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Restrictions

* A (random) restriction is a (random) subset R of {0,1}"

* When R is a subcube of {0,1}", identify with a function
{x4,...,x.} 2 1{0,1,%} (each coordinate fixed to O or 1 or free)

e ForO<p<l],let R, denotes the p-random restriction
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independently for each variable x.



Lower Bounds from Restrictions

* Arestriction R & {0,1}" can be applied to both
— Boolean functions f : {0,1}" - {0,1}
— Boolean circuits C (by syntactic simplification)

e Recipe for lower bounds:

Show that CI R becomes “simple”, while f I R remains
“complex” (with high prob. if R is random)



Types of Restrictions R < {0,1}"

(increasing order of generality)

subcube x.;=0, x,=1

mon. projection X, =0, x;=1, X=X

projection X, =0, X;i=1, X=X, X#X

affine X 199X =0, X ,99x ,=1

low-degree variety P(x,,...,x,) =0 where deg(P) < d



Outline

Background (circuit complexity, gate elimination
arguments)

The Switching Lemma & a new “entropy” proof

Recent applications of stronger Switching Lemmas
(criticality of AC° functions, #SAT algorithms,bounds
on Fourier spectrum)

Tour of other random restrictions (Hastad’s Tseitin
grid projections)



Circuit Complexity



Circuit Complexity

e Studies the complexity of specific problems (e.g.
PARITY, MATRIX MULTIPLICATION, etc.) in
combinatorial models of computation, most
importantly Boolean circuits

* Goal is to prove unconditional lower bounds, which
do not rely on any unproven assumptions



Circuit Complexity

e Studies the complexity of specific problems (e.g.
PARITY, MATRIX MULTIPLICATION, et®.) in

combinatorial models of comput‘@n, most
importantly Boolean circuits

a problem (i.e. decision problem) is
represented by a sequence of

boolean functions f, : {0,1}" - {0,1}




Boolean Circuits

size = # of AND and OR gates

X; Xy X3 X; Xc



Boolean Circuits

* An n-variable Boolean circuit computes an n-variable
Boolean function {0,1}" - {0,1}

A problem is “solved” by a sequence of Boolean
circuitsC,, C,, ..., C, ... if C, computes the
appropriate function {0,1}" - {0,1}



Boolean Circuits

* An n-variable Boolean circuit computes an n-variable
Boolean function {0,1}" - {0,1}

* A problem is “solved” by a sequence of Boolean
circuits C;, C,, ..., C, ... if C_ comw’tes the
appropriate function {0,1}" = ‘1}

in contrast to uniform models of
computation (e.g. Turing machines)

where a single algorithm solves the
problem on all instances




Circuit Size

* The circuit size of a function f: {0,1}" - {0,1} is the
minimum # of AND/OR gates in a circuit computing f

e Theorem [Shannon 1949, Lupanov 1958]

Almost all Boolean functions have circuit size ©(2"/n)

 The goal in Circuit Complexity is proving lower bounds
for explicit Boolean functions (e.g. k-CLIQUE)



Circuit Size

e Theorem [Schnorr 1976, Fischer-Pippenger 1979]
Turing mach. time T(n) = circuit size O(T(n)*log T(n))

e Corollary

A super-polynomial lower bound on the circuit size
of any function in NP (i.e. NP € P/poly) implies P # NP



Circuit Size

e Theorem [Schnorr 1976, Fischer-Pippenger 1979]
Turing mach. time T(n) = circuit size O(T(n)*log T(n))

e Corollary

A super-polynomial lower bound on the circuit size
of any function in NP (i.e. NP € P/poly) implies P # NP

Circuit Complexity is widely
believed to be the most

viable approach to P # NP



Circuit Size

* Holy Grail (P # NP)

Prove a super-polynomial lower bound on the
circuit size of any problem in NP




Circuit Size

* Holy Grail (P # NP)

Prove a super-polynomial lower bound on the
circuit size of any problem in NP

e Best known lower bound

3n — O(l) 1976 [Schnorr]
4n - 0(1) 1991 [Zwick]
4.5n—-o0(n) 2001 [Lachish-Raz]

5n —o(n) 2002 - today  [lwama-Morizumi]



3.01n for circuits in the full

binary basis (all fan-in 2 gates)

[Find-Golovnev-Hirsch-Kulikov ’16]

circui

e Best known lower bound

3n—-0(1)
4n — 0O(1)
4.5n —o(n)

5n —o(n)

1976
1991
2001
2002 - today

[Schnorr]
[Zwick]
[Lachish-Raz]

[lwama-Morizumi]



3.01n for circuits in the full

. binary basis (all fan-in 2 gates)
[Find-Golovnev-Hirsch-Kulikov '16]

circui

@

Gate-elimination arguments
(subcube and affine restrictions)

4n — 0O(1) 1991 [Zwick]
4.5n — o(n) 2001 [Lachish-Raz]
5n —o(n) 2002 - today  [lwama-Morizumi]




(DeMorgan) Formulas

Formulas are circuits with
the structure of a tree

leafsize = # of leaves



(DeMorgan) Formulas

Formulas are circuits with
the structure of a tree

Formulas lack “memory”: the result of
each sub-computation is only used once




(DeMorgan) Formulas

Formulas are circuits with
the structure of a tree

Formulas lack “memory”: the result of
each sub-computation is only used once

“@ 7\ ‘

Open: Are circuits more
powerful than formulas?




Formulas vs. Circuits

* A Pret-ty Holy Grail (NC! # P)

Prove that poly-size circuits are strictly more
powerful than poly-size formulas




Formulas vs. Circuits

* APret-ty Holy Grail (NC!# P)

Prove that poly-size circuits are strictly more
powerful than poly-size formulas

e Best known formula size lower bound

nLS—oﬂ)
n2
n2.5—o(1)

n3 - 0(1)

1961
1971
1991

[Subbotovskayal]
[Khrapchenko]

[Andreev]

1998 - today [Hastad]

(log-factor improvement [Tal’14])



Formulas vs. Circuits

* APret-ty Holy Grail (NC!# P)

Prove that poly-size circuits are strictly more
powerful than poly-size formulas

Shrinkage of DeMorgan formulas
(simplification under p-random restrictions)

N2 1971 [Khrapchenko]
n2-5-o(1) 1991 [Andreev]
n3-o(l) 1998 - today [Hastad]

(log-factor improvement [Tal’14])




Restricted Classes
(AC®, monotone, etc.)



Restricted Classes

AC° setting (fast parallel computation)
constant-depth, unbounded fan-in AND/OR gates

monotone setting
negation-free (no NOT gates)

arithmetic (+, %), tropical (min, +), ...



ACP Circuits




AC° Circuits

p

depth is bounded by a constant d
(or slow-growing function d(n) << log n)

o‘o‘c’g&a}o
RONCRE




AC° Formulas

Xg =Xg -+




AC® Lower Bounds

* Exponential lower bounds known since the 1980’s:
the depth-d ACO circuit size PARITY. is 20(™)

[Ajtai, Furst-Saxe-Sipser, Yao, Hastad]



AC® Lower Bounds

* Exponential lower bounds known since the 1980’s:
the depth-d ACO circuit size PARITY. is 20(™)

[Ajtai, Furst-Saxe-Sipser, Yao, Hastad]

Switching Lemma
(simplification under p-random restrictions)




AC° Lower Bounds

* Exponential lower bounds known since the 1980’s:
the depth-d AC? circuit size PARITY,, is 20(n/*"™)

[Ajtai, Furst-Saxe-a%;’, Yao, Hastad]

The “size-depth tradeoff” is a
limitation of lower bounds via
Switching Lemmas (which become

trivial before depth d = log n)



Lower Bound Techniques

counting
— almost all Boolean functions are complex
— circuit size hierarchy theorem

gate-elimination arguments [restriction based]

— best lower bounds for unrestricted circuits and formulas

switching lemmas [restriction based]
— best lower bounds against ACY

polynomial method
— best lower bounds against ACY[¢]



Monotone Lower Bounds

MAC® C mNC! C mL C mNL C mNC C mP C mNP C -

* We know essentially all separations among
interesting monotone classes, via a multitude of
techniques




Gate Elimination Arguments
& Shrinkage



Restrictions

* Consider a Boolean function
f:{0,1} - {0,1}
e Arestriction (on the variables of f) is a function

R: {Xll""xn} - {0111*}



Restrictions

* Consider a Boolean function
f:{0,1}" = {0,1}
* A restriction (on the variables of ) is a function

R: {X ,...,Xn} - {011)*} O 0
' O

equivalently, a partial function

from {x,,...,x,} to {0,1}




Restrictions

* Consider a Boolean function
f:{0,1} - {0,1}
e Arestriction (on the variables of f) is a function
R:{xq,...,x,} = {0,1,%}
* Applying R to f, we get a Boolean function

fMR:{0,1pts(R) > {0,1}

R *x1*x*x10*x1*%100*x*x0*x0*x*x*xQ*(
ffR(0O 10 0 O 11 1 101 1 )
f(01101001010011010101010)




Restrictions

Consider a Boolean function
f:{0,1} - {0,1}
A restriction (on the variables of f) is a function
R:{xq,...,x,} = {0,1,%}
Applying R to f, we get a Boolean function
fMR:{0,1}5trsR) > {0,1}

Can also apply R syntactically to circuits (and other
objects)



Restricting a Circuit

 Consider the 1-bit restriction
R={x,~1}

X; X, X3 X5 Xe



Restricting a Circuit

 Consider the 1-bit restriction
R={x,~1}




Restricting a Circuit

 Consider the 1-bit restriction
R={x,~1}

X4 X3 X4 Xc



Restricting a Circuit

 Consider the 1-bit restriction
R={x,~1}

X4 X3 X4 Xc



Restricting a Circuit

 Consider the 1-bit restriction
R={x,~1}




Restricting a Circuit

 Consider the 1-bit restriction
R={x,~1}

X4 X3 X4 Xc



Gate Elimination

* Lemma [Schnorr’76]

If a circuit C (in basis {AND,,OR,,NOT}) computes PARITY_
(n > 2), then there exists a 1-bit restriction R killing at
least 3 AND/OR gates of C (i.e. size(C ! R) < size(C) — 3)

e Corollary

PARITY_ has circuit size at least 3n — 3. Moreover,
matching upper bound.



Gate Elimination

* More sophisticated gate elimination arguments give
the best lower bounds:

5n—-o0(n) {AND,,OR,,NOT} basis

[lIwama-Lachish-Morizumi-Raz ‘02]

=3.01n  full binary basis
[Find-Golovnev-Hirsch-Kulikov "16]



Gate Elimination

* More sophisticated gate elimination arguments give
the best lower bounds:
5n—-o0(n) {AND,,OR,,NOT} basis

[lwama-Lachish-Morizumi-Raz ‘02]

=3.01n  full binary basis

® ° [Find-Golovnev-Hirsch-Kulikov '16]

uses affine restrictions



Gate Elimination

e Theorem [Chaudhuri-Radhakrishnan ’96]

nl+2/expld) |ower bound on the depth-d ACP circuit
size of APPROX-MAJORITY via deterministic

restrictions (greedily apply the best 1-bit restriction)

e Theorem [Koppary-Srinivasan ’12]

Similar lower bound for AC°[®] circuits via
deterministic low-degree-variety restrictions
(method of “certifying polynomials”)



p-Random Restriction R,

* ForO<p<1,letR, denotes the p-random restriction
% with prob. p

R,(x) =4 O with prob. (1-p)/2

1 with prob. (1-p)/2

independently for each variable index i € [n]



p-Random Restriction R

* For0<p <1, let RENEGIETalo]aF

Random objects written
R,(x,) = in boldface

independently for each variable index i € [n]



Effect of Rp

* R, simplifies Boolean functions computed by small:
— DeMorgan formulas
— decision trees
— ACP circuits

* Certain Boolean functions, like PARITY , maintain
their complexity under R,

* Ergo, lower bounds!



Effect of R, on DeMorgan Formulas

e Subbotovskaya ‘61
If Fis an n-variable DeMorgan formula, then

Ex[ leafsize(F ' random 1-bit rest.) ]
< (1-n)t~leafsize(F)
e As aconsequence,
Ex[ leafsize(FI'R)) ] < O(p*~leafsize(F) + 1)

 Hastad ‘98, Tal ‘14
Ex[ leafsize(FI' R ) ] < O(p*leafsize(F) + 1)




Effect of R, on DeMorgan Formulas

e Subbotovskaya ‘61
If Fis an n-variable DeMorgan formula, then

Ex[ leafsize(F ' random 1-bit rest.) ]

Known as the shrinkage
exponent of DeMorgan formulas

O
e Hastad ‘98, Tal ‘14 O

Ex[ leafsize(F I R ) ] < O(p?leafsize(F) + 1)




Effect of R, on DeMorgan Formulas

* Implies lower bounds:
leafsize(PARITY,) = Q(n?)
leafsize(ANDREEV ) = Q~(n3)

 Hastad ‘98, Tal ‘14
Ex[ leafsize(FI' R ) ] < O(p?leafsize(F) + 1)




Effect of R, on DeMorgan Formulas

* Implies lower bounds:
leafsize(PARITY,) = Q(n?)
leafsize(ANDREEV ) = Q~(n3)

 Hastad ‘98, Tal ‘14
Ex[ leafsize(FI' R ) ] < O(p?leafsize(F) + 1)




Effect of Rp on Monotone Formulas

 Open Question What is the shrinkage exponent of
monotone formulas (basis {AND,,OR,})?

 Conjecture Equals the shrinkage exponent of
read-once formulas (=3.27) [Hastad-Razborov-Yao ‘97]




The Switching Lemma



depth3 —

Decision Trees




Decision Trees

The decision-tree depth of a Boolean function
f:{0,1}" - {0,1}

is the minimum depth of a decision tree that
computes f.

* DTyenn(PARITY,) = DTye,n(AND,) = n

* DTyepml(f) =0 & fis constant



Depth-2 Formulas (DNFs and CNFs)

 DNF =disjunctive normal form (OR-AND formula)
* CNF = conjunctive normal form (AND-OR formula)



Depth-2 Formulas (DNFs and CNFs)

 DNF =disjunctive normal form (OR-AND formula)
* CNF = conjunctive normal form (AND-OR formula)
* width = bottom fan-in (max # of variables in a clause)

</ S

K 8



Depth-2 Formulas (DNFs and CNFs)

* k-DNF = width-k DNF
* k-CNF = width-k CNF

</ S

K 8



Depth-2 Formulas (DNFs and CNFs)

* k-DNF = width-k DNF
* k-CNF = width-k CNF

OR., of depth-k DTs
AND._, of depth-k DTs




Depth-2 Formulas (DNFs and CNFs)
k-DNF = width-k DNF = OR_, of depth-k DTs

k-CNF = width-k CNF = AND_, of depth-k DTs

Every depth-k DT is equivalent to a k-DNF and a k-CNF

Weak converse: If a Boolean function is equivalent to
a k-DNF and an £-CNF, then it is equivalent to a DT of
depth k¢




Decision Tree to DNF



Decision Tree to DNF

(-x3 A =x; A -x,) Q

V (=x3 A x; A x5) . )
V (x; A x; A x,)

VA @ R
0 1 0 1
0 1 0 1 0 1 0 1

i1 0 0 1 O0 1 1 O



Decision Tree to DNF



Decision Tree to DNF



Decision Tree to DNF



k-DNF Switching Lemma

o

Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR_, of depth-k decision trees), then
Pr{ DTyepn(FFR,) 2 t ] < (5pk)!

J




k-DNF Switching Lemma

\_

Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR_, of depth-k decision trees), then
Pr DTyepn(F T R,) 2 t] < (Spk)

J

'.

<2twhenp=1/10k




k-DNF Switching Lemma

o

Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR_, of depth-k decision trees), then
Pr[ DTyepen(F M Ry) 2 1] < (5pk)°

J

o

Dual CNF version

If Fis a k-CNF (i.e. AND_, of depth-k decision trees), then
Pr[ DTyepen(F M Ry) 2 1] < (5pk)°

~

J




k-DNF Switching Lemma

o

Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR_, of depth-k decision trees), then
Pr{ DTyepn(FFR,) 2 t ] < (5pk)!

J

o

Corollary (usual statement of the S.L.)

If Fis a k-DNF, then
Pr[ FT' R, is not equivalent to a t-CNF | < (5pk)*

~

J




k-DNF Switching Lemma



k-DNF Switching Lemma
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k-DNF Switching Lemma

=0
% /N /|\1/1Ok/|\ A

with prob.
1-27




Depth Reduction




Depth Reduction




Depth Reduction

e

Apply the Switching Lemma to each gate
and take a union bound over failure events

A 4 A A
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Depth Reduction

e

Apply the Switching Lemma to each gate
and take a union bound over failure events

N
v @
OBONO

(V)
t UG td t& t@

< S T ] LT L
(v
¢

O
(A
t7A(t




Depth Reduction

L

Succeeds almost surely provided
t = O(log(circuit size))




Depth Reduction

—

two layers
of V-gates



Depth Reduction




PARITY Lower Bound

-

\_

N
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY_ have size exp(Q(n'/9)) )




Matching Upper Bound
PARITY_ has depth d+1 circuits of size exp(O(n'/9))

N
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY_ have size exp(Q(n'/9)) )
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Matching Upper Bound
PARITY_ has depth d+1 circuits of size exp(O(n'/9))

J

* depth 2 circuits of size O(2") (brute-force CNF/DNF)

e for d+1 > 3, divide and conquer:

- /\

nl/d

nl—l/d nl—l/d nl—l/d
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Matching Upper Bound
PARITY_ has depth d+1 circuits of size exp(O(n'/9))

J

* depth 2 circuits of size O(2") (brute-force CNF/DNF)

e for d+1 > 3, divide and conquer:

/\

d+1




PARITY Lower Bound




PARITY Lower Bound

AAAAAAAAAAAAAAAA

depth-1 decision trees



PARITY Lower Bound

[/ | R1/10 , \"\\,
AAA BB LK AAET=>AA

depth-1 decision trees



PARITY Lower Bound

depth O(log S) decision trees (w.h.p.)



PARITY Lower Bound

Rl / 10*log S

o Vg Vg g

depth O(log S) decision trees (w.h.p.)



PARITY Lower Bound

VYRR

depth O(log S) decision trees (w.h.p.)



PARITY Lower Bound

\
T __ R1/1010gs —~—

depth O(log S) decision trees (w.h.p.)



PARITY Lower Bound

P~

depth O(log S) decision trees (w.h.p.)



PARITY Lower Bound
(A)

Rl/lO *log S

depth O(log S) decision trees (w.h.p.)



PARITY Lower Bound

constant function (w.h.p.)



PARITY Lower Bound

A

constant function (w.h.p.)

decision tree of depth:
* 0 with high prob.

1 with prob.<¢
» 2 with prob. < &2




PARITY Lower Bound

» Started with AC° circuit of depth d+1 and size S

* Applied a sequence of restrictions

Rl/lO' Rl/(lO*Iog S)’ R1/(1O*Iog S)? =c*r R1/(1O*Iog S)

\ J
1

d times

Combined restriction: Ry /g4 5)¢

e Circuit reduces to a constant (0 or 1) with high prob.



PARITY Lower Bound

* (AC?circuit of depth d+1 and size S) I Ry 10 5)¢
is almost surely constant

* On the other hand, PARITY, IR} is almost surely
non-constant for p = w(1/n)



PARITY Lower Bound

* (AC?circuit of depth d+1 and size S) I Ry 10 5)¢
is almost surely constant

* On the other hand, PARITY 'R is almost surely
non-constant for p = w(1/n) ‘

PARITY , or 1 - PARITY_ on

m = Binomial(n,p) variables



PARITY Lower Bound

* (AC?circuit of depth d+1 and size S) I Ry 10 5)¢
is almost surely constant

* On the other hand, PARITY, IR} is almost surely
non-constant for p = w(1/n)

* Therefore, depth d+1 circuits for PARITY_ require
size exp(nl/d)



Recall: AC° Formulas

X5 —|X8 coe
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Upper Bound

PARITY has depth d+1 circuits of size exp(O(n/d))

J
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Upper Bound

PARITY has depth d+1 circuits of size exp(O(n/d))
and depth d+1 formulas of size exp(O(dnl/d))/

A7
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Upper Bound

PARITY has depth d+1 circuits of size exp(O(n/d))
and depth d+1 formulas of size exp(O(dnl/d))/

-

\_

N
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY have size exp(Q(n/9)) )




4 )
Upper Bound

PARITY has depth d+1 circuits of size exp(O(n/d))
and depth d+1 formulas of size exp(O(dnl/d))/

\_

e )
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY have size exp(Q(n/9)) )

\_

e )
Theorem [R.’15]

Depth d+1 formulas for PAR. have size exp(Q(dn/9)) )

\_




Dynamic View of R}



i “time” prunsfrom1to 0 }

0 -

We view the random restriction

R, : {Xy,...,.%,} = {0,1,%} as a process



01101001010011010111010

/N

for each variable, we
generate a random

e valuein {0,1}

* timestamp in [0,1]
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Idea: Dynamically assign each
sub-formula F its own
“stopping time” q(F)
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p := min, q(F,)

/’—_ =\~

\

\ /
Rl __ -—



p := min, q(F,)




p := min, q(F,)

CLT O0® O

decision trees



O
L0 A

k := max; DTy.,.,(F; T R)

p := min, q(F,)




k := max; DTy.,.,(F; T R)

p := min, q(F,)
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N
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY have size exp(Q(n/9))
J
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N
Theorem [R.’15]

Depth d+1 formulas for PAR. have size exp(Q(dn/9))
J
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O(log S)d
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\
Theorem [Hastad ’86, Boppana ‘87]

Depth d+1 circuits of size S have average sensitivity

J

-

| Gz S)/d)e

~
Theorem [R.15]

Depth d+1 formulas of size S have average sensitivity

J

AveSens(f):= E #{i < [n]:f(x) = f(x¥)}
xe{0,1}"



4 )
Theorem [Hastad ’86, Boppana ‘87]
Depth d+1 circuits of size S have average sensitivity
O(log S)¢

L (log S) y

4 )

| Gz S)/d)¢

Theorem [R.’15]

Depth d+1 formulas of size S have average sensitivity

J

AveSens(f):= E #{i < [n]:f(x) = f(x")}
xe{0,1}" o

X with ith bit flipped




Proof of the
Switching Lemma



DNF formula F=C{V ---V Cpy,

Fach clause Cy is a conjunction of literals (e.g. z1 A =23 A xy4).
Easy observation: AveSens(any k-DNF) < 2k (in fact < k

We will show: AveSens(F) < 2log(m + 1)



DNF formula F=C{V ---V Cpy,

Fach clause Cy is a conjunction of literals (e.g. z1 A =23 A xy4).

Let F: {0,1}" — [m + 1] be the “first witness function”:

7 (@) the index of the first satisfied clause if Fi(z) =1,
x) =
m + 1 if F(x)=0.



DNF formula F=C{V ---V Cpy,

Fach clause Cy is a conjunction of literals (e.g. z1 A =23 A xy4).

Let F: {0,1}" — [m + 1] be the “first witness function”:

~ ] the index of the first satisfied clause if F'(x) =1,
Im+1 if F(x) = 0.

~

Claim. AveSens(F) < 2-H(F') < 2-log(m + 1)

where H(F) is the entropy of the random variable F(a) where & € iform

10,1}



AveSens(F') = Z P [ F(x) # F(m@) ]

i€ n
< P | F(x) # ﬁ(a}(w) }
i€n
= Z QIP[ﬁ(a:) < ﬁ(w(l))}
i€ n]
=Y 2> P[F(a)=tand Fal) > (]
i€(n) €€[m]
=2 ) P Z P[F2)> 0| Fa)=¢]
le|m] ~

this probabmty IS O unless Cy contains x; or —x;



AveSens(F') = Z P [ F(x) # F(m@) ]

i€ n
<Y P[F@) #Fa")]
i€n
= Z QIP[ﬁ(a:) < ﬁ(x(z))}
i€ n]
=Y 2> P[F(a)=tand Fal) > (]
i€|n) €€[m]
=2 PJ Z P[Fa?)> (| Fa)=¢]
le|m]

<2 [ F)=¢] NGl



AveSens(F') = Z P [ F(x) # F(:c@) ]

i€ n
< P [ F(x) # F(z') }
i€ n]
= Z QIP[ﬁ(a:) < ﬁ(w(z))}
i€n]
= 22 Z IP[FV( ) ={ and F( (>)>€}
i€|n) €€[m]
=2 ) P| Z P ) > 0| Flz)=1(]
relm]

<23 P[F(z)=1]. Warswm

~

1
<2 P| F(x)=1{]-log —
KG[m] R <IP[F(:E> —€]>

(since P[ F(x) =0 ]| < P[Cy(x)=1] = 2—|V31”S(C£)\)




AveSens(F') = Z P [ F(x) # F(m@) ]

i€ n
<Y P[F@) #Fa")]
i€n
= Z QIP[ﬁ(a:) < ﬁ(w(l))}
i€ n]
=Y 2> P[F(a)=tand Fal) > (]
i€|n) €€[m]
=2 PJ Z P[Fa?)> (| Fa)=¢]
le|m]
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DNF formula F=C{V ---V Cpy,
Switching Lemma. P| DTyepen(F[Ry) >t | = O(plog m)?

Proof based on analysis of the canontcal decision tree for F'|R,.
We actually show

PP[ Canonical DT(F[R,) has depth ¢ | = O(plogm)".



DNF formula F=C{V ---V Cpy,
Switching Lemma. P| DTyepen(F'[Rp) >t | = O(plog m)?
HIGH-LEVEL SKETCH
e Bad; := {restrictions o such that Canonical DT(F'[o) has depth ¢}
o Suffices to show P[ R, € Bad; | = O(plogm)!

e For each o € Bady, we define an extended restriction o™ fixing ¢ addi-
tional variables.

eP[R,cBad;]= » P[R
o€ Bady

= Y (Z)'PIRy=0]-|{o€Bady: g = o}

t
= (%) E|{¢ € Bad; : 0" = R}/
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e Bad; := {restrictions o such that Canonical DT(F'[o) has depth ¢}
o Suffices to show P[ R, € Bad; | = O(plogm)!

e For each o € Bady, we define an extended restriction o™ fixing ¢ addi-
tional variables.

e P[ R, € Bad; | = O(p)' - E|{o € Bad; : 0* = Ry}



DNF formula F=C{V ---V Cpy,
Switching Lemma. P| DTyepen(F[Ry) >t | = O(plog m)?

HIGH-LEVEL SKETCH

e Bad; := {restrictions o such that Canonical DT(F'[o) has depth ¢}
o Suffices to show P[ R, € Bad; | = O(plogm)!

e For each o € Bady, we define an extended restriction o™ fixing ¢ addi-
tional variables.

e P[ R, € Bad; | = O(p)! - E |{o € Bady : 0* = R)}|
e [inally, we show

I |[{o € Bad; : 0" = Ry}| = O(logm)".

~

(Argument is similar to AveSens(F') < 2-H(F'), but rather than entropy we use

Jensen’s inequality for the concave function z — (+In(z) + 1)".)



DNF formula F=C{V ---V Cpy,
Switching Lemma. P| DTyepen(F'[Rp) >t | = O(plog m)?
HIGH-LEVEL SKETCH
e Bad; := {restrictions o such that Canonical DT(F'[o) has depth ¢}
o Suffices to show P[ R, € Bad; | = O(plogm)!

e For each o € Bady, we define an extended restriction o™ fixing ¢ addi-
tional variables.

e P[ R, € Bady ] = O(p)t - E|{o € Bad; : 0* = R}
e [f F' has width k., we get Hastad’s Switching Lemma:

The map o — o* is O(k)!-to-1 over Bad;.
Therefore, | |[{o € Bad; : 0o* = Ry}| = O(k)".
Therefore, P| R, € Bad; | = O(pk)".
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DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)

Canonical decision tree CanonicalDT(F'[o):

e If any clause is satisfied (forced to 1) by o, output 1.
o If all clauses are falsified (forced to 0) by g, output 0.

e Otherwise:

Let £ € [m| be the index of the first “relevant” clause Cy not forced by o.
Let s > 1 be the number of surviving variables of CyJo.

Let () € (?) be the set of surviving variables of Cy[po.

Query the variables of ) in order, receiving answers A € {0, 1}°.
Proceed as Canonical DT(F o U {Q + A}).

(Obs: C)pis forced to 0 or 1 by oU{@Q < A}, so this process eventually
terminates. )



DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)

Branch data. Each branch of CanonicalDT(F'[p) of length ¢ (with ¢
total queries) is characterized by:

orc{l, ... t} # of relevant clauses

olic|ml (1<l;<---<{l.-<m) location of i"" relevant clause

es;,>1 (sy+---+s =1 # of queried variables from Cj.
Vo \(Vp,U---UVp.

¢ Q; € ( 1 \(Vgy g ez_l))

set of queried variables from Cp,
(

o A, € {0,1}% answers to queries ();



DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)

Branch data. Each branch of CanonicalDT(F'[p) of length ¢ (with ¢
total queries) is characterized by:

orc{l, ... t} # of relevant clauses
olic|ml (1<l;<---<{l.-<m) location of i"" relevant clause
es;,>1 (sy+---+s =1 # of queried variables from Cj.
°(); € (Wé\(wlinuwi—l)) set of queried variables from Cy,
o A, €{0,1}% answers to queries ();

(i.e., surviving variables of Cp. [0, A,. .. 1« A;_)



DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)

Branch data. Each branch of CanonicalDT(F'[p) of length ¢ (with ¢
total queries) is characterized by:

orc{l, ... t} # of relevant clauses

olic|ml (1<l;<---<{l.-<m) location of i"" relevant clause

es;,>1 (sy+---+s =1 # of queried variables from Cj.
Vo \(Vp,U---UVp.

¢ Q; € ( 1 \(Vgy g ez_l))

(4

o A, €{0,1}% answers to queries @);

set of queried variables from Cp,

The map p — p*. Let (Z 5,0, ff) be the data associated with the
longest branch of Canonical DT(F'Tp). Then

Q* :QU{Q].FA*7"'7QT%A;I:}

where A7 are the unique answers to queries (; consistent with clause Cy..



e~ e’
F= X X, =X3 V =Xy X3 X V Xy =X X V X3 X5 =Xg V X;=Xgq =X

e ={xP1x,~0}
e*={x,~1,%x,~0,...}



*
e~—e
1 0 1 0 11
F= X=XV X3Xs VX, o Xg V X3 =Xg V ~X;

e ={x~1,x,~0}
e*={x;,~1,x,~0,...}



ere*
1 0 1 0 1
F= o X, =X V @sz X5V®V

e ={xP1x,~0}
e*={x;P1,x,~0,...}

1



e e”
1---_ 0 1 0 1
F( X, ~xg1V @sz X5V)®BV

—-_— g -

1

e ={xP1x,~0}
e*={x,~1,%x,~0,...}

S, =

Q1={X21X3}



eHe*
1--- 0
F( xzﬂx»v @sz X5V®V

—-_— g -

1 1

e ={xP1x,~0}
e*={x,~1,%x,~0,...}

51=
Q1={X21X3}
={x,>1,x;~>1}



v e~ o*

111 0
F= @ XX V @sz

e ={xP1x,~0}

e*={x;"1,x,20,x,~ 1, x;

t, =

51=

Q1={X21X3}
Al={x,»1,x3~1}

A*={x,~1,x3~0}

1

VSV

0,...}

1



el—)
110 0 1

— R

e ={xP1x,~0}

e*={x;"1,x,~0,x,~ 1, x;+
t, =

S, =

Q1={X21X3}

Al={x,»1,x3~1}

0

& =

0,...}

1

1



e~ e

110 0 1-1-

- &Y @V

e ={xP1x,~0}

e*={x;"1,x,~0,x,~ 1, x;+
t, =

S, =

Q1={X21X3}

Al={x,»1,x3~1}

?@/@vl

0,...}

1



e~ e

110 O 1 -1

-V Q> Ve

© ={X1'_>1;X4'_>O}

DR

Q*={X1H1)X4HO;X2|_)1,X3'_)O,...}
’€1= «82:

51= 52:
Q1={X21X3} Q2={X5}

Al={x"1,x3~>1}

1



1 1



E S
e~e*y/
110 0 1 11 0 1 1
- SV @V VISV
e ={X1'_>1;X4'_>O}
e*={x,"1,%x"0,x,~1,x~>0,x.~1, ..}

£1= «Bzz
S = S, =
Q1={X21X3} Q2={X5}

Al={x,»1,x3~1} A,={x;~0}
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o (as well as relevant clause indices £) as follows:
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DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)
0" = 0oU{Q1 + Af,....Qr AT}

Key observation. Given knowledge of o* and (g, 0] ff), We caln recover
o (as well as relevant clause indices £) as follows:

Cr,... Cyy1le =0
Ofl 0" =1

Cfl—l—h R 052—1 [Q*(Ql%fh) =

062 rd“(@lFAl) —1



DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)
0" = 0oU{Q1 + Af,....Qr AT}

Key observation. Given knowledge of o* and (g, 0] ff), We caln recover
o (as well as relevant clause indices £) as follows:

Cr,... Cyy1le =0
Ofl 0" =1

Cfl—l—la SR 062—1 [Q*(Ql%fh) =0

ng rd“(@lFAl) —1

. Cf _q FQ*<Q1%A17'“7QT—1<_AT—1>

Cé?“—l—i_l’ .. O
C, [Q*(Q1+A1,-~,Qr—1+z4r—1> !



DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)
0" = 0oU{Q1 + Af,....Qr AT}

Key observation. Given knowledge of o* and (g, 0] ff), We caln recover
o (as well as relevant clause indices £) as follows:

Cr,... Cyy1le =0
Ofl 0" =1

Cfl—l—la SR 052—1 [Q*(Ql%fh) =0
ngrQMQl%Al) —1

. Cf _q FQ*<Q1%A17'“7QT—1<_AT—1>

Cé?“—l—i_l’ .. O
C, [Q*(Q1+A1,-~,Qr—1+z4r—1> !

—

Therefore, the map o — (o™, s, 0. A) is 1-to-1.
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DNF formula F = C{ V-V Cp,, Vy:= Vars(Cy)
0" = 0oU{Q1 + Af,....Qr AT}

Hastad’s Switching Lemma. Assume F' has width k.

e Instead of @); (the set of queried variables from Cy ), it suffices to
know @) € ([k]) (the location of queried variables within Cy).

Si

Therefore, o — (0%, 5.0 %Y) is 1-to-1.

e There are only O(k) possibilities for data (s, @', A) when o € Bady.
Therefore, o — 0* is O(k)!-to-1 over Bady.
Therefore, |E [{o € Bad; : 0* = Ry}| = O(k)".

e As noted before, this implies

P| DTdepth(F[Rp) > 1= O(pk)t



DNF formula FF'=C{V ---V Cyy, Vp:= Vars(Cy)
0" = 0U{Q1 + A, ..., Qr + A7}
Hastad’s Switching Lemma. AssumeFhaswidbth/e-

We will show
I |{o € Bads : 0" = Ry}| = O(logm)’



Claim. E|{o € Bad; : o* = R,}| = O(logm)"

We have

E [{o€Bad;: 0" =0o}

2

encoding data (Z;Q),%Y)
for branches of length ¢

P

_HQE Bad; s.t. o* —0 |

with data (Z 5,0, %Y)




Claim. E|{o € Bad; : o* = R,}| = O(logm)"

We have
E |{o€Bads: 0" =0}
o~R,
i Clyoo s Cp1lo =0

Coplo =1
c Y b Cp ity Cppq 1ol @1A) = ¢
o L ng I\0'<Q1%A1> p— 1

(6787Q7 )

Cy 1o\ @Qre AL Qraedr) = 4



Claim. E|{o € Bad; : o* = R,}| = O(logm)"

We have
E |{o€Bads: 0" =0}
o~R,
' Cl.....Cpilo
Cy, |
< Z P Cfl—i—l? SR Cfg—l fU@l%Al)
-« Cy. 1o @reAl)
(0.5.G.4) : .
Cy 1o\ @QrAL - QreAr—y)

-y e

STt (g
Ac{0,1}!




Claim. E|{o € Bad; : o* = R,}| = O(logm)"

We have
c Bady : 0" =
GNRp!{Q ad : 0" = o'}
i Cly.o o, Cpqfo =0
Cgl [a' =1
_ Cp ity Cppq 1ol @1A) = ¢
o _)_Z . IP ng I\0'<Q1%A1> p— 1
(6787Q7 ) :
Cy 1o\ @Qre AL Qraedr) = 4
= >, D Pl
sittsr=t (73
%YE{O 1}t (60
<4 max Z IP // (we can ignore factors of O(1)")

Sl"‘ +Sr—t N
Actonnt (6Q)



Claim. E|{o € Bad; : o* = R,}| = O(logm)"
Fix any partition sy + - - - + s, =t and answer sequence Ae {0, 1}t.

It suffices to show

Cl,...,Cgl_lrJEO_

Cgl o =1
Z P O€1+17 S C€2—1 ro.(Qﬁ—Al) =0 _ O(log m)t
— 082 I\U(Ql%A1> — 1 .

Cy 1o (@Al Cro1Ar1) = 4

T. —



Claim. E|{o € Bad; : o* = R,}| = O(logm)"
Fix any partition sy + - - - + s, =t and answer sequence Ae {0, 1}t.

It suffices to show

Cl,...,Cgl_lrJEO_

Cgl o =1
A)
» Cryi1s-- Cryla @4 =0 | Otlogm)?
— 082 I\U(Ql%A1> — 1 .

Cy 1o (@Al Cro1Ar1) = 4

T. —

Obs. Given /1, ..., ¢, the number of choices for Q)1,..., Q) is

(I%I) (\Vzg \ Vzﬂ) o (!Vzr \ (VU V@JI)

S1 $9 Sy

_ (\VglU---UV@J) _ (e\vglu...u‘/grot
- t t




We have

- Cl) . Cgl_lfd — |
Cylo =
Y p Cpyis-- - Cryq [ @A) =
o) Cy, lol @A) =
(£,Q) )
i Cgr [0-<Q1<_A1,---,Qr—1%147~_1> — 1
Ol?' 7061—]_[0- p—
Cylo =
< Z 6“/51 J--- U Vgr\ tIP C€1—|—17 7052—1 [0-<Q1%A1) —
> max t C [0‘<Q1%A1) _
;Y 0, -
Cg [0’<Q1<—A17°“7QT—1%A7‘—1> — 1




We have

Cy, - Cél—lff"

Cp,lo

061—1—17 y Cfg—l fo' Ql%Al)
cy, or(Q1e=A1)

C, o QAL Qro16-4r1)




Fix any choice of functions Q;(f1, ..., ¥;) € (Vfi\(

We have

2

—

14

(€‘W1UUW7~‘
t

)ﬂp

Vglu.'..uvgi_l)) |

Sq

01,...,051_1“750-




Fix any choice of functions Q;(f1, ..., ¥;) € (W \(Vgli.. g 1>)
We have
Ola . 7051—1“7 —
Cylo =
6|V€1 J--- U VET‘ tIP O€1+17 T 052—1 ra@l%Al) =
Z p C). lol@1A1) =
7 2
Cy ra.(Ch%Ab- Qro1Ar-1) = 1

\ . J/

These events are mutually exclusive
over choices of 1 < 41 < -+ <ty < m.

Therefore, Z P["]<1.
0



Fix any choice of functions Q;(¢1, . . .

We have

(

eV U--- UV |
i

)tp

Ve, U--UV;
Si

1) e (Vei\( ¢—1>),

Coplo=1
Ofl—l—l? / 052—1 rU(Q1%A1> =
C€2 rJ(Q1%A1> = 1]




Fix any choice of functions Q;(f1, ..., ¥;) € (Vgi\(wlu'f’uwi_ﬁ)'

Si
We have
Cp,...,Cpqlo =
Cy,lo =
> e|Vy, U UV | tIP Cpity- -, Cppq 1l Q1A) =
t Cy. 1o\ @rA1) =
7 2

Cy 1o\ @A QraeAdr) = 4

e \1t In Q‘Wlu"'UVLA ! "
() (M) v

N

t

1 t .
€T ( ng@) Is a concave function

In(x

{
(really: x +— ( ; ) + 1) , but let’s ignore this + 1)




Fix any choice of functions Q;(f1, ..., ¥;) € ( i\ i—l)).

Si
We have
Cl, ,Cgl_lr(f —
Cy,lo =
> e|Vy, U UV | ’fIP Cpity- -, Cppq 1l Q1A) =
t Cy. 1o\ @rA1) =
7 2

Cg [J<Q1%A17'°'7QT—1<_AT—1> —|
N 1I1(2‘V€1UMUV€7“|) t )
- (E) 2. t Pl

v
t
1
(t In ZQ‘VQU Ve, | P[] (Jensen’s Inequality)

—




Fix any choice of functions Q;(¢1, . . .,

We have

2

—

14

elV), U---UV, \?!
(\el : &"‘)IP

Cl,. ,Cgl_lr(f —
Cy,lo =

| 062_1[0(621%141) —
Cy, or(Qre=A1) =




]P[”]

) Cl,...,Ogl_lfUEO-
_p Cﬁl—l—lv Cee Cfg—l fO'<Q1%A1) =0
o ng [0<Q1<_A1) — 1

C, TU(Q1%A1,---,QT—1%AT—1)

| Cp,lo

P Cy, (@1
C, o QU AL Qro16=Ar 1)
=P

<9

is satisfied (forced to 1) by o

_‘Vglu...uwr‘

Cplo=1

|
1
|

1

051 A 052 r621%141 A NGy, r621<—A1,~-,Qr—1+z4r—1




Finally, we bound:

Zl (recall: 1 < 01 < -+ <l <m)

t 1 m\ \'
< ( (— In ( )) (recall: r < t)
In2 t r
1 t
(z



Finally, we bound:

t 1 m\ \*
< ( (— In ( )) (recall: r < t)
In2 t r
1 t
(z

Therefore, E |{o € Bad; : ¢* = Rp}| < (4delogm)".

Therefore, P| DT gepth(F'[Rp) > 1 | = O(plog m)!.

Zl (recall: 1 < /07 < ---

< by <m)

Q.E.D.
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ACC circuits of depth d+1 and size S have correlation
% + 27" with PARITY, where € =1 / O(log S)¢
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via a “multi-switching lemma” that

analyzes multiple DNFs at once
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% + 27" with PARITY, where € =1 / O(log S)¢

 HSAT algorithm [Impagliazzo-Matthews-Paturi ‘12]

Counting the satisfying assighments to AC° circuits of
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lemmma” (independently discovered)



Recent Developments

 Optimal correlation bounds [Hastad ‘14]

ACP circuits of depth d+1 and size S have correlation
% + 27" with PARITY, where € =1 / O(log S)¢

 HSAT algorithm [Impagliazzo-Matthews-Paturi ‘12]

Counting the satisfying assighments to AC° circuits of
depth d+1 and size S in randomized time 2(1-€)n

 Optimal Linial-Mansour-Nisan Theorem [Tal ‘14]

Tight bounds on the Fourier spectrum of AC° circuits



These results all follow from a bound on the
criticality of ACP circuits.

Optimal correlation bounds [Hastad ‘14]

ACP circuits of depth d+1 and size S have correlation
% + 27" with PARITY, where € =1 / O(log S)¢

#SAT algorithm [Impagliazzo-Matthews-Paturi ‘12]

Counting the satisfying assighments to AC° circuits of
depth d+1 and size S in randomized time 2(1-€)n

Optimal Linial-Mansour-Nisan Theorem [Tal ‘14]

Tight bounds on the Fourier spectrum of AC° circuits




Criticality

Definition
A Boolean function f is A-critical (where A > 1) if

Pr{ DTyepm(f MRy 2t ] < (pA)* forall pandt.

The criticality of f is the minimum real A > 1 such that f
is k-critical.



Criticality

Definition
A Boolean function f is A-critical (where A > 1) if

Pr{ DTyepm(f MRy 2t ] < (pA)* forall pandt.

For example:

* Every n-var. function f: {0,1}" - {0,1} is n-critical
* Every depth-k decision tree is k-critical
* Every width-k DNF is O(k)-critical

* Every m-clause DNF is O(log m)-critical



Criticality

Definition

A Boolean function f is A-critical (where A > 1) if
Pr{ DTyepm(f MRy 2t ] < (pA)* forall pandt.
Proposition
If f:{0,1}" - {0,1} is A-critical, then
DT, .(f) £ O(2n ~ (n/24)),




Upper bounds on criticality yield
randomized constructions of

decision trees, hence randomized
#SAT algorithms

Proposition ’

If f:{0,1}" - {0,1} is A-critical, then
DT, .(f) £ O(2n ~ (n/24)),



_ Query all variables from a random set
of size (1 - p)n wherep=1/2.014

Proposition

If f:{0,1}" - {0,1} is A-critical, then
DT, .(f) £ O(2n ~ (n/24)),



_ Query all variables from a random set
of size (1 - p)n wherep=1/2.014

—

N

&
a uniform random branch is a p-random restriction

Proposition

If f:{0,1}" - {0,1} is A-critical, then
DT, .(f) £ O(2n ~ (n/24)),



_ Query all variables from a random set
of size (1 - p)n wherep=1/2.014

L

A-criticality of f implies E[ DT,,.(f ' 0) ] = O(1)

Proposition

If f:{0,1}" - {0,1} is A-critical, then
DT, .(f) £ O(2n ~ (n/24)),



_ Query all variables from a random set
of size (1 - p)n wherep=1/2.014

A AAAA A2 w.h.p. we get a decision tree for f of
size O(2(1-pin)

Proposition

If f:{0,1}" - {0,1} is A-critical, then
DT, .(f) £ O(2n ~ (n/24)),



Degree-Criticality

Definition

A Boolean function f is A-degree-critical if
Pr{deg(ftR)) 2t] < (pA)" forall pandt.



Degree-Criticality

Definition

A Boolean function f is A-degree-critical if
Pr{deg(ftR)) 2t] < (pA)" forall pandt.

Obs A-critical = A-degree-critical
(since deg(.) < DTyepin(-))



Degree-Criticality

Definition
A Boolean function f is A-degree-critical if

Prldeg(f'R)) 2t ] < (pA) forall pandt.

Theorem [Tal 14]

* Circuits of depth d+1 and size S have degree-
criticality O(log S)q.

e If fis any A-degree-critical function, then for every Kk,

Y F()? <0 and Y [f(I)] < O

[ 1| >k [ 1]=F




Degree-Criticality

Definition

A Boolean function

[Tal’14] also shows this condition is
equivalent to degree-criticality O(A)

* Circul
criticality O(IOS)OI

. Iffls S any l‘degj;ee critical function, then for every K,
23 < e <

(3 Tt oe Py and 3 If]< o

[T]=k

L -
~———_—



Criticality of ACP Circuits

Observation

ACC circuits of depth d+1 and size S have criticality at
most 1 = O(log S)d



Criticality of ACP Circuits

Observation

ACP circuits of depth d+1 and size S have criticality at
most A = O(log S)¢

Implies the results of [Hastad 14],
[Impagliazzo-Matthews-Paturi 12],
[Tal 14]




Criticality of ACP Circuits

Observation

ACC circuits of depth d+1 and size S have criticality at
most 1 = O(log S)d

 Hastad’s Switching Lemma (1986) shows
Pr{DTyepn(f M R) 2 t] < (pA/2)" + (1/5)°
< (pA)t forallt<log$
e Hastad’s Multi-Switching Lemma (2014) shows
Pr{ DTyepen(f I Ry) 2T ] < S+(pA/2)
< (pA)t forallt>log$



Criticality of AC° Formulas

Conjecture

AC? formulas of depth d+1 and size S have criticality at

most A = O((log S)/d)°
(A




Criticality of AC° Formulas

Conjecture

AC? formulas of depth d+1 and size S have criticality at
most A = O((log S)/d)°

e “Stopping time” technique of [R. 15] implies
Prl DTyeon(f T Ry) 2t ] < (pA)t forallt<logsS

e Unfortunately, don’t know how to show
Pr{ DTyeom(f MR 2t ] < (pA)t forallt>logsS



Criticality of Regular AC° Formulas

Theorem [R. 18]

Regular AC® formulas of depth d+1 and size S have
criticality at most O((log S)/d)¢

° (same fan-in within

each layer)




Criticality of Regular AC° Formulas

Theorem [R. 18]

Regular AC® formulas of depth d+1 and size S have
criticality at most O((log S)/d)¢

* Proof based on alternative analysis of the Switching
Lemma with log(size) in place of width

* Introduces and analyses the canonical decision tree
of an entire depth d+1 formula



Corollaries

e Optimal correlation bounds

Regular AC° formulas of depth d+1 and size S have
corr. % + 27¢" with PARITY_ where € =1 / O((log S)/d)®

e HSAT algorithm

#SAT for regular AC® formulas of depth d+1 and size S
is solvable in randomized time 2(1-€n

e Optimal Linial-Mansour-Nisan Theorem

Tight bounds on the Fourier spectrum of regular AC°
formulas



This improvement to [IMP12] has

a further corollary:
an improved QBF-SAT algorithm

o O
e HSAT algorithm

#SAT for regular AC° formulas of depth d+1 and size S
is solvable in randomized time 2(1-€n

e Optimal Linial-Mansour-Nisan Theorem

Tight bounds on the Fourier spectrum of regular AC°
formulas



QBF-SAT

[Santhanam-Williams 14] give two rand. algorithms for
Quantified-CNF Satisfiability with g quantifier
alternations:

* Algorithm #1 has time poly(n)*2n-()
This beats exhaustive search when g >> log n

 Algorithm #2 has time poly(n)*2n-@(n"(1/a))
Beats exhaustive search when g <<log n/loglogn



QBF-SAT

[Santhanam-Williams 14] give two rand. algorithms for
Quantified-CNF Satisfiability with g quantifier
alternations:

* Algorithm #1 has time poly(n)+2n-d)
This beats exhaustive search when g >> log n

« Algorithm #2 has time poly(n)*2n-@a*n"(1/a))
Beats exhaustive search when g << log n Heglegn

We get an improvement to alg #2




Open Problems

e Show that AC® formulas of depth d+1 and size S have
criticality at most O((log S)/d)q.

o Iff,..f are A-critical, is AND(f,,...,f_) necessarily
O(A*log m)-critical? (If so, this implies our result on
regular AC° formulas.)

 We observed that A-critical = A-degree-critical.
Does A-degree-critical imply O(A)-critical?



Tour of other
switching lemmas



Stars
e Stars . :{x,...x.} 2 1{0,1,%} with exactly m stars
(behaves similarly toR, /)

e Switching Lemma

Pr[ DTyepn(k-DNF I Stars ) > t] < O((m/n)k)°




R

P,9

* (-biased p-restriction R, ¢

—

*  wit
R, o(x)=—1 wit

‘O Wit

e Switching Lemma (q < %)

N pro
N pro

N pro

0. P
0. (1-p)q

0. (1-p)(1-q)

Pr{ DTyeoin(k-DNF IR ) 2 t] < O(pk/q)*

* Used for ave-case lower bounds under g-biased

distribution on {0,1}"



Clique,

 Beame '90 proved a “cliqgue switching lemma” for the
random restriction on (n choose 2) variables where

= stars are edges of a cliqgue on a p-random set of vertices

" non-stars are set to 1 with prob. g and O with prob.1—q

e Switching Lemma (q < %)

Pr[ DT gepn(k-DNF I Clique, ) 2 t ] < O(pk/qO*t))t

* This gives an n®/4*2) [ower bound for k-CLIQUE,
(moreover, in the average-case for G(n,q))



Clique,

 Beame '90 proved a “cliqgue switching lemma” for the
random restriction on (n choose 2) variables where

m stars are edges of 2

Dependence on d results from the

standard depth-reduction argument

* This gives an n®/¢"2) |ower bound for k-CLIQUE
(moreover, in the average-case for G(n,q))



Variants of Rp

 See Beame’s “Switching Lemma Primer” for an
account of:

Stars
RIO,OI
Clique, ,

Matching Restrictions (vs. Pigeonhole Principle)



Hastad’s Tseitin Grid
Restrictions



ACC-Frege

* Proof system whose lines are depth-d AC® formulas

* Generalizes RESOLUTION (essentially “depth-1 Frege”)



ACP-Frege Lower Bounds

* Pitassi-Beame-Impagliazzo, Krajicek-Pudlak-Woods 90’s

exp(nt/exr(@d) [ower bound for Pigeonhole Principle



ACP-Frege Lower Bounds

* Pitassi-Beame-Impagliazzo, Krajicek-Pudlak-Woods 90’s

exp(n/exr(@d)) lower bound for Pigeonhole Principle
°®

worse than the exp(Q(n%/d))

lower bounds for AC° circuits



ACP-Frege Lower Bounds

* Pitassi-Beame-Impagliazzo, Krajicek-Pudlak-Woods 90’s

exp(nt/exr(@d) [ower bound for Pigeonhole Principle

* Pitassi-R.-Servedio-Tan ‘16
Mild lower bound via new approach for Tseitin on
expander graphs (using random projectins)

e Hastad 17
exp(n®/d) lower bound for Tseitin on grids




Tseitin Contradiction

* Grid,, =4-regular nxn (toroidal) grid graph, n odd




Tseitin Contradiction

* Grid,, =4-regular nxn (toroidal) grid graph, n odd
* Tseitin(Grid_, ) is the unsatisfiable 4-DNF formula
with variables X_ for each edge e and clauses
Xe,® X, ® Xo @ X, = 1

for every four edges e, €, €3 €, meeting a common
vertex



Grid .,




pick £ random rows and columns (£ odd)




randomly set blue edgesto O or 1
without violating any parity constraint

o
(WY
(@)
o

==
[y
LY
o0 O =
==
o




create a new Y-variable for each red “super-edge”

and project each X-variables to Y or Y (as dictated by
adjacent parity constraints)




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

nxn




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

nxn




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

nxn




random projection from Tseitin(Grid

k:

) to Tseitin(Grid,, )

nxn

Unfortunately, we don’t get a

useful switching lemma!




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

nxn

Requirement for any useful switching lemma:

Pr[ any k given X-variables (i.e. edges of original grid)
project to distinct Y-variables |

< X (for some € < 1)




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

nxn

Requirement for any useful switching lemma:

Pr[ any k given X-variables (i.e. edges of original grid)
project to distinct Y-variables |

< X (for some € < 1)




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

nxn

Requirement for any useful switching lemma:

Pr[ any k given X-variables (i.e. edges of original grid)
project to distinct Y-variables |

< X (for some € < 1)




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

nxn

Requirement for any useful switching lemma:

Pr[ any k given X-variables (i.e. edges of original grid)
project to distinct Y-variables |

< X (for some € < 1)




random projection from Tseitin(Grid ) to Tseitin(Grid,,,)

If X, survives the projection,

then w.h.p. all survive and
map to distinct Y-variables
(hence, no exponential tail
bound in # of X-variables)




1

astad’s random projection




1

astad’s random projection

o







jJ Hastad’s random projection

This gives a topological embedding
of Grid,,, in Grid .. (and a projection

nxn

of corresponding Tseitin instances)




jJ Hastad’s random projection

ST

-+J I
[E -~

Satisfies key criterion:

Pr[ any k given X-variables (i.e. edges of original grid)
project to distinct Y-variables |

< e (where g =V(£/n))




Pr[ X,,...,X, project to distinct Y-variables ] < p*

Xl
X3 X4

Satisfies key criterion:

Pr[ any k given X-variables (i.e. edges of original grid)
project to distinct Y-variables ]

< ek (where € =V(£/n))




Pr[ X,,...,X, project to distinct Y-variables | < p*

—_-\
\

-
/’ N
7 X, \
/1 = \
| 1

far apart edges =

independent probability of
surviving the projection

X5 X,

al grid)




Pr[ X,,...,X, project to distinct Y-variables | < p*

Satisfies ke
Pr[ &

nearby edges =
if both survive, likely to

project to same Y-variable
< ek (whet




Hastad’s depth reduction argument has two steps:



Hastad’s depth reduction argument has two steps:

@ switching lemma with respect to a preliminary

“partial restriction” (with greater independence
properties, needed for the Razborov-style argument)




Hastad’s depth reduction argument has two steps:

@ switching lemma with respect to a preliminary

“partial rgstriction" (with greater independence
properties, n@pded for the Razborov-style argument)

reduces the depth of each

formula in an AC°-Frege proof




Hastad’s depth reduction argument has two steps:

@ switching lemma with respect to a preliminary

“partial restriction” (with greater independence
properties, needed for the Razborov-style argument)

@ clean-up step: (arbitrary) completion of the
“partial restriction” to an embedding of
Tseitin(Grid,,,) in Tseitin(Grid

nxn)



Hastad’s depth reduction argument has two steps:

@ switching lemma with respect to a preliminary

“partial restriction” (with greater independence
properties, needed for the Razborov-style argument)

@ clean-up step: (arbitrary) completion of the
“partial restriction” to an embedding of
Tseitin(Grid,,,) in Tseitin(Grid

an)

for purpose of induction



@ preliminary “partial restriction”




@ preliminary “partial restriction”

M
o




@ preliminary “partial restriction”
| | ===c==
i == .!’-\.!‘

e
many extra degree-4 “centers”
(and crossing paths between them)

- rd
| |

T

=




@ preliminary “partial restriction”

M
o




@ cleaned-up projection to Tseitin(Grid,, )

¢ r‘J 3

i Sesaige

nE i}




ACP-Frege Depth Hierarchy?

e Open Problem

Find a family of unsatisfiable DNF formulas with
poly(n)-size depth d+1 refutations, which require
exp(n®¥/d)-size depth d refutations.



AC® Depth Hierarchy




AC® Depth Hierarchy

* Read-once Sipser functions used
in the ACC setting

e Unclear what unsat. DNFs to use
in the AC®-Frege setting

X, T Xou




Thank You!



