"

• The max information is 

01 '; 3 ' = max7,8 log Pr 3 < = = ' = <
Pr 3 < = =

• Observation: If 01 '; 3 ' ≤ >, then 
Pr $ ' = 1 # ∈ !" , ' ∼ #- , $ = 3(') ≤ 2B/".

• Other measures of information yield more complex 
relationships
Ø Not yet well explored [Russo-Zou’15, RogersRST16, S’17]
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Outline

• Privacy, Stability, Generalization: Pick Any Three
Ø “Stable algorithms cannot overfit”

• Applications to statistical queries
Ø “Transfer theorems” for stable algorithms

• Information and generalization
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Conclusions
• Adaptive analysis is everywhere

Ø “All inference” is selective
• We can get nontrivial results for arbitrary analyst behavior

Ø Accuracy/power guarantees
Ø Results are (essentially) tight
Ø Information and stability play key roles

• Current theory most useful for
Ø Many queries
Ø Statistical queries

• Not covered
Ø Lower bounds on accuracy (and open problems)
Ø Concrete bounds (see talks by Feldman and Thakkar)
Ø Accuracy as a good: allocating costs (fairly?)
Ø Models of “benign” analyst (see my second talk)
Ø Adaptive hypothesis testing

• Lecture notes for Penn-BU course at
http://adaptivedataanalysis.com
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