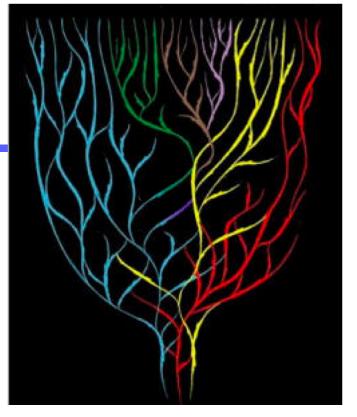
Algorithmic Approaches to Preventing Overfitting in Adaptive Data Analysis

Part 2

Adam Smith

Boston University

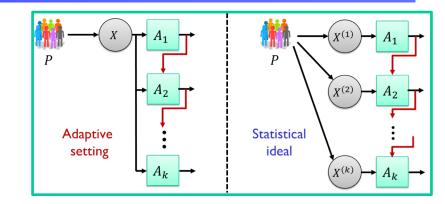
Simons Institute workshop on adaptive data analysis July 24, 2018



A garden of forking paths (artist unknown)

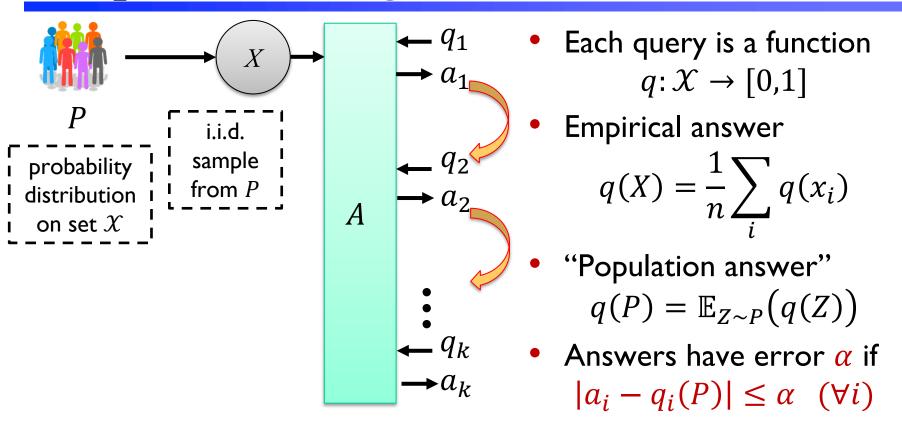
Part 2: Hiding the data

- Three related notions
 - ➢ Privacy
 - Algorithmic stability
 - Bounded information



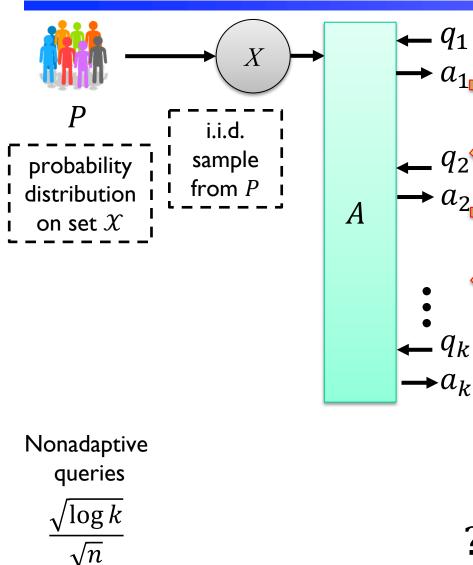
- All three relate adaptive setting to execution on fresh data
 - Common idea: With limited information about the data, cannot overfit
- Larger goal: Prescriptive theory
 - Understand how to design algorithms to maximize data set's long-term value

[Dwork, Feldman, Hardt, Pitassi, Reingold, Roth 2015]



Examples

- Contingency tables
- Classification error
- Optimization via gradient descent



- Each query is a function $q: \mathcal{X} \to [0,1]$
- **Empirical** answer

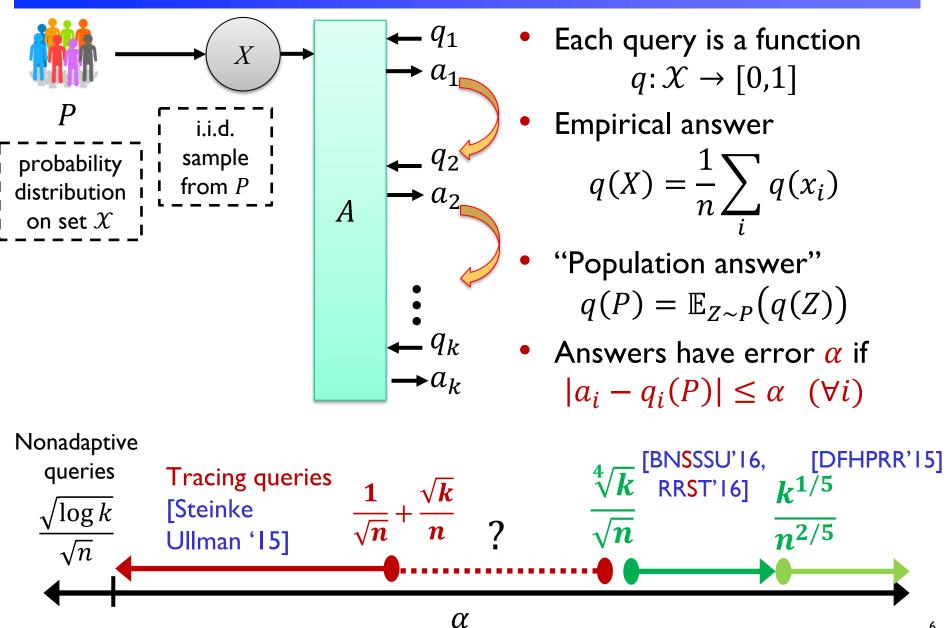
$$q(X) = \frac{1}{n} \sum_{i} q(x_i)$$

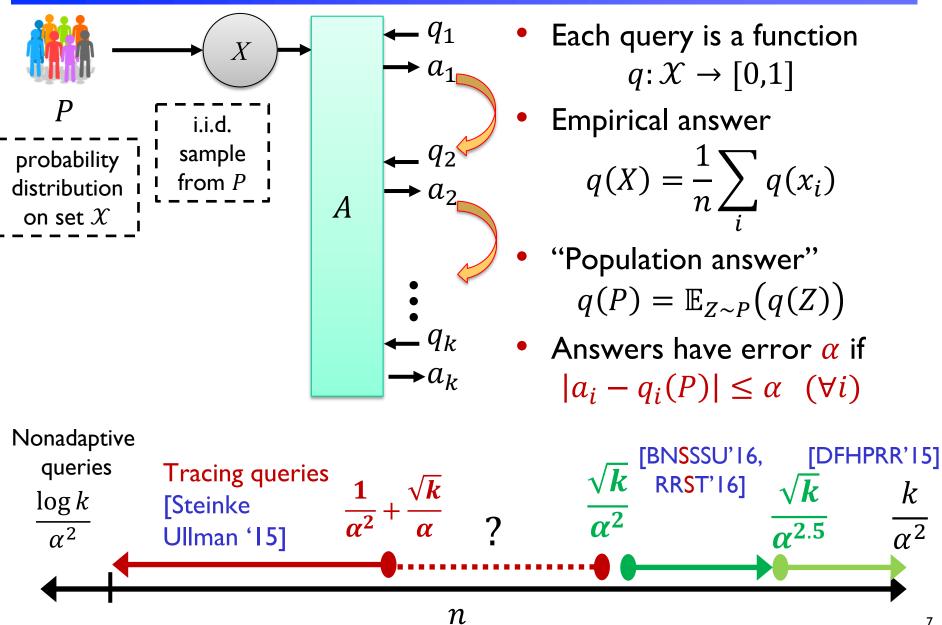
- "Population answer" $q(P) = \mathbb{E}_{Z \sim P}(q(Z))$
- Answers have error α if $|a_i - q_i(P)| \le \alpha \quad (\forall i)$

Empirical answer or sample splitting

$$\frac{\sqrt{k\log k}}{\sqrt{n}}$$

2





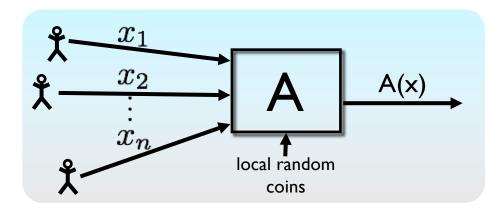
7

Privacy, Stability, Generalization: Pick Any Three

"Stable algorithms cannot overfit"

- Applications to statistical queries
 "Transfer theorems" for stable algorithms
- Information and generalization

Differential Privacy



• Data set $x = (x_1, ..., x_n) \in D^n$

Domain D can be numbers, categories, tax forms

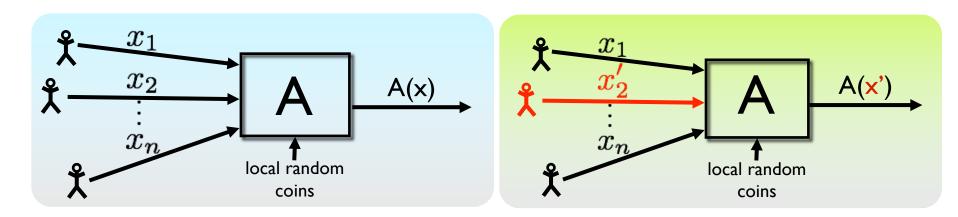
> Think of x as **fixed** (not random)

A = randomized procedure

> A(x) is a random variable

> Randomness might come from adding noise, resampling, etc.

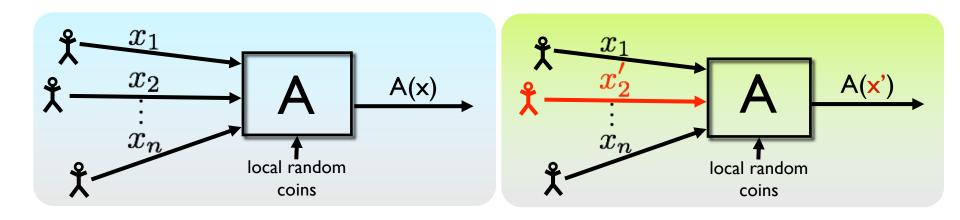
Differential Privacy



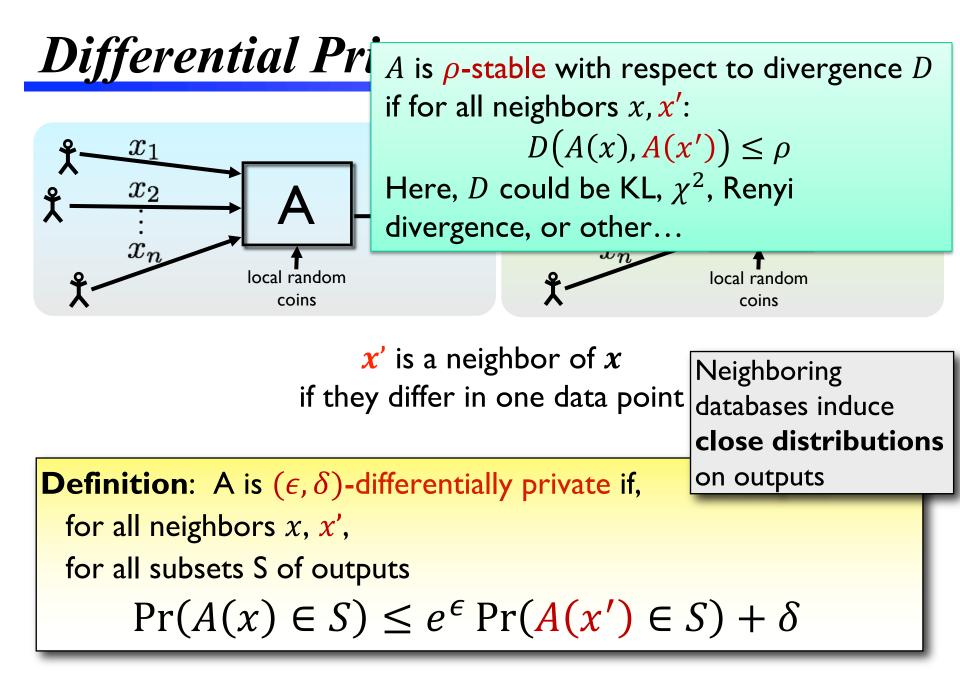
• A thought experiment

- > Change one person's data (or remove them)
- > Will the distribution on outputs change much?

Differential Privacy



x' is a neighbor of xif they differ in one data point **Definition**: A is (ϵ, δ) -differentially private if, for all neighbors x, x', for all subsets S of outputs $Pr(A(x) \in S) \leq e^{\epsilon} Pr(A(x') \in S) + \delta$



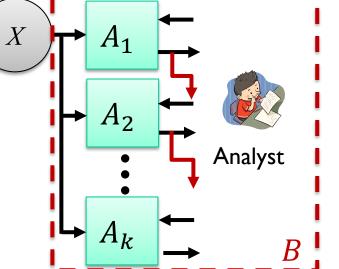
Why distributional stability?

With the right divergence, distributional stability...

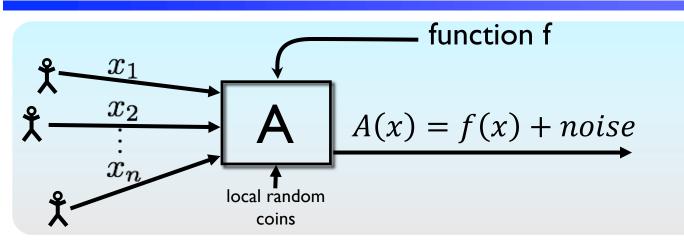
Is closed under processing by arbitrary analyst
 Don't need to understand how analyst works



Degrades gracefully when algorithms are composed
 ➢ If each A_i is (ε_i, δ_i)-DP, then B is ≈ (ε√k, δk) – DP



Laplace Mechanism

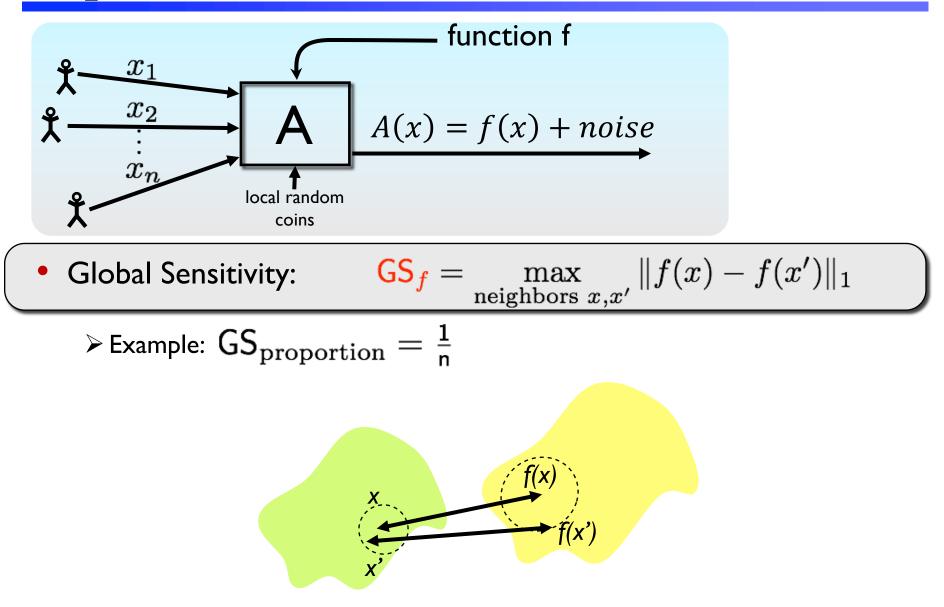


• Say we want to release a summary $f(x) \in \mathbb{R}^k$

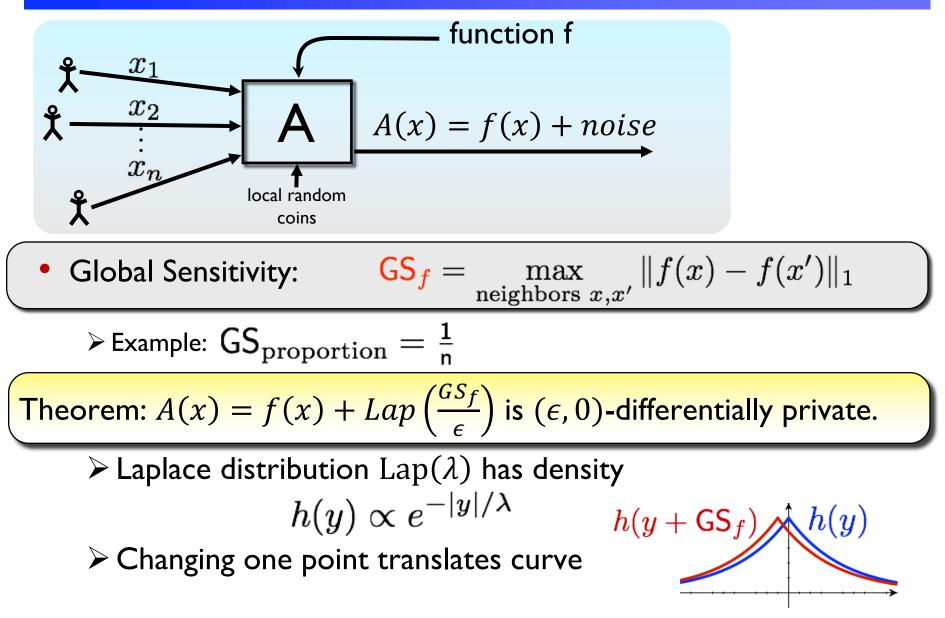
 \succ e.g., proportion of diabetics: $x_i \in \{0,1\}$ and $f(x) = \frac{1}{n} \sum_i x_i$

Simple approach: add noise to f(x)
 ➢ How much noise is needed?

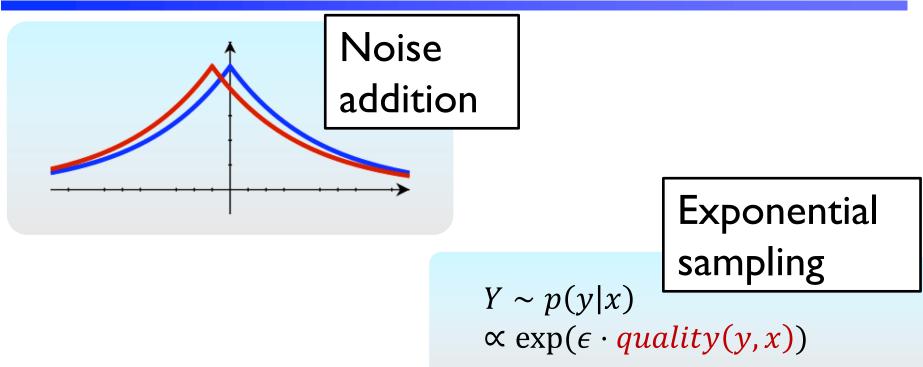
Laplace Mechanism

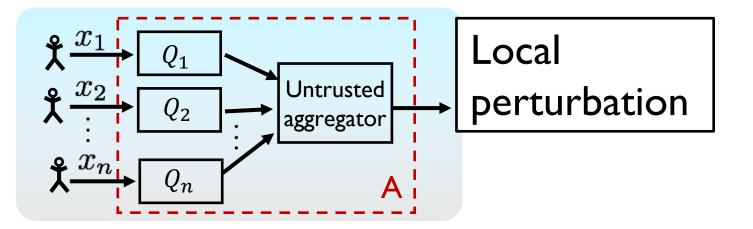


Laplace Mechanism



A rich algorithmic field





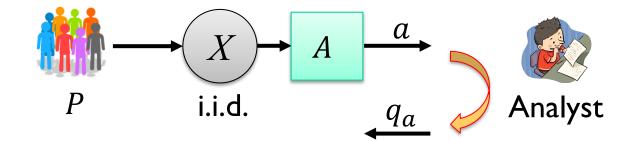
- Privacy, Stability, Generalization: Pick Any Three
 "Stable algorithms cannot overfit"
- Applications to statistical queries
 "Transfer theorems" for stable algorithms
- Information and generalization

Why distributional stability?

- Implies that the analyst "cannot overfit". Suppose:
 - Analyst chooses P
 - Algorithm produces output a = A(X)
 - Analyst selects a statistical query $q_a: \rightarrow [0,1]$

Score =
$$|q_a(X) - q_a(P)|$$

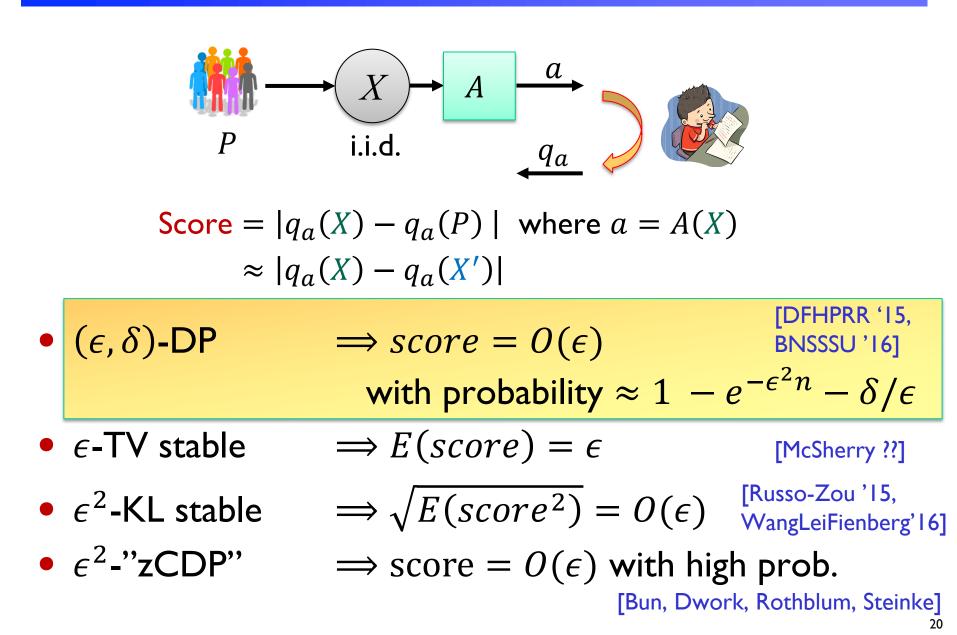
 $\approx |q_a(X) - q_a(X')|$



Meta-Theorem [DFHPRR, ...]: If A is ρ -stable w.r.t. D, then: $\forall P$, \forall analysts: $Score \leq f(\rho, D)$

with high probability.

Generalization Lemmas



Proof idea: Stability

• **Lemma**: If A is ϵ -TV stable, then for all distributions P: $E_{X \sim P^{n}} \left(q_{a}(X) - q_{a}(P) \right) \leq \epsilon$ $a \sim A(X)$

• Proof:

- \succ Fix distribution P
- Compare distributions on two triples
 - $(\vec{X}, i, A(\vec{X}))$ and $(\vec{X}, i, A(\vec{X}_{-i}, \tilde{X}))$ where $x_1, \dots, x_n, \tilde{X} \sim P$ are i.i.d.

 \succ Observation: These have total variation distance $\leq \epsilon$.

- Expectations of bounded functions are about the same
- ➤ Consider the bounded function f(x, i, y) = q_y(x_i) where q_y is the query selected by analyst on output
 ➤ Now we have

$$E\left(f\left(\vec{X}, i, A\left(\vec{X}\right)\right)\right) = E\left(q_a(\vec{x})\right)$$
$$E\left(f\left(\vec{X}, i, A\left(\vec{X}_{-i}, \tilde{x}\right)\right)\right) = E\left(q_a(P)\right)$$

 \succ So $E(q_a(X) - q_a(P)) \leq \epsilon$

• Need a bit more work to get $E(score) \le \epsilon$

High-Probability Bounds

- To get subgaussian concentration, need stronger guarantees than TV or KL stability
 - \succ (ϵ , δ)-differential privacy currently the best
- Idea [Nissim-Stemmer]:

ightarrow Run $t \approx 1/\delta$ copies of the game with independent data sets

- If analyst succeeds with probability $\delta,$ then with constant probability one of the copies produced a query that overfit
- Use a differentially private algorithm to choose copy with "worst" error
- > Argue that composed algorithm...
 - Is differentially private [easy]
 - Should not be able to overfit to any of the *t* data sets [subtle]

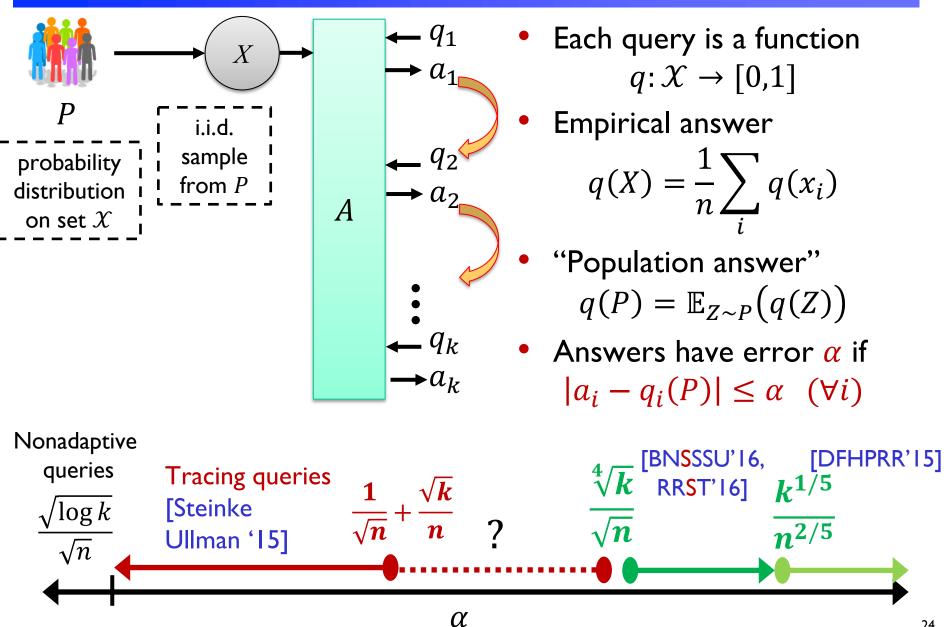
• Privacy, Stability, Generalization: Pick Any Three

"Stable algorithms cannot overfit"

Applications to statistical queries

"Transfer theorems" for stable algorithms

Information and generalization



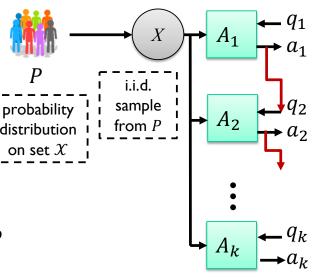
"Transfer" Theorem

- The generalization lemmas connect accuracy on the population with sample accuracy.
- We say A is (α, β) sample-accurate if, for all data sets x,

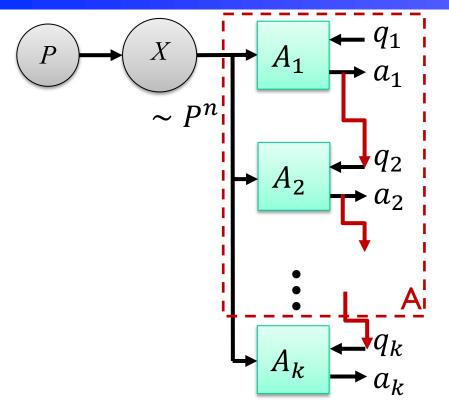
$$\max_{i} |a_i - q_i(x)| \le \alpha$$

with probability $\ge 1 - \beta$.

- Theorem [BNSSSU]: If A is (ϵ, δ) -DP and (α, β) -sample accurate, then $\max_{i} |a_{i} - q_{i}(P)| \leq O(\alpha + \epsilon)$ with probability $\geq 1 - \beta - \delta/\epsilon$.
- Similar theorems possible for weaker stability notions
- Proof relies on "right" way to handle many rounds

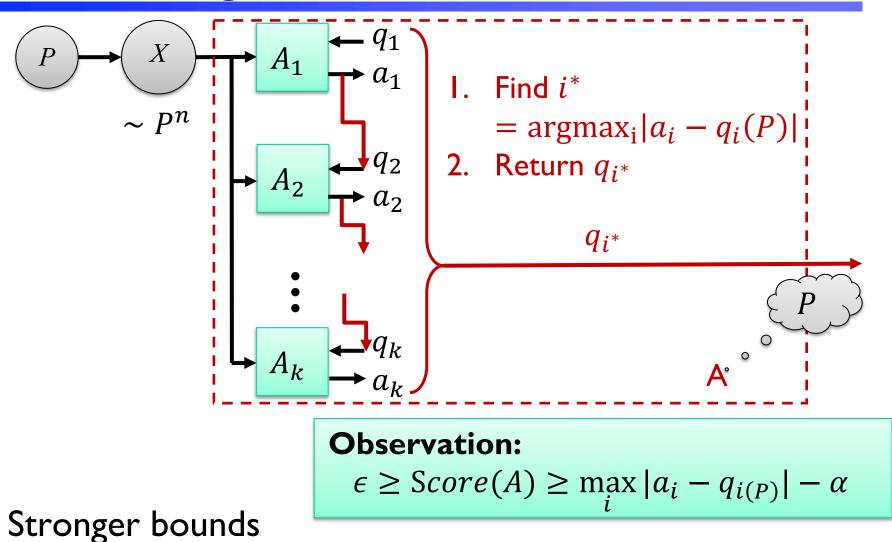


From 2 to k stages: Induction [DFHPRR'15]



Apply overfitting lemma at each round
 Probability of overfitting adds up over rounds

"Monitor Argument" [BNSSSU'16]



Generalizes beyond linear queries

Application 1: Worst-case queries

• One can answer an arbitrary sequence of k adaptively chosen statistical queries such that (w.h.p.)

$$\max_{i} |a_{i} - q_{i}(P)| = \widetilde{O}\left(\frac{\sqrt[4]{k}}{\sqrt{n}}\right)$$

 \succ Alternatively, for error α , a sufficient sample size is

$$n = \widetilde{O}\left(\frac{\sqrt{k}}{\alpha^2}\right)$$

• Algorithm: On each query, add Laplace (or Gaussian) noise with standard deviation $\frac{4\sqrt{k}}{\sqrt{n}}$

Adding noise to many queries

- Suppose we have k statistical queries q_1, \ldots, q_k
- Lemma: There is an (ϵ, δ) -differentially private algorithm that answers each query with sample error

$$\max_{i} |a_{i} - q_{i}(x)| = O_{P}\left(\frac{\sqrt{k}}{\epsilon n} \cdot \sqrt{\ln(k)\ln(1/\delta)}\right)$$

- Run Laplace mechanism k times,
 - \succ with parameter $\epsilon' \approx \epsilon/\sqrt{k}$

> then apply composition theorems

• **Corollary** (via Transfer Theorem): If $X \sim P^n$, then

$$\max_{i} |a_{i} - q_{i}(P)| = \tilde{O}\left(\frac{\sqrt{k}}{\epsilon n} + \epsilon\right) = \tilde{O}\left(\frac{\sqrt{k}}{\sqrt{n}}\right).$$

Application 2: Reusable Holdout [DFHPRR]

- Recall from part I: we can answer k queries with error nearly independent of k
 - Use "dirty" set S to generate guesses, and "clean" set C to verify.
 - Algorithm: answer only those queries where $|q_i(X_S) - q_i(X_c)| > T$ for some T

Error is
$$T + \tilde{O}\left(\frac{\sqrt{w \log k}}{\sqrt{n}}\right)$$

New version: add noise each time you compare to threshold

> Obtain error
$$T + \tilde{O}\left(\frac{(w \log k)^{1/4}}{\sqrt{n}}\right)$$

Sparse vector mechanism

- Suppose we have k statistical queries q₁, ..., q_k
 Each asks for the average of a [0,1] function over the data
 Posed adaptively
- We want to know which queries exceed a threshold T
 E.g. which queries are way above a guessed value
 Can we pay only for the number of queries above threshold?
- Sparse Vector Mechanism^{*} ($x, q_1, q_2, ...$)
 - \succ Flags = 0
 - \succ While(*Flags* < w):
 - Receive next query q_i

• If
$$\left(q_i(x) + Lap\left(\frac{1}{n\epsilon'}\right) > T\right)$$
:

- Answer "above threshold"
- $Flags \leftarrow Flags + 1$
- Else
 - Answer "below threshold"

Theorem^{*}: For $\epsilon' \approx \frac{\epsilon}{\sqrt{w \ln(1/\delta)}}$, Sparse Vector is

•
$$(\epsilon, \delta)$$
-DP

• Correct w.h.p. for all *i* s.t. $|q_i(x) - T| \ge \Omega\left(\frac{\sqrt{w \ln(1/\delta) \ln k}}{n\epsilon}\right)$

* Actual algorithm also randomizes T

Similar applications

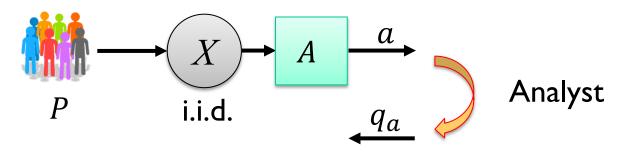
Median mechanism

Compression analysis
$$\widetilde{O}\left(\frac{\log|\mathcal{X}| \cdot \log k}{n}\right)^{1/4}$$
Stability-based: $\widetilde{O}\left(\frac{(\log k)^{1/2}(\log|\mathcal{X}|)^{1/6}}{\sqrt{n}}\right)$

Ladder algorithm [Hardt17]
 ➤ Compression analysis n = log k/α³
 ➤ Stability-based: n = (log k)^{1.5}/α^{2.5}

- Privacy, Stability, Generalization: Pick Any Three
 Stable algorithms cannot overfit"
- Applications to statistical queries
 "Transfer theorems" for stable algorithms
- Information and generalization

[DFHPRR, Russo-Zou, Information and Overfitting RRST, Xu-Raginsky,...]



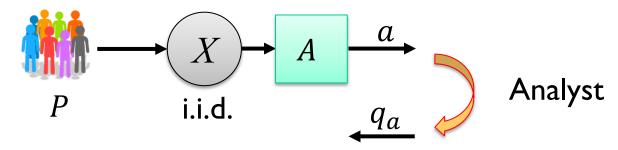
- Look at information in Y = A(X) about X
- Several measures based on odds ratio

$$I_{x,y} = \log\left(\frac{\Pr(A(X) = y \mid X = x)}{\Pr(A(X) = y)}\right)$$

Strongest guarantees

- > Mutual information: expectation of $I_{x,y}$
- \succ Max information: high-probability bound on $I_{1,1}$
- > Min-entropy leakage: $\mathbb{E}_{y \sim Y}(sup_x I_{x,y})$

Information and Overfitting [DFHPRR, Russo-Zou, RRST, Xu-Raginsky,...]



- Look at information in Y = A(X) about X
- Several measures based on odds ratio $I_{x,y} = \frac{\Pr(A(X) = y \mid X = x)}{\Pr(A(X) = y)}$

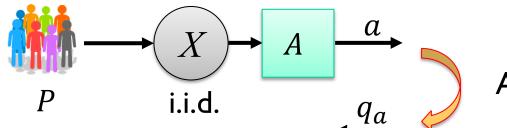
Meta-Lemma: score $\leq \sqrt{information / n}$

Theorem: If A is (ϵ, δ) -DP*, then max – info $\leq \epsilon^2 n$.

Theorem: If A is ℓ -compressible, then max – info $\leq \ell$.

From information to hypothesis testing

• Consider adaptive hypothesis selection: analyst makes a conjecture H_0 about P, and chooses a test T such that $Pr(T(X) = 1 | P \in H_0, X \sim P^n) \leq p_0$



Analyst

• The max information is

$$I_{\infty}(X; A(X)) = \max_{x, y} \log \frac{\Pr(A(x) = y | X = x)}{\Pr(A(x) = y)}$$

- **Observation**: If $I_{\infty}(X; A(X)) \leq k$, then $\Pr(T(X) = 1 | P \in H_0, X \sim P^n, T = A(X)) \leq 2^k p_0.$
- Other measures of information yield more complex relationships
 - Not yet well explored [Russo-Zou'15, RogersRST16, S'17]

- Privacy, Stability, Generalization: Pick Any Three
 Stable algorithms cannot overfit"
- Applications to statistical queries
 "Transfer theorems" for stable algorithms
- Information and generalization

Conclusions

- Adaptive analysis is everywhere
 - "All inference" is selective
- We can get nontrivial results for arbitrary analyst behavior
 - Accuracy/power guarantees
 - Results are (essentially) tight
 - Information and stability play key roles

Current theory most useful for

- Many queries
- Statistical queries

Not covered

- Lower bounds on accuracy (and open problems)
- Concrete bounds (see talks by Feldman and Thakkar)
- Accuracy as a good: allocating costs (fairly?)
- Models of "benign" analyst (see my second talk)
- Adaptive hypothesis testing
- Lecture notes for Penn-BU course at http://adaptivedataanalysis.com

