Algorithmic Approaches to Preventing Overfitting in Adaptive Data Analysis

Part 1

Aaron Roth

The 2015 ImageNet competition

- An image classification competition during a heated war for deep learning talent amongst big tech companies.
- Training set of 1.5 million images, to be classified into 1,000 different categories.
	- E.g. "frilled lizard", "banded gecko", "reflex camera", "osciliscope"
- Held out validation set of 100,000 images.
	- Competitors could submit models twice per week to check performance on validation set.

The 2015 ImageNet competition

- In March, Baidu announced it had achieved record accuracy, beating Google.
	- Posted a paper: "Deep Image: Scaling up Image Recognition"
	- Team lead: *"our company is now leading the race in computer intelligence…We have great power in our hands—much greater than our competitors."*
	- 4.82% error -> 4.58% error
- But they had cheated!
	- Registered 30 fake accounts to circumvent the 2 validations per week rule.
	- Upon discovery, they were banned from the competition, the paper was withdrawn, and team lead was fired.
	- Why did this help and how can we prevent it?

The Multiple Comparisons Problem (and Uniform Convergence)

- Suppose we have a classifier $f: X \to A$, a dataset $S \sim P^n$, and a loss function $\ell(\hat{y}, y) = \delta(y \neq \hat{y})$.
- We want to know the true loss of our classifier:

 $L(f) = \mathbb{E}_{(\chi, \gamma) \sim P}[\ell(f(x), y)]$

but can only estimate the empirical loss:

 $\hat{L}(f) = \mathbb{E}_{(\chi, \gamma) \sim S}[\ell(f(x), y)]$

• Hoeffding's inequality tells us that with probability $1 - \delta$:

$$
\left| L(f) - \hat{L}(f) \right| \le \sqrt{\frac{\ln 2/\delta}{2n}}
$$

The Multiple Comparisons Problem (and Uniform Convergence)

- Now what if we have a collection of classifiers $C = (f_1, ..., f_k)$.
- Can no longer use bound from last slide if we select amongst f_i as a function of $\widehat{L}(f_i)$: $\max_i |L(f_i) - \widehat{L}(f_i)|$ will be larger.
- To be conservative, we can ask for *uniform convergence*.
- Just take a union bound (aka Bonferroni correction): w.p. 1δ

$$
\max_{i} |L(f_i) - \hat{L}(f_i)| \le \sqrt{\frac{\ln 2k/\delta}{2n}}
$$

The Multiple Comparisons Problem (and Uniform Convergence)

- For large data sets, this is still very good: multiple comparisons problem is mild.
- Baidu only submitted $k \approx 200$ models, for $n = 100,000$. So we have simultaneous 95% confidence intervals of width ≈ 0.0067
- Seemingly enough to confirm their improvement over Google!

But this assumes the functions f_i are chosen independently of the data.

What can go wrong

- A simple model:
	- Binary data: $X \in \{-1,1\}^d$, $y \in \{-1,1\}$.
- Consider the following learning procedure that operates only through a model validation interface:
	- 1. For each feature $i \in [d]$, validate the classifier $f_i(x) = x_i$.
	- 2. If $\hat{L}(f_i) < 50\%$, set $c_i = 1$. Else set $c_i = -1$
	- 3. Construct the final classifier f^* by majority vote:

 $f(x) = \delta(\langle c, x \rangle \geq 0)$

Validates d+1 models in total. *Lets see how it does!*

What can go wrong

 $n = 10,000 \quad d \in [1, ..., 50,000]$ Plot: Accuracy + Bonferroni Corrected Confidence Intervals vs. d 10 0.9 ā 0.7 0.6 0.5 10000 20000 40000 50000 30000

Number of Features/Oueries

What can go wrong

The data: X , y uniformly distributed and uncorrelated.

All classifiers have error $= 50\%$. Bonferroni correction disastrously failed.

We can map out what our algorithm would have done in every eventuality:

We can map out what our algorithm would have done in every eventuality:

- We only asked $d + 1$ queries, but there were 2^d models that we could have tested (all equally likely) depending on what answers we got.
	- Bonferroni correction on the queries asked is *not enough*.
	- A much larger *implicit* multiple comparisons problem: (conservatively) must correct for all models that could have been validated.
		- In this case, really do have to.

- *Issues:*
	- These corrections are giant: adaptivity leads to exponential blowup in multiple comparisons problem.
	- Generally, we won't have a map of the garden.
		- e.g. whenever human decision making is involved, or algorithms are complicated.
- Solution: Pre-registration?
	- Gates off the garden. Forces analysis to walk a straight line.
	- Safe but overly conservative. Incompatible with data re-use.

How can we make it safe to wander the garden?

A Formalization of the Problem: Statistical Queries

- A data universe X (e.g. $X = \{0,1\}^d$)
- A distribution $P \in \Delta X$
- A dataset $S \sim P^n$ consisting of n points $x \in X$ sampled i.i.d. from P.

A Formalization of the Problem: Statistical Queries

• A *statistical query* is defined by a predicate

 $\phi: X \rightarrow [0,1].$

- The answer to a statistical query is $\phi(P) = E_{\alpha \sim P}[\phi(x)]$
- A statistical query oracle is an algorithm for answering statistical queries: $A:SQ \rightarrow [0,1]$
	- Parameterized by a dataset: A_s

A Formalization of the Problem: Statistical Queries • Adaptively Chosen Queries: ϕ_1 \bigwedge $\overline{a_1}$

A Formalization of the Problem: Statistical Queries • Adaptively Chosen Queries: ϕ_2 ${\not \! \! A}$ $a₂$

• A statistical estimator A is (ϵ, δ) -accurate for sequences of k adaptively chosen queries $\phi_1, ..., \phi_k$ if for all ϕ_1 and ϕ_2), with probability $1 - \delta$:

$$
\max_{i} |A_{S}(\phi_{i}) - \phi_{i}(P)| \leq \epsilon.
$$

A Formalization of the Problem: Statistical Queries

• Main quantity of interest: How must ϵ scale with n, k ?

Recall: non-adaptive case:
$$
\epsilon = O\left(\sqrt{\frac{\log k}{n}}\right)
$$

Our adaptive example had $\epsilon \ge \Omega\left(\sqrt{\frac{k}{n}}\right)$

By carefully designing a statistical estimator A, can we do better?

Warmup: An Easy Theorem (If Pigs Could Fly)

Theorem (informal): Let A be a statistical estimator such that for any sequence of k adaptively chosen queries $\phi_1, ..., \phi_k$ we have:

- **1. Empirical accuracy**: $\max_{i} |A_S(\phi_i) \phi_i(S)| \leq \tau$ and
- **2. Compressibility**: the transcript produced by A can be compressed to $\leq t$ bits.

then *A* is
$$
(\epsilon, \delta)
$$
-accurate for $\epsilon = \tau + \sqrt{\frac{t + \log 2k}{2n}}$

Warmup: An Easy Theorem (If Pigs Could Fly)

Proof:

Fix any data analyst (mapping from query answers to queries). Each sequence of k queries asked corresponds to a transcript of answers generated by A .

By compressibility, there are at most 2^t such transcripts, and so at most $k \cdot 2^t$ queries that can ever be asked.

Apply a Bonferroni correction to these $k \cdot 2^t$ queries:

$$
\max_{i} |\phi_{i}(S) - \phi_{i}(P)| \le \sqrt{\frac{t + \log 2k/\delta}{2n}}
$$

By empirical accuracy:

$$
\max_{i} |A(\phi_i) - \phi_i(S)| \le \tau
$$

Theorem follows from triangle inequality.

Strengths of this style of theorem

- Don't need a map of the garden: can apply Bonferroni correction to a small set of queries even if we don't know what they are.
	- So don't need to understand data analyst can be a human being e.g.
- Don't need to constrain data analyst at all (e.g. as in pre-registration) except that they should access data only via our interface.

Are there non-trivial estimators that satisfy the conditions of our theorem?

Towards Compressible Estimators

- Suppose queries ϕ_i were paired with guesses $g_i \in [0,1]$.
- Given a query (ϕ_i, g_i) , A can either answer:
	- "Yup": Guess was correct $(|g_i \phi_i(S)| \leq \tau)$
	- "Nope, the answer is $a_i \in [0,1]$ "
- How well can we compress the transcript of answers if only w of the guesses are wrong?

Towards Compressible Estimators

- One way to encode the transcript: list tuples corresponding to the *indices* of the queries whose guesses were wrong, together with their empirical answers (to $\log 1/\tau$ bits of precision).
- Encoding length: $t \leq w \cdot (\log k + \log 1/\tau)$
	- \leq w entries in the list
	- Each contains an index (log k bits) and a value (log $1/\tau$ bits)

Error:
$$
\epsilon = O\left(\sqrt{\frac{w(\log k + \log n) + \log(\frac{k}{\delta})}{n}}\right) = \tilde{O}\left(\sqrt{\frac{w \cdot \log(\frac{k}{\delta})}{n}}\right)
$$

To come up with compressible estimators, it suffices to come up with good guesses.

A Heuristic: The Reusable Holdout [DFHPRR15].

- 1. Split the data set S into a "dirty" set S_D and "clean" set S_C
- 2. For each query ϕ_i , compute a guess $g_i = \phi_i(S_D)$
- 3. Submit the pair (ϕ_i, g_i) to A_{S_C} .
- 4. Halt after more than w guesses erred by Ω

$$
\left(\sqrt{\frac{w \cdot \log \frac{k}{\delta}}{n}}\right).
$$

- Prevents simple "majority" algorithm from overfitting.
- More generally, allows a data analyst to ask queries for a long time so long as he is not getting lost in the garden. Catches/corrects up to w instances of overfitting.

A Leaderboard: The Ladder Mechanism [BH15] *Goal: Keep track of most accurate classifier so far.*

- 1. Set $bestError_0 = 1.0$
- 2. For each candidate classifier f_t :
	- 1. Construct query $\phi_t(S) = \min_{i \leq t}$ $i \leq t$ $\hat{L}(f_i)$
	- 2. Construct guess $q_t = bestError_{t-1}$
	- 3. Compute $a_t = A_s(\phi_t, g_t)$
	- 4. If guess was in error by more than τ , set $bestError_t = a_t$.
	- 5. Otherwise set $bestError_t = bestError_{t-1}$

- Each time guess is in error, bestError improves by $\geq \tau$
	- So guess is in error at most $w = 1/\tau$ times.

Total error is
$$
\tau + \sqrt{\frac{\frac{1}{\tau} \log \frac{k}{\delta}}{n}}
$$

Optimizing: Error is $\epsilon = \tilde{O}\left(\left(\frac{\log \frac{k}{\delta}}{n}\right)^{\frac{1}{3}}\right)$

Guarantees for General Statistical Queries: Median Mechanism [RR10]

- Let $X = \{0,1\}^d$.
- Important fact: For any set of k statistical queries, there is a dataset of size $O\left(\frac{\log k}{\sigma^2}\right)$ $\left(\frac{\sqrt{2}}{\tau^2}\right)$ that encodes all queries with τ -accuracy.

• And the set of *all* such datasets is of size $\approx 2^{d\cdot \frac{\log k}{\tau^2}}$ $\overline{\tau^2}$

1. Let
$$
C_1 = \left\{ S' \subset X : |S'| \leq \frac{\log k}{\tau^2} \right\}
$$

- 2. For each query ϕ_t :
	- 1. Construct guess $g_t = median(\phi_t(S') : S' \in C_t)$
	- 2. Compute $a_t = A_s(\phi_t, g_t)$
	- 3. If the guess was in error by more than τ : $C_{t+1} = \{S' \in C_i : |\phi_i(S') - g_t| \leq \tau\}$

4. Otherwise:

$$
C_{t+1} = C_t
$$

- We know that $|C_1| = 2^{d \cdot \log k / \tau^2}$, and $|C_t| \ge 1$ for all t .
- Each incorrect guess halves C_t .
- The number of mistaken guesses is $w \leq \frac{d \cdot \log k}{\tau^2}$ $\frac{\log n}{\tau^2}$.

Total error is
$$
\tau + \sqrt{\frac{d \cdot \log k/\delta}{\tau^2 \cdot n}}
$$

Optimizing, error is $\epsilon = \left(\frac{d \cdot \log \frac{k}{\delta}}{n}\right)^{\frac{1}{4}}$

Takeaway

- We can obtain error scaling only polylogarithmically with $k!$
	- Comparable to the non-adaptive case. \odot

• But…

- Our dependence on n , $\log k$ could be better, and...
- Our statistical estimator is not efficient. \odot
- We can become really good at guessing the answers to SQs as soon as k is larger than the (effective) dimension of the data.
	- So big improvements when $n \gg d \text{ } \odot$
	- But no guaranteed improvement when $n \ll d \odot$

Takeaway

- We don't yet fully understand how to mitigate all of these caveats.
- But we can get part way there.
- Need to move beyond description length.
	- Some information theoretic measure?
	- Needs to be robust to "post-processing" and should compose well.

Differential Privacy [Dwork, McSherry, Nissim, Smith]

A stability condition on the output *distribution:*

 $A: X^n \to \mathcal{O}$ is (α, β) -differentially private if for every pair of neighboring datasets S, S' , and outcome E :

 $Pr[A(S) \in E] \leq e^{\alpha} Pr[A(S') \in E] + \beta$

Crucial: Stability on the distribution. No metric on O .

Distributional Stability Yields Robustness to Postprocessing

Theorem: If $A: X^n \to O$ is (α, β) -differentially private, and $f: O \to O'$ is an *arbitrary* algorithm, then $f \circ A : X^n \to \mathcal{O}'$ is (α, β) -differentially private.

Important:

Don't need to understand *anything* about f.

$$
f = \begin{array}{c} \circ \\ \circ \\ \circ \end{array} \qquad f = \begin{array}{c} \circ \\ \circ \\ \circ \end{array}
$$

Distributional Stability Degrades Gracefully Under Composition

Compose(;D) For $i = 1$ to k : 1. Let $\left\{ \bigotimes_{i=1}^{\infty} \right\}$ choose an α -DP A_i based on o_1 , ..., o_{i-1} . 2. Let $o_i = A_i(D)$ Output $(o_1, ..., o_n)$.

Theorem^{*} [DRV]: For every \bullet , and β' , **Compose(** \bullet , ;**D)** is (α', β') -
differentially private for:

$$
\alpha' = O\left(\alpha \cdot \sqrt{k \cdot \ln\left(\frac{1}{\beta'}\right)}\right)
$$

Composition and Post-processing: Modular Algorithm Design

- Differential Privacy is a powerful *language* for stable algorithm design.
- Can combine a collection of differentially private primitives *modularly* in arbitrary ways.
- Simplest primitive: independent, Gaussian noise addition.

• e.g. Output
$$
\phi(S) + N(0, \sigma^2)
$$

where $\sigma = O\left(\frac{\sqrt{\ln(\frac{1}{\beta})}}{\alpha n}\right)$

Another Transfer Theorem

Theorem: [DFHPRR'15,BNSSSU'16]: Let A be a statistical estimator that satisfies:

- **1. Differential Privacy:** A is $(\epsilon, \epsilon \cdot \delta)$ -differentially private, and
- **2. Empirical Accuracy**: For any sequence of & adaptively chosen queries $\phi_1, ..., \phi_k$, with probability $1 - \epsilon \cdot \delta$: $\max_{i} |A_{S}(\phi_{i}) - \phi_{i}(S)| \leq \epsilon$

Then A is $(O(\epsilon), O(\delta))$ -accurate.

References

- [RR10] "Interactive privacy via the median mechanism." Roth, Roughgarden. STOC 2010.
- [GL14] "The Statistical Crisis in Science." Gelman, Loken. *American Scientist*, 2014.
- [DFHPRR15] Dwork, Feldman, Hardt, Pitassi, Reingold, Roth. 2015.
	- "Preserving statistical validity in adaptive data analysis" *STOC*
	- "Generalization in adaptive data analysis and holdout reuse" *NIPS*
	- "The reusable holdout: Preserving validity in adaptive data analysis" *Science*
- [BH15] "The ladder: A reliable leaderboard for machine learning competitions." Blum, Hardt. ICML 2015.
- [BNSSSU16] "Algorithmic stability for adaptive data analysis." Bassily, Nissim, Smith, Steinke, Stemmer, Ullman. STOC 2016.

See http://www.adaptivedataanalysis.com for lecture notes.