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The 2015 ImageNet competition

• An image classification competition during a heated war for deep 
learning talent amongst big tech companies. 
• Training set of 1.5 million images, to be classified into 1,000 different 

categories.
• E.g. “frilled lizard”, “banded gecko”, “reflex camera”, “osciliscope”

• Held out validation set of 100,000 images. 
• Competitors could submit models twice per week to check performance on 

validation set.  



The 2015 ImageNet competition

• In March, Baidu announced it had achieved record accuracy, beating 
Google. 
• Posted a paper: “Deep Image: Scaling up Image Recognition”
• Team lead: “our company is now leading the race in computer 

intelligence…We have great power in our hands—much greater than our 
competitors.” 
• 4.82% error -> 4.58% error

• But they had cheated!
• Registered 30 fake accounts to circumvent the 2 validations per week rule. 
• Upon discovery, they were banned from the competition, the paper was 

withdrawn, and team lead was fired. 
• Why did this help and how can we prevent it? 



The Multiple Comparisons Problem 
(and Uniform Convergence)
• Suppose we have a classifier !: # → %, a dataset & ∼ (), and a loss 

function ℓ +,, , = /(, ≠ +,). 
• We want to know the true loss of our classifier:

3 ! = 4 5,6 ∼7 ℓ ! 8 , ,
but can only estimate the empirical loss:

93 ! = 4 5,6 ∼: ℓ ! 8 , ,
• Hoeffding’s inequality tells us that with probability 1 − /:

3 ! − 93 ! ≤ ln 2//
2B



The Multiple Comparisons Problem 
(and Uniform Convergence)
• Now what if we have a collection of classifiers ! = ($%, …$().
• Can no longer use bound from last slide if we select amongst $* as a 

function of +, $* : max* |, $* − +, $* | will be larger. 

• To be conservative, we can ask for uniform convergence. 
• Just take a union bound (aka Bonferroni correction): w.p. 1 − 4

max
*

, $* − +, $* ≤ ln 29/4
2;



The Multiple Comparisons Problem 
(and Uniform Convergence)
• For large data sets, this is still very good: multiple comparisons 

problem is mild. 
• Baidu only submitted ! ≈ 200 models, for % = 100,000. So we have 

simultaneous 95% confidence intervals of width ≈ 0.0067
• Seemingly enough to confirm their improvement over Google! 

But this assumes the functions ,- are chosen independently of the data.



What can go wrong

• A simple model:
• Binary data: ! ∈ −1,1 &, ' ∈ {−1,1}.

• Consider the following learning procedure that operates only through 
a model validation interface:

1. For each feature * ∈ [,], validate the classifier ./ 0 = 0/.
2. If 23 ./ < 50%, set 8/ = 1. Else set 8/ = −1
3. Construct the final classifier .∗ by majority vote:

. 0 = :( 8, 0 ≥ 0)

Validates d+1 models in total. 
Lets see how it does!



What can go wrong

! = 10,000 & ∈ [1, … , 50,000]
Plot: Accuracy + Bonferroni Corrected Confidence Intervals vs. &



What can go wrong

The data: !, # uniformly distributed and uncorrelated.

All classifiers have error = 50%. 
Bonferroni correction disastrously failed. 



The Garden of the Forking Paths [GL14]
We can map out what our algorithm would have done in every eventuality:
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The Garden of the Forking Paths [GL14]

• We only asked ! + 1 queries, but there were 2% models that we 
could have tested (all equally likely) depending on what answers we 
got. 
• Bonferroni correction on the queries asked is not enough. 
• A much larger implicit multiple comparisons problem: (conservatively) must 

correct for all models that could have been validated. 
• In this case, really do have to. 



The Garden of the Forking Paths [GL14]

• Issues: 
• These corrections are giant: adaptivity leads to exponential blowup in 

multiple comparisons problem. 
• Generally, we won’t have a map of the garden.

• e.g. whenever human decision making is involved, or algorithms are complicated. 

• Solution: Pre-registration?
• Gates off the garden. Forces analysis to walk a straight line. 
• Safe but overly conservative. Incompatible with data re-use. 

How can we make it safe to wander the garden? 



A Formalization of the Problem: Statistical Queries

• A data universe ! (e.g. ! = 0,1 &)
• A distribution ' ∈ Δ!
• A dataset * ∼ ', consisting of - points . ∈ ! sampled i.i.d. from '.



A Formalization of the Problem: Statistical Queries

• A statistical query is defined by a predicate
!:# → [0,1].

• The answer to a statistical query is 
! * = ,-∼/[! 0 ]

• A statistical query oracle is an algorithm for answering statistical 
queries: 1: 23 → [0,1]
• Parameterized by a dataset: 14



A Formalization of the Problem: Statistical Queries

• Adaptively Chosen Queries:
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#"
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A Formalization of the Problem: Statistical Queries

• Adaptively Chosen Queries:

• A statistical estimator ! is ", $ -accurate for  sequences of %
adaptively chosen queries &',… , &) if for all       and          , with 
probability 1 − $:

max
/

!0 &/ − &/ 1 ≤ ".

&/
3/

&)
3)



A Formalization of the Problem: Statistical Queries

• Main quantity of interest: How must ! scale with ", $?

Recall: non-adaptive case: ! = & '() *
+

Our adaptive example had ! ≥ Ω *
+

By carefully designing a statistical estimator ., can we do better? 



Warmup: An Easy Theorem (If Pigs Could Fly)

Theorem (informal): Let ! be a statistical estimator such that for any 
sequence of " adaptively chosen queries #$,… , #' we have:

1. Empirical accuracy: max+ |!- #. − #.(1) | ≤ 4 and
2. Compressibility: the transcript produced by ! can be compressed to ≤ 5

bits.

then ! is (6, 7)-accurate for 6 = 4 + :;<=> ?'/A
?B



Warmup: An Easy Theorem (If Pigs Could Fly)

Proof: 
Fix any data analyst (mapping from query answers to queries). Each sequence of ! queries asked 
corresponds to a transcript of answers generated by ". 
By compressibility, there are at most 2$ such transcripts, and so at most ! ⋅ 2$ queries that can ever 
be asked. 
Apply a Bonferroni correction to these ! ⋅ 2$ queries:

max) *) + − *) - ≤ $/012 34/6
37

By empirical accuracy: 
max) " *) − *) + ≤ 8

Theorem follows from triangle inequality. 



Strengths of this style of theorem

• Don’t need a map of the garden: can apply Bonferroni correction to a 
small set of queries even if we don’t know what they are. 
• So don’t need to understand data analyst – can be a human being e.g. 

• Don’t need to constrain data analyst at all (e.g. as in pre-registration) 
except that they should access data only via our interface. 

Are there non-trivial estimators that satisfy the conditions of our 
theorem? 



Towards Compressible Estimators

• Suppose queries !" were paired with guesses #" ∈ [0,1].
• Given a query (!", #"), , can either answer:
• “Yup”: Guess was correct ( #" − !" . ≤ 0)
• “Nope, the answer is 1" ∈ [0,1]“

• How well can we compress the transcript of answers if only 3 of the 
guesses are wrong? 



Towards Compressible Estimators

• One way to encode the transcript: list tuples corresponding to the indices
of the queries whose guesses were wrong, together with their empirical 
answers (to log 1/& bits of precision). 
• Encoding length: ' ≤ ) ⋅ (log , + log 1/&)

• ≤ w entries in the list
• Each contains an index (log , bits) and a value (log 1/& bits)

Error: / = 1 2 345 67345 8 7345 9
:

8 = ;1 2⋅3459:
8

To come up with compressible estimators, it suffices to come up with good guesses.



Coming up with good guesses

A Heuristic: The Reusable Holdout [DFHPRR15]. 
1. Split the data set ! into a “dirty” set !" and “clean” set !#
2. For each query $%, compute a guess &% = $%(!")
3. Submit the pair ($%, &%) to +,-. 

4. Halt after more than . guesses erred by /Ω 1⋅34567
8 . 



Coming up with good guesses

Guarantees error !" #⋅%&'()
* for any set of + queries. 

(But could halt early.) 

• Prevents simple “majority” algorithm from overfitting. 
• More generally, allows a data analyst to ask queries for a long time so 

long as he is not getting lost in the garden. Catches/corrects up to ,
instances of overfitting.  



Coming up with good guesses

A Leaderboard: The Ladder Mechanism [BH15]
Goal: Keep track of most accurate classifier so far. 

1. Set !"#$%&&'&( = 1.0
2. For each candidate classifier -.:

1. Construct query /.(1) = min67.
89(-6)

2. Construct guess :. = !"#$%&&'&.;<
3. Compute =. = >?(/., :.)
4. If guess was in error by more than A, set !"#$%&&'&. = =..
5. Otherwise set !"#$%&&'&. = !"#$%&&'&.;<



Coming up with good guesses

• Each time guess is in error, bestError improves by ≥ "
• So guess is in error at most # = 1/" times. 

Total error is " +
(
)⋅+,-

.
/

0

Optimizing: Error is 1 = 23 +,-./
0

(
4



Coming up with good guesses

Guarantees for General Statistical Queries: Median Mechanism [RR10]
• Let ! = 0,1 &.
• Important fact: For any set of ' statistical queries, there is a dataset 

of size ( )*+ ,
-. that encodes all queries with /-accuracy. 

• And the set of all such datasets is of size ≈ 2&⋅
345 6
7.



Coming up with good guesses

1. Let !" = $′ ⊂ ' ∶ $′ ≤ *+, -
./

2. For each query 01:
1. Construct guess 21 = 345678(01 $: : $: ∈ !1)
2. Compute 71 = >?(01, 21)
3. If the guess was in error by more than A: 

!1B" = {$: ∈ !D: 0D $: − 21 ≤ A}
4. Otherwise:

!1B" = !1



Coming up with good guesses

• We know that !" = 2%⋅'() */,-, and !. ≥ 1 for all 1.
• Each incorrect guess halves !..
• The number of mistaken guesses is 2 ≤ %⋅'() *

,- .

Total error is 4 + %⋅'() */6
,-⋅7

Optimizing, error is 8 = %⋅'()9:
7

;
<



Takeaway

• We can obtain error scaling only polylogarithmically with !!
• Comparable to the non-adaptive case. J

• But…
• Our dependence on ", log ! could be better, and…
• Our statistical estimator is not efficient. L

• We can become really good at guessing the answers to SQs as soon as 
! is larger than the (effective) dimension of the data.
• So big improvements when " ≫ ( J
• But no guaranteed improvement when n ≪ ( L



Takeaway

• We don’t yet fully understand how to mitigate all of these caveats.
• But we can get part way there. 
• Need to move beyond description length.
• Some information theoretic measure? 
• Needs to be robust to “post-processing” and should compose well. 



Differential Privacy [Dwork, McSherry, Nissim, Smith]

D

Algorithm

Pr [r]

Alice Bob Chris Donna ErnieXavier



A stability condition on the output 
distribution:

!: #$ → & is ((, *)-differentially private if for every pair of neighboring 
datasets S, -′, and outcome /:

Pr ! - ∈ / ≤ 45 Pr ! -6 ∈ / + *

Crucial: Stability on the distribution.
No metric on &.



Distributional Stability Yields Robustness to 
Postprocessing

Theorem: If !: #$ → & is ((, *)-differentially private, and ,: & → &- is 
an arbitrary algorithm, then , ∘ ! ∶ #$ → &- is ((, *)-differentially 
private.

Important:
Don’t need to understand anything about ,.

, = , =



Distributional Stability Degrades Gracefully 
Under Composition

Theorem* [DRV]: For every         , and !", Compose(         ;D) is #", !" -
differentially private for:

#"=O # ⋅ ' ⋅ ln *
+,

Compose(          ;D)
For - = 1 to ':

1. Let             choose an #-DP ./ based on 0*, … , 0/2*.
2. Let 0/ = ./(5)

Output (0*, … , 07).



Composition and Post-processing:
Modular Algorithm Design

• Differential Privacy is a powerful language for 
stable algorithm design.
• Can combine a collection of differentially private 

primitives modularly in arbitrary ways. 
• Simplest primitive: independent, Gaussian noise 

addition. 
• e.g. Output ! " + $ 0, '(

where ' = *
+,(./)
12



Another Transfer Theorem

Theorem: [DFHPRR’15,BNSSSU’16]: Let ! be a statistical estimator that 
satisfies:

1. Differential Privacy: ! is (", " ⋅ %)-differentially private, and

2. Empirical Accuracy: For any sequence of & adaptively chosen 
queries '(,… , '*, with probability 1 − " ⋅ %: 
max
0
|!2 '3 − '3(5) | ≤ "

Then ! is (O("), 9(%))-accurate.
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See http://www.adaptivedataanalysis.com for lecture notes.
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