Algorithmic Approaches to Preventing Overfitting in Adaptive Data Analysis

Part 1

Aaron Roth

The 2015 ImageNet competition

- An image classification competition during a heated war for deep learning talent amongst big tech companies.
- Training set of 1.5 million images, to be classified into 1,000 different categories.
 - E.g. "frilled lizard", "banded gecko", "reflex camera", "osciliscope"
- Held out validation set of 100,000 images.
 - Competitors could submit models twice per week to check performance on validation set.

The 2015 ImageNet competition

- In March, Baidu announced it had achieved record accuracy, beating Google.
 - Posted a paper: "Deep Image: Scaling up Image Recognition"
 - Team lead: "our company is now leading the race in computer intelligence...We have great power in our hands—much greater than our competitors."
 - 4.82% error -> 4.58% error
- But they had cheated!
 - Registered 30 fake accounts to circumvent the 2 validations per week rule.
 - Upon discovery, they were banned from the competition, the paper was withdrawn, and team lead was fired.
 - Why did this help and how can we prevent it?

The Multiple Comparisons Problem (and Uniform Convergence)

- Suppose we have a classifier $f: X \to A$, a dataset $S \sim P^n$, and a loss function $\ell(\hat{y}, y) = \delta(y \neq \hat{y})$.
- We want to know the true loss of our classifier:

 $L(f) = \mathbb{E}_{(x,y)\sim P}[\ell(f(x),y)]$

but can only estimate the empirical loss:

 $\widehat{L}(f) = \mathbb{E}_{(x,y)\sim S}[\ell(f(x),y)]$

• Hoeffding's inequality tells us that with probability $1 - \delta$:

$$\left|L(f) - \hat{L}(f)\right| \le \sqrt{\frac{\ln 2/\delta}{2n}}$$

The Multiple Comparisons Problem (and Uniform Convergence)

- Now what if we have a collection of classifiers $C = (f_1, ..., f_k)$.
- Can no longer use bound from last slide if we select amongst f_i as a function of $\hat{L}(f_i)$: max $|L(f_i) \hat{L}(f_i)|$ will be larger.
- To be conservative, we can ask for *uniform convergence*.
- Just take a union bound (aka Bonferroni correction): w.p. 1δ

$$\max_{i} \left| L(f_i) - \hat{L}(f_i) \right| \le \sqrt{\frac{\ln 2k/\delta}{2n}}$$

The Multiple Comparisons Problem (and Uniform Convergence)

- For large data sets, this is still very good: multiple comparisons problem is mild.
- Baidu only submitted $k \approx 200$ models, for n = 100,000. So we have simultaneous 95% confidence intervals of width ≈ 0.0067
- Seemingly enough to confirm their improvement over Google!

But this assumes the functions f_i are chosen independently of the data.

What can go wrong

- A simple model:
 - Binary data: $X \in \{-1,1\}^d$, $y \in \{-1,1\}$.
- Consider the following learning procedure that operates only through a model validation interface:
 - 1. For each feature $i \in [d]$, validate the classifier $f_i(x) = x_i$.
 - 2. If $\hat{L}(f_i) < 50\%$, set $c_i = 1$. Else set $c_i = -1$
 - 3. Construct the final classifier f^* by majority vote:

$$f(x) = \delta(\langle c, x \rangle \ge 0)$$

Validates d+1 models in total. Lets see how it does!

What can go wrong

n = 10,000 $d \in [1, ..., 50,000]$ Plot: Accuracy + Bonferroni Corrected Confidence Intervals vs. d 10 0.6 0.5 10000 20000 40000 50000 30000 Number of Features/Oueries

What can go wrong

The data: *X*, *y* uniformly distributed and uncorrelated.

All classifiers have error = 50%. Bonferroni correction disastrously failed.

We can map out what our algorithm would have done in every eventuality:

We can map out what our algorithm would have done in every eventuality:

- We only asked d + 1 queries, but there were 2^d models that we could have tested (all equally likely) depending on what answers we got.
 - Bonferroni correction on the queries asked is *not enough*.
 - A much larger *implicit* multiple comparisons problem: (conservatively) must correct for all models that could have been validated.
 - In this case, really do have to.

- Issues:
 - These corrections are giant: adaptivity leads to exponential blowup in multiple comparisons problem.
 - Generally, we won't have a map of the garden.
 - e.g. whenever human decision making is involved, or algorithms are complicated.
- Solution: Pre-registration?
 - Gates off the garden. Forces analysis to walk a straight line.
 - Safe but overly conservative. Incompatible with data re-use.

How can we make it safe to wander the garden?

A Formalization of the Problem: Statistical Queries

- A data universe X (e.g. $X = \{0,1\}^d$)
- A distribution $P \in \Delta X$
- A dataset $S \sim P^n$ consisting of n points $x \in X$ sampled i.i.d. from P.

A Formalization of the Problem: Statistical Queries

• A *statistical query* is defined by a predicate

 $\phi {:} X \rightarrow [0,1].$

- The answer to a statistical query is $\phi(P) = E_{x \sim P}[\phi(x)]$
- A statistical query oracle is an algorithm for answering statistical queries: $A: SQ \rightarrow [0,1]$
 - Parameterized by a dataset: A_S

A Formalization of the Problem: Statistical Queries • Adaptively Chosen Queries: p_1 q_1 q_2 q_1 q_1 q_2 q_3 q_4 q_1 q_1 q_2 q_3 q_4 q_1 q_1 q_2 q_3 q_4 q_5 q_5 q_5 q_5 q_5 q_5 q_1 q_2 q_3 q_4 q_5 q

A Formalization of the Problem: Statistical Queries • Adaptively Chosen Queries: p_2 q_2 q_3 q_4 q_4 q_5 q_4 q_5 q_4 q_5 q

• A statistical estimator A is (ϵ, δ) -accurate for sequences of k adaptively chosen queries ϕ_1, \dots, ϕ_k if for all & and \ref{p} , with probability $1 - \delta$:

$$\max_{i} |A_{S}(\phi_{i}) - \phi_{i}(P)| \leq \epsilon.$$

A Formalization of the Problem: Statistical Queries

• Main quantity of interest: How must ϵ scale with n, k?

Recall: non-adaptive case:
$$\epsilon = O\left(\sqrt{\frac{\log k}{n}}\right)$$

Our adaptive example had $\epsilon \ge \Omega\left(\sqrt{\frac{k}{n}}\right)$

By carefully designing a statistical estimator A, can we do better?

Warmup: An Easy Theorem (If Pigs Could Fly)

Theorem (informal): Let A be a statistical estimator such that for any sequence of k adaptively chosen queries ϕ_1, \dots, ϕ_k we have:

- **1.** Empirical accuracy: $\max_{i} |A_{S}(\phi_{i}) \phi_{i}(S)| \le \tau$ and
- **2.** Compressibility: the transcript produced by A can be compressed to $\leq t$ bits.

then A is
$$(\epsilon, \delta)$$
-accurate for $\epsilon = \tau + \sqrt{\frac{t + \log 2k/\delta}{2n}}$

Warmup: An Easy Theorem (If Pigs Could Fly)

Proof:

Fix any data analyst (mapping from query answers to queries). Each sequence of k queries asked corresponds to a transcript of answers generated by A.

By compressibility, there are at most 2^t such transcripts, and so at most $k \cdot 2^t$ queries that can ever be asked.

Apply a Bonferroni correction to these $k \cdot 2^t$ queries:

$$\max_{i} |\phi_{i}(S) - \phi_{i}(P)| \leq \sqrt{\frac{t + \log 2k/\delta}{2n}}$$

By empirical accuracy:

$$\max_{i} |A(\phi_i) - \phi_i(S)| \le \tau$$

Theorem follows from triangle inequality.

Strengths of this style of theorem

- Don't need a map of the garden: can apply Bonferroni correction to a small set of queries even if we don't know what they are.
 - So don't need to understand data analyst can be a human being e.g.
- Don't need to constrain data analyst at all (e.g. as in pre-registration) except that they should access data only via our interface.

Are there non-trivial estimators that satisfy the conditions of our theorem?

Towards Compressible Estimators

- Suppose queries ϕ_i were paired with guesses $g_i \in [0,1]$.
- Given a query (ϕ_i, g_i) , A can either answer:
 - "Yup": Guess was correct ($|g_i \phi_i(S)| \le \tau$)
 - "Nope, the answer is $a_i \in [0,1]$ "
- How well can we compress the transcript of answers if only *w* of the guesses are wrong?

Towards Compressible Estimators

- One way to encode the transcript: list tuples corresponding to the *indices* of the queries whose guesses were wrong, together with their empirical answers (to $\log 1/\tau$ bits of precision).
- Encoding length: $t \le w \cdot (\log k + \log 1/\tau)$
 - \leq w entries in the list
 - Each contains an index (log k bits) and a value (log $1/\tau$ bits)

Error:
$$\epsilon = O\left(\sqrt{\frac{w(\log k + \log n) + \log\left(\frac{k}{\delta}\right)}{n}}\right) = \tilde{O}\left(\sqrt{\frac{w \cdot \log\frac{k}{\delta}}{n}}\right)$$

To come up with compressible estimators, it suffices to come up with good guesses.

A Heuristic: The Reusable Holdout [DFHPRR15].

- 1. Split the data set S into a "dirty" set S_D and "clean" set S_C
- 2. For each query ϕ_i , compute a guess $g_i = \phi_i(S_D)$
- 3. Submit the pair (ϕ_i, g_i) to A_{S_C} .
- 4. Halt after more than w guesses erred by $\widetilde{\Omega}$

$$\int \left(\sqrt{\frac{w \cdot \log \frac{k}{\delta}}{n}} \right).$$

- Prevents simple "majority" algorithm from overfitting.
- More generally, allows a data analyst to ask queries for a long time so long as he is not getting lost in the garden. Catches/corrects up to w instances of overfitting.

A Leaderboard: The Ladder Mechanism [BH15] Goal: Keep track of most accurate classifier so far.

- 1. Set $bestError_0 = 1.0$
- 2. For each candidate classifier f_t :
 - 1. Construct query $\phi_t(S) = \min_{i \le t} \hat{L}(f_i)$
 - 2. Construct guess $g_t = bestError_{t-1}$
 - 3. Compute $a_t = A_S(\phi_t, g_t)$
 - 4. If guess was in error by more than τ , set $bestError_t = a_t$.
 - 5. Otherwise set $bestError_t = bestError_{t-1}$

- Each time guess is in error, bestError improves by $\geq \tau$
 - So guess is in error at most $w = 1/\tau$ times.

Total error is
$$\tau + \sqrt{\frac{\frac{1}{\tau} \cdot \log \frac{k}{\delta}}{n}}$$

Optimizing: Error is $\epsilon = \tilde{O}\left(\left(\frac{\log \frac{k}{\delta}}{n}\right)^{\frac{1}{3}}\right)$

Guarantees for General Statistical Queries: Median Mechanism [RR10]

- Let $X = \{0,1\}^d$.
- Important fact: For any set of k statistical queries, there is a dataset of size $O\left(\frac{\log k}{\tau^2}\right)$ that encodes all queries with τ -accuracy.

• And the set of *all* such datasets is of size $\approx 2^{d \cdot \frac{\log k}{\tau^2}}$

1. Let
$$C_1 = \left\{ S' \subset X : |S'| \le \frac{\log k}{\tau^2} \right\}$$

- 2. For each query ϕ_t :
 - 1. Construct guess $g_t = median(\phi_t(S'): S' \in C_t)$
 - 2. Compute $a_t = A_S(\phi_t, g_t)$
 - 3. If the guess was in error by more than τ : $C_{t+1} = \{S' \in C_i : |\phi_i(S') - g_t| \le \tau\}$

4. Otherwise:

$$C_{t+1} = C_t$$

- We know that $|C_1| = 2^{d \cdot \log k/\tau^2}$, and $|C_t| \ge 1$ for all t.
- Each incorrect guess halves C_t .
- The number of mistaken guesses is $w \leq \frac{d \cdot \log k}{\tau^2}$.

Total error is
$$\tau + \sqrt{\frac{d \cdot \log k/\delta}{\tau^2 \cdot n}}$$

Dptimizing, error is $\epsilon = \left(\frac{d \cdot \log \frac{k}{\delta}}{n}\right)^{\frac{1}{4}}$

Takeaway

- We can obtain error scaling only polylogarithmically with k!
 - Comparable to the non-adaptive case. ③

• But...

- Our dependence on *n*, log *k* could be better, and...
- Our statistical estimator is not efficient. 🟵
- We can become really good at guessing the answers to SQs as soon as k is larger than the (effective) dimension of the data.
 - So big improvements when $n \gg d$ \odot
 - But no guaranteed improvement when $\mathbf{n} \ll d$ \otimes

Takeaway

- We don't yet fully understand how to mitigate all of these caveats.
- But we can get part way there.
- Need to move beyond description length.
 - Some information theoretic measure?
 - Needs to be robust to "post-processing" and should compose well.

Differential Privacy [Dwork, McSherry, Nissim, Smith]

A stability condition on the output *distribution:*

 $A: X^n \to \mathcal{O}$ is (α, β) -differentially private if for every pair of neighboring datasets S, S', and outcome E:

 $\Pr[A(S) \in E] \le e^{\alpha} \Pr[A(S') \in E] + \beta$

Crucial: Stability on the distribution. No metric on \mathcal{O} .

Distributional Stability Yields Robustness to Postprocessing

Theorem: If $A: X^n \to \mathcal{O}$ is (α, β) -differentially private, and $f: \mathcal{O} \to \mathcal{O}'$ is an *arbitrary* algorithm, then $f \circ A : X^n \to \mathcal{O}'$ is (α, β) -differentially private.

Important:

Don't need to understand *anything* about f.

$$f = \bigcirc$$
 $f = \bigcirc$

Distributional Stability Degrades Gracefully Under Composition

Compose(); D) For i = 1 to k: 1. Let): choose an α -DP A_i based on o_1, \dots, o_{i-1} . 2. Let $o_i = A_i(D)$ Output (o_1, \dots, o_n) .

Theorem* [DRV]: For every δ_{α} , and β' , **Compose(** δ_{α} ;**D)** is (α', β') -differentially private for:

$$\alpha' = O\left(\alpha \cdot \sqrt{k \cdot \ln\left(\frac{1}{\beta'}\right)}\right)$$

Composition and Post-processing: Modular Algorithm Design

- Differential Privacy is a powerful *language* for stable algorithm design.
- Can combine a collection of differentially private primitives *modularly* in arbitrary ways.
- Simplest primitive: independent, Gaussian noise addition.

• e.g. Output
$$\phi(S) + N(0, \sigma^2)$$

where $\sigma = O\left(\frac{\sqrt{\ln(\frac{1}{\beta})}}{\alpha n}\right)$

Another Transfer Theorem

Theorem: [DFHPRR'15, BNSSSU'16]: Let A be a statistical estimator that satisfies:

- **1.** Differential Privacy: A is $(\epsilon, \epsilon \cdot \delta)$ -differentially private, and
- **2.** Empirical Accuracy: For any sequence of k adaptively chosen queries ϕ_1, \ldots, ϕ_k , with probability $1 \epsilon \cdot \delta$: $\max_i |A_S(\phi_i) - \phi_i(S)| \le \epsilon$

Then A is $(O(\epsilon), O(\delta))$ -accurate.

References

- [RR10] "Interactive privacy via the median mechanism." Roth, Roughgarden. STOC 2010.
- [GL14] "The Statistical Crisis in Science." Gelman, Loken. American Scientist, 2014.
- [DFHPRR15] Dwork, Feldman, Hardt, Pitassi, Reingold, Roth. 2015.
 - "Preserving statistical validity in adaptive data analysis" STOC
 - "Generalization in adaptive data analysis and holdout reuse" NIPS
 - "The reusable holdout: Preserving validity in adaptive data analysis" Science
- [BH15] "The ladder: A reliable leaderboard for machine learning competitions." Blum, Hardt. ICML 2015.
- [BNSSSU16] "Algorithmic stability for adaptive data analysis." Bassily, Nissim, Smith, Steinke, Stemmer, Ullman. STOC 2016.

See <u>http://www.adaptivedataanalysis.com</u> for lecture notes.