Restriction-Based Methods

Benjamin Rossman

University of Toronto

Restrictions

- A (random) restriction is a (random) subset R of {0,1}ⁿ
- When R is a subcube of $\{0,1\}^n$, identify with a function $\{x_1,...,x_n\} \rightarrow \{0,1,\star\}$ (each coordinate fixed to 0 or 1 or free)
- For $0 \le p \le 1$, let \mathbf{R}_p denotes the p-random restriction
 - $\mathbf{R}_{p}(\mathbf{x}_{i}) = \begin{bmatrix} \star & \text{with prob. p} \\ 0 & \text{with prob. (1-p)/2} \\ 1 & \text{with prob. (1-p)/2} \end{bmatrix}$

independently for each variable x_i

Lower Bounds from Restrictions

- A restriction $R \subseteq \{0,1\}^n$ can be applied to both
 - Boolean functions $f : \{0,1\}^n \rightarrow \{0,1\}$
 - Boolean circuits C (by syntactic simplification)
- <u>Recipe for lower bounds</u>:

Show that C \ R becomes "simple", while f \ R remains "complex" (with high prob. if R is random)

Types of Restrictions $R \subseteq \{0,1\}^n$ (increasing order of generality)

- subcube
 x_i = 0, x_i = 1
- mon. projection $x_i = 0, x_i = 1, x_i = x_j$
- projection $x_i = 0, x_i = 1, x_i = x_j, x_i \neq x_j$
- affine $x_{i 1} \oplus \cdots \oplus x_{i k} = 0, x_{i 1} \oplus \cdots \oplus x_{i k} = 1$
- low-degree variety $P(x_1,...,x_n) = 0$ where deg(P) $\leq d$

Outline

- Background (circuit complexity, gate elimination arguments)
- The Switching Lemma & a new "entropy" proof
- Recent applications of stronger Switching Lemmas (criticality of AC⁰ functions, #SAT algorithms, bounds on Fourier spectrum)
- Tour of other random restrictions (Hastad's Tseitin grid projections)

Circuit Complexity

Circuit Complexity

- Studies the complexity of specific problems (e.g. PARITY, MATRIX MULTIPLICATION, etc.) in combinatorial models of computation, most importantly Boolean circuits
- Goal is to prove *unconditional lower bounds*, which do not rely on any unproven assumptions

Circuit Complexity

Studies the complexity of specific problems (e.g. PARITY, MATRIX MULTIPLICATION, etc.) in combinatorial models of computation, most importantly Boolean circuits

a **problem** (i.e. decision problem) is represented by a sequence of boolean functions $f_n : \{0,1\}^n \rightarrow \{0,1\}$

. п (

Boolean Circuits

Boolean Circuits

- An n-variable Boolean circuit computes an n-variable Boolean function {0,1}ⁿ → {0,1}
- A problem is "solved" by a sequence of Boolean circuits C₁, C₂, ..., C_n, ... if C_n computes the appropriate function {0,1}ⁿ → {0,1}

Boolean Circuits

- An n-variable Boolean circuit computes an n-variable Boolean function {0,1}ⁿ → {0,1}
- A problem is "solved" by a sequence of Boolean circuits C₁, C₂, ..., C_n, ... if C_n computes the appropriate function {0,1}ⁿ → [1]

in contrast to *uniform* models of computation (e.g. Turing machines) where a single algorithm solves the problem on all instances

- The circuit size of a function f : {0,1}ⁿ → {0,1} is the minimum # of AND/OR gates in a circuit computing f
- <u>Theorem</u> [Shannon 1949, Lupanov 1958]
 Almost all Boolean functions have circuit size Θ(2ⁿ/n)
- The goal in Circuit Complexity is proving lower bounds for *explicit* Boolean functions (e.g. k-CLIQUE)

- <u>Theorem</u> [Schnorr 1976, Fischer-Pippenger 1979]
 Turing mach. time T(n) ⇒ circuit size O(T(n)*log T(n))
- <u>Corollary</u>

A *super-polynomial lower bound* on the circuit size of any function in NP (i.e. NP \subseteq P/poly) implies P \neq NP

- <u>Theorem</u> [Schnorr 1976, Fischer-Pippenger 1979]
 Turing mach. time T(n) ⇒ circuit size O(T(n)*log T(n))
- <u>Corollary</u>

A *super-polynomial lower bound* on the circuit size of any function in NP (i.e. NP \subseteq P/poly) implies P \neq NP

Circuit Complexity is widely believed to be the most viable approach to P ≠ NP

• <u>Holy Grail</u> ($P \neq NP$)

Prove a *super-polynomial lower bound* on the circuit size of any problem in NP

• <u>Holy Grail</u> ($P \neq NP$)

Prove a *super-polynomial lower bound* on the circuit size of any problem in NP

Best known lower bound

3n – O(1)	1976	[Schnorr]
4n – O(1)	1991	[Zwick]
4.5n – o(n)	2001	[Lachish-Raz]
5n – o(n)	2002 - today	[lwama-Morizumi

Best known lower bound

3n – O(1)	1976	[Schnorr]
4n – O(1)	1991	[Zwick]
4.5n – o(n)	2001	[Lachish-Raz]
5n – o(n)	2002 - today	[Iwama-Morizumi

3.01n for circuits in the *full* binary basis (all fan-in 2 gates)
 [Find-Golovnev-Hirsch-Kulikov '16]

Gate-elimination arguments

(subcube and affine restrictions)

4n – O(1)	1991	[Zwick]
4.5n – o(n)	2001	[Lachish-Raz]
5n – o(n)	2002 - today	[lwama-Morizumi]

(DeMorgan) Formulas

(DeMorgan) Formulas

(DeMorgan) Formulas

Formulas vs. Circuits

• <u>A Pret-ty Holy Grail</u> $(NC^1 \neq P)$

Prove that **poly-size circuits** are strictly more powerful than **poly-size formulas**

Formulas vs. Circuits

• <u>A Pret-ty Holy Grail</u> $(NC^1 \neq P)$

Prove that **poly-size circuits** are strictly more powerful than **poly-size formulas**

Best known formula size lower bound

n ^{1.5 – o(1)}	1961	[Subbotovskaya]
n ²	1971	[Khrapchenko]
n ^{2.5 – o(1)}	1991	[Andreev]
n ^{3 – o(1)}	1998 - today	[Hastad]
	(log-factor improvement [Tal'14])	

Formulas vs. Circuits

• <u>A Pret-ty Holy Grail</u> $(NC^1 \neq P)$

Prove that **poly-size circuits** are strictly more powerful than **poly-size formulas**

Shrinkage of DeMorgan formulas (simplification under p-random restrictions)				
n ²	1971	[Khrapchenko]		
n ^{2.5 – o(1)}	1991	[Andreev]		
n ^{3 – o(1)}	1998 - today	[Hastad]		
(log-factor improvement [Tal'14])				

Restricted Classes (AC⁰, monotone, etc.)

Restricted Classes

- AC⁰ setting (fast parallel computation) constant-depth, unbounded fan-in AND/OR gates
- monotone setting negation-free (no NOT gates)
- arithmetic (+, ×), tropical (min, +), ...

AC⁰ Lower Bounds

 Exponential lower bounds known since the 1980's: the depth-d AC⁰ circuit size PARITY_n is 2^{Θ(n^{1/(d-1)})}
 [Ajtai, Furst-Saxe-Sipser, Yao, Hastad]

AC⁰ Lower Bounds

• Exponential lower bounds known since the 1980's: the depth-d AC⁰ circuit size PARITY_n is $2^{\Theta(n^{1/(d-1)})}$

[Ajtai, Furst-Saxe-Sipser, Yao, Hastad]

Switching Lemma

 \subset

(simplification under p-random restrictions)

AC⁰ Lower Bounds

• Exponential lower bounds known since the 1980's: the depth-d AC⁰ circuit size PARITY_n is $2^{\Theta(n^{1/(d-1)})}$

[Ajtai, Furst-Saxe-Sips, Yao, Hastad]

The "size-depth tradeoff" is a limitation of lower bounds via Switching Lemmas (which become trivial before depth d = log n)

Lower Bound Techniques

counting

- almost all Boolean functions are complex
- circuit size hierarchy theorem

• gate-elimination arguments [restriction based]

- best lower bounds for *unrestricted* circuits and formulas
- switching lemmas [restriction based]
 - best lower bounds against AC⁰

polynomial method

– best lower bounds against $AC^{0}[\oplus]$

Monotone Lower Bounds

 $mAC^0 \subset mNC^1 \subset mL \subset mNL \subset mNC \subset mP \subset mNP \subset \cdots$

 We know essentially all separations among interesting monotone classes, via a multitude of techniques

Gate Elimination Arguments & Shrinkage

Restrictions

• Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

 $\mathsf{R}:\{\mathsf{x}_1,\ldots,\mathsf{x}_n\} \rightarrow \{0,1,\star\}$
Restrictions

• Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

 $\mathsf{R}: \{\mathsf{x}_1, \dots, \mathsf{x}_n\} \to \{0, 1, \star\} \quad \bullet \quad \bullet$

equivalently, a **partial function** from $\{x_1, ..., x_n\}$ to $\{0, 1\}$

Restrictions

Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

 $\mathsf{R}: \{\mathsf{x}_1, \dots, \mathsf{x}_n\} \rightarrow \{0, 1, \star\}$

• Applying R to f, we get a Boolean function

 $f \upharpoonright R : \{0,1\}^{Stars(R)} \rightarrow \{0,1\}$

Restrictions

Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

 $\mathsf{R}: \{\mathsf{x}_1, \dots, \mathsf{x}_n\} \rightarrow \{0, 1, \star\}$

- Applying R to f, we get a Boolean function $f \upharpoonright R : \{0,1\}^{Stars(R)} \rightarrow \{0,1\}$
- Can also apply R syntactically to circuits (and other objects)

• <u>Lemma</u> [Schnorr '76]

If a circuit C (in basis {AND₂,OR₂,NOT}) computes PARITY_n ($n \ge 2$), then there exists a 1-bit restriction R killing at least 3 AND/OR gates of C (i.e. size($C \upharpoonright R$) \le size($C \upharpoonright -3$)

<u>Corollary</u>

 $PARITY_n$ has circuit size at least 3n - 3. Moreover, matching upper bound.

• More sophisticated gate elimination arguments give the best lower bounds:

5n - o(n) {AND₂,OR₂,NOT} basis

[Iwama-Lachish-Morizumi-Raz '02]

≈3.01n full binary basis
[Find-Golovnev-Hirsch-Kulikov '16]

• More sophisticated gate elimination arguments give the best lower bounds:

5n - o(n) {AND₂,OR₂,NOT} basis

[Iwama-Lachish-Morizumi-Raz '02]

- <u>Theorem</u> [Chaudhuri-Radhakrishnan '96]
 n^{1 + 1/exp(d)} lower bound on the depth-d AC⁰ circuit size of APPROX-MAJORITY via *deterministic restrictions* (greedily apply the best 1-bit restriction)
- <u>Theorem</u> [Koppary-Srinivasan '12]

Similar lower bound for AC⁰[⊕] circuits via *deterministic low-degree-variety restrictions* (method of "certifying polynomials")

p-Random Restriction \mathbf{R}_{p}

- For $0 \le p \le 1$, let \mathbb{R}_p denotes the p-random restriction $\mathbb{R}_p(x_i) = -\begin{cases} \star & \text{with prob. } p \\ 0 & \text{with prob. } (1-p)/2 \\ 1 & \text{with prob. } (1-p)/2 \end{cases}$
 - independently for each variable index $i \in [n]$

Effect of \mathbf{R}_{p}

- **R**_p simplifies Boolean functions computed by small:
 - DeMorgan formulas
 - decision trees
 - AC⁰ circuits
- Certain Boolean functions, like PARITY_n, maintain their complexity under R_p
- Ergo, *lower bounds*!

• <u>Subbotovskaya '61</u>

If F is an n-variable DeMorgan formula, then Ex[leafsize(F random 1-bit rest.)]

 $\leq (1-n)^{1.5}$ leafsize(F)

• As a consequence,

Ex[leafsize($F \upharpoonright \mathbf{R}_p$)] $\leq O(p^{1.5} \text{ leafsize}(F) + 1)$

• <u>Hastad '98, Tal '14</u>

Ex[leafsize($F \upharpoonright R_p$)] $\leq O(p^2 \text{ leafsize}(F) + 1)$

• <u>Subbotovskaya '61</u>

If F is an n-variable DeMorgan formula, then

Ex[leafsize(F random 1-bit rest.)]

• Implies lower bounds:

•

leafsize(PARITY_n) = $\Omega(n^2)$ leafsize(ANDREEV_n) = $\Omega^{\sim}(n^3)$

Hastad '98, Tal '14 $Ex[leafsize(F \upharpoonright R_p)] \le O(p^2 leafsize(F) + 1)$

• Implies lower bounds:

• <u>Hastad '98, Tal '14</u>

Ex[leafsize($F \upharpoonright \mathbf{R}_p$)] $\leq O(p^2 \text{ leafsize}(F) + 1)$

Effect of \mathbf{R}_{p} on *Monotone* Formulas

- <u>Open Question</u> What is the shrinkage exponent of monotone formulas (basis {AND₂,OR₂})?
- <u>Conjecture</u> Equals the shrinkage exponent of **read-once formulas** (≈3.27) [Hastad-Razborov-Yao '97]

The Switching Lemma

Decision Trees

The *decision-tree depth* of a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

is the minimum depth of a decision tree that computes **f**.

- $DT_{depth}(PARITY_n) = DT_{depth}(AND_n) = n$
- $DT_{depth}(f) = 0 \Leftrightarrow f \text{ is constant}$

- **DNF** = disjunctive normal form (OR-AND formula)
- **CNF** = conjunctive normal form (AND-OR formula)

- **DNF** = disjunctive normal form (OR-AND formula)
- CNF = conjunctive normal form (AND-OR formula)
- width = bottom fan-in (max # of variables in a clause)

- **k-DNF** = width-**k** DNF
- **k-CNF** = width-k CNF

- **k-DNF** = width-k DNF = OR_{∞} of depth-k DTs
- **k-CNF** = width-k CNF = AND_{∞} of depth-k DTs

- **k-DNF** = width-k DNF = OR_{∞} of depth-k DTs
- **k-CNF** = width-**k** CNF = AND_{∞} of depth-**k** DTs
- Every depth-k DT is equivalent to a k-DNF and a k-CNF
- <u>Weak converse</u>: If a Boolean function is equivalent to a k-DNF and an ℓ-CNF, then it is equivalent to a DT of depth kℓ

k-DNF Switching Lemma

Hastad's Switching Lemma (1986)

If F is a k-DNF (i.e. OR_{∞} of depth-k decision trees), then $Pr[DT_{depth}(F \upharpoonright R_{p}) \ge t] \le (5pk)^{t}$

k-DNF Switching Lemma

Hastad's Switching Lemma (1986)

If F is a k-DNF (i.e. OR_{∞} of depth-k decision trees), then $Pr[DT_{depth}(F \upharpoonright R_{p}) \ge t] \le (5pk)^{t}$

Dual CNF version

If F is a k-CNF (i.e. AND_{∞} of depth-k decision trees), then Pr[DT_{depth}(F \ R_p) ≥ t] ≤ (5pk)^t

Hastad's Switching Lemma (1986)

If F is a k-DNF (i.e. OR_{∞} of depth-k decision trees), then $Pr[DT_{depth}(F \upharpoonright R_{p}) \ge t] \le (5pk)^{t}$

Corollary (usual statement of the S.L.)

If F is a k-DNF, then

Pr[$F \upharpoonright R_{p}$ is not equivalent to a t-CNF] $\leq (5pk)^{t}$

Apply the **Switching Lemma** to each gate and take a *union bound over failure events*

Apply the **Switching Lemma** to each gate and take a *union bound over failure events*

Succeeds *almost surely* provided t = O(log(circuit size))

<u>Theorem</u> [Hastad '86] Depth d+1 circuits for PARITY_n have size $exp(\Omega(n^{1/d}))$ **Matching Upper Bound**

PARITY_n has depth d+1 circuits of size exp(O(n^{1/d}))

Theorem [Hastad '86]

Depth d+1 circuits for PARITY_n have size $exp(\Omega(n^{1/d}))$

Matching Upper Bound

PARITY_n has depth d+1 circuits of size exp(O(n^{1/d}))

- depth 2 circuits of size O(2ⁿ) (brute-force CNF/DNF)
- for $d+1 \ge 3$, divide and conquer:

Matching Upper Bound

PARITY_n has depth d+1 circuits of size exp(O(n^{1/d}))

- depth 2 circuits of size O(2ⁿ) (brute-force CNF/DNF)
- for $d+1 \ge 3$, divide and conquer:

depth-1 decision trees

depth-1 decision trees

constant function (w.h.p.)

- Started with AC⁰ circuit of depth d+1 and size S
- Applied a sequence of restrictions

$$\begin{array}{c} \textbf{R}_{1/10}, \textbf{R}_{1/(10^* \log S)}, \textbf{R}_{1/(10^* \log S)}, ..., \textbf{R}_{1/(10^* \log S)} \\ \textbf{d} \text{ times} \end{array}$$

• Circuit reduces to a **constant** (0 or 1) with high prob.

- (AC⁰ circuit of depth d+1 and size S) R_{1/O(log S)^d} is almost surely constant
- On the other hand, PARITY_n R_p is almost surely non-constant for p = ω(1/n)

- (AC⁰ circuit of depth d+1 and size S) R_{1/O(log S)^d} is almost surely constant
- On the other hand, $PARITY_n \upharpoonright R_p$ is almost surely **non-constant** for $p = \omega(1/n)$

PARITY_m or $1 - PARITY_m$ on m = **Binomial**(n,p) variables

- (AC⁰ circuit of depth d+1 and size S) R_{1/O(log S)^d}
 is almost surely constant
- On the other hand, PARITY_n \ R_p is almost surely non-constant for p = ω(1/n)
- Therefore, depth d+1 circuits for PARITY_n require size exp(n^{1/d})

Recall: AC⁰ Formulas

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n^{1/d}))

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n^{1/d})) and depth d+1 formulas of size exp(O(dn^{1/d}))

<u>Upper Bound</u>

PARITY has depth d+1 circuits of size exp(O(n^{1/d})) and depth d+1 formulas of size exp(O(dn^{1/d}))

Theorem [Hastad '86]

Depth d+1 circuits for PARITY have size $exp(\Omega(n^{1/d}))$

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n^{1/d})) and depth d+1 formulas of size exp(O(dn^{1/d}))

Theorem [Hastad '86]

Depth d+1 circuits for PARITY have size $exp(\Omega(n^{1/d}))$

Theorem [R.'15]

Depth d+1 formulas for PAR. have size $exp(\Omega(dn^{1/d}))$
Dynamic View of \mathbf{R}_{p}

1

Ο

for each variable, we generate a random

- **value** in {0,1}
- timestamp in [0,1]

Theorem [Hastad '86]

Depth d+1 circuits for PARITY have size $exp(\Omega(n^{1/d}))$

Theorem [R.'15]

Depth d+1 formulas for PAR. have size $exp(\Omega(dn^{1/d}))$

Theorem [Hastad '86, Boppana '87]

Depth d+1 circuits of size S have average sensitivity O(log S)^d

Theorem [R.'15]

Depth d+1 formulas of size S have average sensitivity O((log S)/d)^d

AveSens(f) := $\mathbb{E}_{\mathbf{x} \in \{0,1\}^n} \#\{i \in [n] : f(\mathbf{x}) \neq f(\mathbf{x}^{(i)})\}\$

Theorem [Hastad '86, Boppana '87]

Depth d+1 circuits of size S have average sensitivity O(log S)^d

Theorem [R.'15]

Depth d+1 **formulas** of size S have average sensitivity O((log S)/d)^d

AveSens(f) := $\mathbb{E} \#\{i \in [n] : f(\mathbf{x}) \neq f(\mathbf{x}^{(i)})\}\$ $\mathbf{x} \in \{0,1\}^n$ \mathbf{x} with ith bit flipped

Proof of the Switching Lemma

DNF formula $F = C_1 \lor \cdots \lor C_m$

Each clause C_{ℓ} is a conjunction of literals (e.g. $x_1 \wedge \neg x_3 \wedge x_4$).

Easy observation: AveSens(any k-DNF) $\leq 2k$ (in fact $\leq k$ [Amano 11])

We will show: $\operatorname{AveSens}(F) \le 2\log(m+1)$

DNF formula $F = C_1 \lor \cdots \lor C_m$

Each clause C_{ℓ} is a conjunction of literals (e.g. $x_1 \wedge \neg x_3 \wedge x_4$).

Let $\widetilde{F}: \{0,1\}^n \to [m+1]$ be the "first witness function":

 $\widetilde{F}(x) := \begin{cases} \text{the index of the first satisfied clause} & \text{if } F(x) = 1, \\ m+1 & \text{if } F(x) = 0. \end{cases}$

DNF formula $F = C_1 \lor \cdots \lor C_m$

Each clause C_{ℓ} is a conjunction of literals (e.g. $x_1 \wedge \neg x_3 \wedge x_4$).

Let $\widetilde{F} : \{0,1\}^n \to [m+1]$ be the "first witness function": $\widetilde{F}(x) := \begin{cases} \text{the index of the first satisfied clause} & \text{if } F(x) = 1, \\ m+1 & \text{if } F(x) = 0. \end{cases}$

Claim. AveSens $(F) \leq 2 \cdot H(\widetilde{F}) \leq 2 \cdot \log(m+1)$ where $H(\widetilde{F})$ is the entropy of the random variable $\widetilde{F}(\boldsymbol{x})$ where $\boldsymbol{x} \in_{\text{uniform}} \{0,1\}^n$

$$AveSens(F) = \sum_{i \in [n]} \mathbb{P} \left[F(\boldsymbol{x}) \neq F(\boldsymbol{x}^{(i)}) \right]$$

$$\leq \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) \neq \tilde{F}(\boldsymbol{x}^{(i)}) \right]$$

$$= \sum_{i \in [n]} 2 \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) < \tilde{F}(\boldsymbol{x}^{(i)}) \right]$$

$$= \sum_{i \in [n]} 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \text{ and } \tilde{F}(\boldsymbol{x}^{(i)}) > \ell \right]$$

$$= 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}^{(i)}) > \ell \mid \tilde{F}(\boldsymbol{x}) = \ell \right]$$

this probability is 0 unless C_{ℓ} contains x_i or $\neg x_i$

$$AveSens(F) = \sum_{i \in [n]} \mathbb{P} \left[F(\boldsymbol{x}) \neq F(\boldsymbol{x}^{(i)}) \right]$$

$$\leq \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) \neq \tilde{F}(\boldsymbol{x}^{(i)}) \right]$$

$$= \sum_{i \in [n]} 2 \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) < \tilde{F}(\boldsymbol{x}^{(i)}) \right]$$

$$= \sum_{i \in [n]} 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \text{ and } \tilde{F}(\boldsymbol{x}^{(i)}) > \ell \right]$$

$$= 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}^{(i)}) > \ell \mid \tilde{F}(\boldsymbol{x}) = \ell \right]$$

$$\leq 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \cdot |Vars(C_{\ell})|$$

$$\begin{aligned} \operatorname{AveSens}(F) &= \sum_{i \in [n]} \mathbb{P} \left[F(\boldsymbol{x}) \neq F(\boldsymbol{x}^{(i)}) \right] \\ &\leq \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) \neq \tilde{F}(\boldsymbol{x}^{(i)}) \right] \\ &= \sum_{i \in [n]} 2 \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) < \tilde{F}(\boldsymbol{x}^{(i)}) \right] \\ &= \sum_{i \in [n]} 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \text{ and } \tilde{F}(\boldsymbol{x}^{(i)}) > \ell \right] \\ &= 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}^{(i)}) > \ell \mid \tilde{F}(\boldsymbol{x}) = \ell \right] \\ &\leq 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \cdot |\operatorname{Vars}(C_{\ell})| \\ &\leq 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \cdot \log \left(\frac{1}{\mathbb{P}[\tilde{F}(\boldsymbol{x}) = \ell]} \right) \\ &\quad (\operatorname{since} \mathbb{P}[\tilde{F}(\boldsymbol{x}) = \ell] \leq \mathbb{P}[C_{\ell}(\boldsymbol{x}) = 1] = 2^{-|\operatorname{Vars}(C_{\ell})| \end{aligned}$$
$$\begin{aligned} \operatorname{AveSens}(F) &= \sum_{i \in [n]} \mathbb{P} \left[F(\boldsymbol{x}) \neq F(\boldsymbol{x}^{(i)}) \right] \\ &\leq \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) \neq \tilde{F}(\boldsymbol{x}^{(i)}) \right] \\ &= \sum_{i \in [n]} 2 \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) < \tilde{F}(\boldsymbol{x}^{(i)}) \right] \\ &= \sum_{i \in [n]} 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \text{ and } \tilde{F}(\boldsymbol{x}^{(i)}) > \ell \right] \\ &= 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \sum_{i \in [n]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}^{(i)}) > \ell \mid \tilde{F}(\boldsymbol{x}) = \ell \right] \\ &\leq 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \cdot |\operatorname{Vars}(C_{\ell})| \\ &\leq 2 \sum_{\ell \in [m]} \mathbb{P} \left[\tilde{F}(\boldsymbol{x}) = \ell \right] \cdot \log \left(\frac{1}{\mathbb{P}[\tilde{F}(\boldsymbol{x}) = \ell]} \right) \\ &\leq 2 \cdot \mathbb{H}(\tilde{F}) \end{aligned}$$

Switching Lemma. $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(p \log m)^t$

Switching Lemma. $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(p \log m)^t$

Proof based on analysis of the *canonical decision tree* for $F \upharpoonright \mathbf{R}_p$. We actually show

 $\mathbb{P}[\text{ CanonicalDT}(F \upharpoonright \mathbf{R}_p) \text{ has depth } t] = O(p \log m)^t.$

Switching Lemma. $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(p \log m)^t$

HIGH-LEVEL SKETCH

- $\operatorname{Bad}_t := \{\operatorname{restrictions} \varrho \text{ such that } \operatorname{CanonicalDT}(F \restriction \varrho) \text{ has depth } t\}$
- Suffices to show $\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = O(p \log m)^t$
- For each $\varrho \in \text{Bad}_t$, we define an extended restriction ϱ^* fixing t additional variables.

•
$$\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = \sum_{\varrho \in \text{Bad}_t} \mathbb{P}[\mathbf{R}_p = \varrho]$$

 $= \sum_{\varrho \in \text{Bad}_t} \left(\frac{2p}{1-p}\right)^t \mathbb{P}[\mathbf{R}_p = \varrho^*]$
 $= \sum_{\sigma} \left(\frac{2p}{1-p}\right)^t \mathbb{P}[\mathbf{R}_p = \sigma] \cdot |\{\varrho \in \text{Bad}_t : \varrho^* = \sigma\}|$
 $= \left(\frac{2p}{1-p}\right)^t \mathbb{E} |\{\varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p\}|$

Switching Lemma. $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(p \log m)^t$

HIGH-LEVEL SKETCH

- $\operatorname{Bad}_t := \{\operatorname{restrictions} \varrho \text{ such that } \operatorname{CanonicalDT}(F \restriction \varrho) \text{ has depth } t\}$
- Suffices to show $\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = O(p \log m)^t$
- For each $\varrho \in \text{Bad}_t$, we define an extended restriction ϱ^* fixing t additional variables.
- $\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = O(p)^t \cdot \mathbb{E} |\{\varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p\}|$

Switching Lemma. $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(p \log m)^t$

HIGH-LEVEL SKETCH

- $\operatorname{Bad}_t := \{\operatorname{restrictions} \varrho \text{ such that } \operatorname{CanonicalDT}(F \restriction \varrho) \text{ has depth } t\}$
- Suffices to show $\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = O(p \log m)^t$
- For each $\varrho \in \text{Bad}_t$, we define an extended restriction ϱ^* fixing t additional variables.
- $\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = O(p)^t \cdot \mathbb{E} |\{\varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p\}|$
- Finally, we show

$$\mathbb{E} |\{ \varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p \}| = O(\log m)^t.$$

(Argument is similar to AveSens $(F) \leq 2 \cdot \mathsf{H}(\widetilde{F})$, but rather than entropy we use Jensen's inequality for the concave function $x \mapsto (\frac{1}{t} \ln(x) + 1)^t$.)

Switching Lemma. $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(p \log m)^t$

HIGH-LEVEL SKETCH

- $\operatorname{Bad}_t := \{\operatorname{restrictions} \varrho \text{ such that } \operatorname{CanonicalDT}(F \restriction \varrho) \text{ has depth } t\}$
- Suffices to show $\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = O(p \log m)^t$
- For each $\varrho \in \text{Bad}_t$, we define an extended restriction ϱ^* fixing t additional variables.
- $\mathbb{P}[\mathbf{R}_p \in \text{Bad}_t] = O(p)^t \cdot \mathbb{E} |\{\varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p\}|$
- If F has width k, we get Håstad's Switching Lemma: The map $\rho \mapsto \rho^*$ is $O(k)^t$ -to-1 over Bad_t . Therefore, $\mathbb{E} | \{ \rho \in \operatorname{Bad}_t : \rho^* = \mathbf{R}_p \} | = O(k)^t$. Therefore, $\mathbb{P}[|\mathbf{R}_p \in \operatorname{Bad}_t|] = O(pk)^t$.

DNF formula $F = C_1 \lor \cdots \lor C_m, \quad V_{\ell} := \operatorname{Vars}(C_{\ell})$

DNF formula $F = C_1 \lor \cdots \lor C_m$, $V_{\ell} := \operatorname{Vars}(C_{\ell})$

Canonical decision tree Canonical DT($F \upharpoonright \varrho$):

- If any clause is satisfied (forced to 1) by ϱ , output 1.
- If all clauses are falsified (forced to 0) by ϱ , output 0.
- <u>Otherwise</u>:

Let $\ell \in [m]$ be the index of the first "relevant" clause C_{ℓ} not forced by ϱ . Let $s \geq 1$ be the number of surviving variables of $C_{\ell} \upharpoonright \varrho$. Let $Q \in \binom{V_{\ell}}{s}$ be the set of surviving variables of $C_{\ell} \upharpoonright \varrho$. Query the variables of Q in order, receiving answers $A \in \{0, 1\}^s$. Proceed as CanonicalDT $(F \upharpoonright \varrho \cup \{Q \leftarrow A\})$. (Obs: C_{ℓ} is forced to 0 or 1 by $\varrho \cup \{Q \leftarrow A\}$, so this process eventually terminates.) DNF formula $F = C_1 \vee \cdots \vee C_m$, $V_{\ell} := \operatorname{Vars}(C_{\ell})$

Branch data. Each branch of CanonicalDT($F \upharpoonright \varrho$) of length t (with t total queries) is characterized by:

- $r \in \{1, \ldots, t\}$
- $\ell_i \in [m]$ $(1 \le \ell_1 < \cdots < \ell_r \le m)$ location of i^{th} relevant clause
- $s_i \ge 1$ $(s_1 + \dots + s_r = t)$
- $Q_i \in \binom{V_{\ell_i} \setminus (V_{\ell_1} \cup \dots \cup V_{\ell_{i-1}})}{s_i}$ $A_i \in \{0, 1\}^{s_i}$

of relevant clauses # of queried variables from C_{ℓ_i} set of queried variables from C_{ℓ_i} answers to queries Q_i

DNF formula $F = C_1 \lor \cdots \lor C_m, \quad V_{\ell} := \operatorname{Vars}(C_{\ell})$

Branch data. Each branch of CanonicalDT($F \upharpoonright \varrho$) of length t (with t total queries) is characterized by:

- $r \in \{1, \ldots, t\}$
- $\ell_i \in [m]$ $(1 \le \ell_1 < \dots < \ell_r \le m)$ location of i^{th} relevant clause
- $s_i \ge 1$ $(s_1 + \dots + s_r = t)$
- $Q_i \in \binom{V_{\ell_i} \setminus (V_{\ell_1} \cup \dots \cup V_{\ell_{i-1}})}{s_i}$
- $\bullet \ A_i \in \{0,1\}^{s_i}$

of relevant clauses location of i^{th} relevant clause # of queried variables from C_{ℓ_i} set of queried variables from C_{ℓ_i} answers to queries Q_i

(i.e., surviving variables of $C_{\ell_i} \upharpoonright_{Q_1 \leftarrow A_1, \dots, Q_{i-1} \leftarrow A_{i-1}}$)

DNF formula $F = C_1 \lor \cdots \lor C_m, \quad V_\ell := \operatorname{Vars}(C_\ell)$

Branch data. Each branch of CanonicalDT($F \upharpoonright \varrho$) of length t (with t total queries) is characterized by:

- $r \in \{1, \ldots, t\}$
- $\ell_i \in [m]$ $(1 \le \ell_1 < \dots < \ell_r \le m)$ location of i^{th} relevant clause
- $s_i \ge 1$ $(s_1 + \dots + s_r = t)$
- $Q_i \in \binom{V_{\ell_i} \setminus (V_{\ell_1} \cup \dots \cup V_{\ell_{i-1}})}{s_i}$

 $\bullet \ A_i \in \{0,1\}^{s_i}$

of relevant clauses location of i^{th} relevant clause # of queried variables from C_{ℓ_i} set of queried variables from C_{ℓ_i} answers to queries Q_i

The map $\varrho \mapsto \varrho^*$. Let $(\vec{\ell}, \vec{s}, \vec{Q}, \vec{A})$ be the data associated with the longest branch of CanonicalDT $(F \restriction \varrho)$. Then

 $\varrho^* \coloneqq \varrho \cup \{Q_1 \leftarrow A_1^*, \dots, Q_r \leftarrow A_r^*\}$

where A_i^* are the unique answers to queries Q_i consistent with clause C_{ℓ_i} .

$$\varrho \mapsto \varrho^*$$

 $F = x_1 x_2 \neg x_3 \lor \neg x_1 x_3 x_5 \lor x_2 \neg x_4 x_5 \lor x_3 x_4 \neg x_6 \lor x_1 \neg x_4 \neg x_7$

 $\boldsymbol{\varrho} = \{ \mathbf{x}_1 \mapsto \mathbf{1}, \mathbf{x}_4 \mapsto \mathbf{0} \}$ $\boldsymbol{\varrho}^* = \{ \mathbf{x}_1 \mapsto \mathbf{1}, \mathbf{x}_4 \mapsto \mathbf{0}, \dots \}$

$$\boldsymbol{\varrho}\mapsto \boldsymbol{\varrho}^*$$

 $1 \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad 1 \qquad 0 \qquad 1 \qquad 1$ $F = x_1 x_2 \neg x_3 \lor \neg x_1 x_3 x_5 \lor x_2 \neg x_4 x_5 \lor x_3 x_4 \neg x_6 \lor x_1 \neg x_4 \neg x_7$

 $\boldsymbol{\varrho} = \{ x_1 \mapsto 1, x_4 \mapsto 0 \}$ $\boldsymbol{\varrho}^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, \dots \}$

$$\boldsymbol{\varrho} \mapsto \boldsymbol{\varrho}^*$$

$$F = \begin{array}{c} 1 \\ x_1 \\ x_2 \\ \neg x_3 \\ \lor \end{array} \begin{array}{c} 0 \\ \neg \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \begin{array}{c} 0 \\ & \downarrow \end{array} \begin{array}{c} 1 \\ & \downarrow \end{array} \end{array}$$

 $\boldsymbol{\varrho} = \{ \mathbf{x}_1 \mapsto \mathbf{1}, \mathbf{x}_4 \mapsto \mathbf{0} \}$ $\boldsymbol{\varrho}^* = \{ \mathbf{x}_1 \mapsto \mathbf{1}, \mathbf{x}_4 \mapsto \mathbf{0}, \dots \}$

$$\boldsymbol{\varrho} \mapsto \boldsymbol{\varrho}^*$$

$$F = (\begin{array}{c} 1 & -1 & 0 & 1 & 1 \\ x_1 & x_2 & -x_3 & 1 & 0 & 1 & 1 \\ y & y_2 & y_3 & y & -y_5 & y & x_1 & -x_4 & -x_7 \end{array}$$

 $\boldsymbol{\varrho} = \{ x_1 \mapsto 1, x_4 \mapsto 0 \}$ $\boldsymbol{\varrho}^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, \dots \}$

 $\ell_1 = 1$ s₁ = 2

 $Q_1 = \{ x_2, x_3 \}$

$$\boldsymbol{\varrho} \mapsto \boldsymbol{\varrho}^*$$

$$F = (\begin{array}{c} 1 & -1 & 0 & 1 & 1 \\ x_1 & x_2 & -x_3 & 0 & 0 & 1 & 1 \\ y & y_2 & y_3 & y & -y_5 & y & x_2 & -x_4 & x_5 & y & y_5 & y & x_1 & -x_7 \end{array}$$

 $\boldsymbol{\varrho} = \{ x_1 \mapsto 1, x_4 \mapsto 0 \}$ $\boldsymbol{\varrho}^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, \dots \}$

 $\ell_1 = 1$

s₁ = 2

Q₁ = { x₂, x₃ } A₁ = { x₂ \mapsto 1, x₃ \mapsto 1 }

 $\varrho \mapsto \varrho^*$ $F = X_{1} X_{2} \neg X_{3} \vee - (Y_{3} \vee X_{2} \neg X_{4} \vee X_{5} \vee X_{3} \vee Y_{3} \vee X_{1} \neg X_{4} \neg X_{7} \vee X_{1} \neg X_{4} \neg X_{7} \vee X_{1} \neg X_{4} \neg X_{7} \vee X_{1} \neg X_{1} \neg$

- $\boldsymbol{\varrho} = \{ x_1 \mapsto 1, x_4 \mapsto 0 \}$ $\boldsymbol{\varrho}^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 0, \dots \}$
- $\ell_1 = 1$
- s₁ = 2
- $Q_1 = \{ x_2, x_3 \}$
- $\mathsf{A}_1 = \{ \mathsf{x}_2 \mapsto \mathsf{1}, \mathsf{x}_3 \mapsto \mathsf{1} \}$

$$\boldsymbol{\varrho} \mapsto \boldsymbol{\varrho}^*$$

$$F = \underbrace{\begin{smallmatrix} 1 & 1 & 0 \\ 3 & \lor \end{smallmatrix}}_{3} \bigvee \underbrace{\begin{smallmatrix} 0 & 1 & -1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ &$$

- $\boldsymbol{\varrho} = \{ \mathbf{x_1} \mapsto \mathbf{1}, \mathbf{x_4} \mapsto \mathbf{0} \}$
- $\boldsymbol{\varrho}^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 0, \dots \}$
- $\ell_1 = 1$
- s₁ = 2
- $Q_1 = \{ x_2, x_3 \}$
- $\mathsf{A}_1 = \{ \mathsf{x}_2 \mapsto \mathsf{1}, \mathsf{x}_3 \mapsto \mathsf{1} \}$

$$\boldsymbol{\varrho} \mapsto \boldsymbol{\varrho}^*$$

$$F = \underbrace{\begin{smallmatrix} 1 & 1 & 0 & 0 & 1 & -1 \\ 3 & \checkmark & 0 & 1 & -1 \\ 3 & \checkmark & (x_2 - x_4 + x_5) & \checkmark & (x_3 - x_4 - x_7) \\ 5 & \checkmark & (x_2 - x_4 + x_5) & \checkmark & (x_3 - x_7) \\ 5 & \checkmark & (x_3 - x_4 + x_5) & \checkmark & (x_3 - x_7) \\ 6 & (x_3 - x_4 + x_5) & (x_3 - x_7) & (x_3 - x_7) \\ 6 & (x_3 - x_4 + x_5) & (x_3 - x_7) & (x_3 - x_7) \\ 7 & (x_3 - x_4 + x_5) & (x_3 - x_7) & (x_3 - x_7) \\ 7 & (x_3 - x_7) & (x_3 - x_7) & (x_3 - x_7) \\ 7 & (x_3 - x_7) & (x_3 - x_7) & (x_3 - x_7) & (x_3 - x_7) \\ 7 & (x_3 - x_7) \\ 7 & (x_3 - x_7) & (x_7 -$$

 $\boldsymbol{\varrho} = \{ x_1 \mapsto 1, x_4 \mapsto 0 \}$ $\boldsymbol{\varrho}^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 0, \dots \}$

 $\begin{array}{l} \ell_1 = 1 & \ell_2 = 3 \\ s_1 = 2 & s_2 = 1 \\ Q_1 = \{ x_2, x_3 \} & Q_2 = \{ x_5 \} \\ A_1 = \{ x_2 \mapsto 1, x_3 \mapsto 1 \} \end{array}$

 $\boldsymbol{\varrho} = \{ x_1 \mapsto 1, x_4 \mapsto 0 \}$ $\boldsymbol{\varrho}^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 0, \dots \}$

 $\begin{array}{ll} \ell_1 = 1 & \ell_2 = 3 \\ s_1 = 2 & s_2 = 1 \\ Q_1 = \{ x_2, x_3 \} & Q_2 = \{ x_5 \} \\ A_1 = \{ x_2 \mapsto 1, x_3 \mapsto 1 \} & A_2 = \{ x_5 \mapsto 0 \} \end{array}$

 $\varrho \mapsto \varrho^*$ $F = \frac{1}{3} + \frac{1}{3} +$

 $\boldsymbol{\varrho} = \{ \mathbf{x_1} \mapsto \mathbf{1}, \mathbf{x_4} \mapsto \mathbf{0} \}$ $\boldsymbol{\varrho}^* = \{ \mathbf{x_1} \mapsto \mathbf{1}, \mathbf{x_4} \mapsto \mathbf{0}, \mathbf{x_2} \mapsto \mathbf{1}, \mathbf{x_3} \mapsto \mathbf{0}, \mathbf{x_5} \mapsto \mathbf{1}, \dots \}$

 $\ell_{1} = 1 \qquad \qquad \ell_{2} = 3 \\ s_{1} = 2 \qquad \qquad s_{2} = 1 \\ Q_{1} = \{x_{2}, x_{3}\} \qquad \qquad Q_{2} = \{x_{5}\} \\ A_{1} = \{x_{2} \mapsto 1, x_{3} \mapsto 1\} \qquad \qquad A_{2} = \{x_{5} \mapsto 0\} \\ A_{2}^{*} = \{x_{5} \mapsto 1\}$

$$C_1, \dots, C_{\ell_1 - 1} \restriction \varrho^* \equiv 0$$
$$C_{\ell_1} \restriction \varrho^* \equiv 1$$

$$C_{1}, \dots, C_{\ell_{1}-1} \restriction \varrho^{*} \equiv 0$$

$$C_{\ell_{1}} \restriction \varrho^{*} \equiv 1$$

$$C_{\ell_{1}+1}, \dots, C_{\ell_{2}-1} \restriction \varrho^{*(Q_{1} \leftarrow A_{1})} \equiv 0$$

$$C_{\ell_{2}} \restriction \varrho^{*(Q_{1} \leftarrow A_{1})} \equiv 1$$

$$C_{1}, \dots, C_{\ell_{1}-1} \upharpoonright \varrho^{*} \equiv 0$$

$$C_{\ell_{1}} \upharpoonright \varrho^{*} \equiv 1$$

$$C_{\ell_{1}+1}, \dots, C_{\ell_{2}-1} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1})} \equiv 0$$

$$C_{\ell_{2}} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1})} \equiv 1$$

$$\vdots$$

$$C_{\ell_{r}-1} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1}, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 0$$

$$C_{\ell_{r}} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1}, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1$$

Key observation. Given knowledge of ρ^* and $(\vec{s}, \vec{Q}, \vec{A})$, we can recover ρ (as well as relevant clause indices $\vec{\ell}$) as follows:

$$C_{1}, \dots, C_{\ell_{1}-1} \upharpoonright \varrho^{*} \equiv 0$$

$$C_{\ell_{1}} \upharpoonright \varrho^{*} \equiv 1$$

$$C_{\ell_{1}+1}, \dots, C_{\ell_{2}-1} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1})} \equiv 0$$

$$C_{\ell_{2}} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1})} \equiv 1$$

$$\vdots$$

$$C_{\ell_{r-1}+1}, \dots, C_{\ell_{r-1}} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1}, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 0$$

$$C_{\ell_{r}} \upharpoonright \varrho^{*(Q_{1} \leftarrow A_{1}, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1$$

Therefore, the map $\rho \mapsto (\rho^*, \vec{s}, \vec{Q}, \vec{A})$ is 1-to-1.

Håstad's Switching Lemma. Assume F has width k.

Håstad's Switching Lemma. Assume F has width k.

- Instead of Q_i (the **set** of queried variables from C_{ℓ_i}), it suffices to know $Q'_i \in {[k] \choose s_i}$ (the **location** of queried variables within C_{ℓ_i}). Therefore, $\varrho \mapsto (\varrho^*, \vec{s}, \vec{Q'}, \vec{A})$ is 1-to-1.
- There are only $O(k)^t$ possibilities for data $(\vec{s}, \vec{Q'}, \vec{A})$ when $\varrho \in \text{Bad}_t$. Therefore, $\varrho \mapsto \varrho^*$ is $O(k)^t$ -to-1 over Bad_t .

Therefore, $\mathbb{E} |\{ \varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p \}| = O(k)^t$.

• As noted before, this implies

 $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(pk)^t$

Håstad's Switching Lemma. Assume F has width k.

We will show

$$\mathbb{E}\left|\left\{\varrho \in \operatorname{Bad}_t : \varrho^* = \mathbf{R}_p\right\}\right| = O(\log m)^t$$

$$\mathbb{E}_{\boldsymbol{\sigma}\sim\boldsymbol{R}_{p}} |\{\varrho \in \operatorname{Bad}_{t} : \varrho^{*} = \boldsymbol{\sigma}\}|$$

$$\leq \sum_{(\vec{\ell},\vec{s},\vec{Q},\vec{A})} \mathbb{P} \begin{bmatrix} C_{1},\ldots,C_{\ell_{1}-1} \upharpoonright \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_{1}} \upharpoonright \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_{1}+1},\ldots,C_{\ell_{2}-1} \upharpoonright \boldsymbol{\sigma}^{(Q_{1}\leftarrow A_{1})} \equiv 0 \\ C_{\ell_{2}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1}\leftarrow A_{1})} \equiv 1 \\ \vdots \\ C_{\ell_{r}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1}\leftarrow A_{1},\ldots,Q_{r-1}\leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$

$$\mathbb{E}_{\boldsymbol{\sigma} \sim \boldsymbol{R}_{p}} \left| \left\{ \varrho \in \operatorname{Bad}_{t} : \varrho^{*} = \boldsymbol{\sigma} \right\} \right|$$

$$\leq \sum_{(\vec{\ell}, \vec{s}, \vec{Q}, \vec{A})} \mathbb{P} \left[\begin{array}{c} C_{1}, \dots, C_{\ell_{1}-1} \upharpoonright \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_{1}} \upharpoonright \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_{1}+1}, \dots, C_{\ell_{2}-1} \upharpoonright \boldsymbol{\sigma}^{(Q_{1} \leftarrow A_{1})} \equiv 0 \\ C_{\ell_{2}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1} \leftarrow A_{1})} \equiv 1 \\ \vdots \\ C_{\ell_{r}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1} \leftarrow A_{1}, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{array} \right]$$

$$= \sum_{\substack{s_{1}+\dots+s_{r}=t \\ \vec{A} \in \{0,1\}^{t}}} \sum_{(\vec{\ell}, \vec{Q})} \mathbb{P}["]$$

$$\begin{split} \mathbb{E}_{\boldsymbol{\sigma} \sim \boldsymbol{R}_{p}} \left| \{ \varrho \in \text{Bad}_{t} : \varrho^{*} = \boldsymbol{\sigma} \} \right| \\ \leq \sum_{(\vec{\ell}, \vec{s}, \vec{Q}, \vec{A})} \mathbb{P} \begin{bmatrix} C_{1}, \dots, C_{\ell_{1}-1} \upharpoonright \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_{1}} \upharpoonright \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_{1}} \upharpoonright \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_{1}+1}, \dots, C_{\ell_{2}-1} \upharpoonright \boldsymbol{\sigma}^{(Q_{1}\leftarrow A_{1})} \equiv 0 \\ C_{\ell_{2}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1}\leftarrow A_{1})} \equiv 1 \\ \vdots \\ C_{\ell_{r}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1}\leftarrow A_{1}, \dots, Q_{r-1}\leftarrow A_{r-1})} \equiv 1 \end{bmatrix} \\ = \sum_{\substack{s_{1}+\dots+s_{r}=t \\ \vec{A} \in \{0,1\}^{t}}} \sum_{(\vec{\ell}, \vec{Q})} \mathbb{P}["] \quad (\text{we can ignore factors of } O(1)^{t} \\ \vec{A} \in \{0,1\}^{t} \end{bmatrix} \end{split}$$
Claim. $\mathbb{E} | \{ \varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p \} | = O(\log m)^t$

Fix any partition $s_1 + \cdots + s_r = t$ and answer sequence $\vec{A} \in \{0, 1\}^t$. It suffices to show

$$\sum_{(\vec{\ell},\vec{Q})} \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix} = O(\log m)^t.$$

Claim. $\mathbb{E} |\{ \varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p \}| = O(\log m)^t$

Fix any partition $s_1 + \cdots + s_r = t$ and answer sequence $\vec{A} \in \{0, 1\}^t$. It suffices to show

$$\sum_{(\vec{\ell},\vec{Q})} \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix} = O(\log m)^t.$$

Obs. Given ℓ_1, \ldots, ℓ_r , the number of choices for Q_1, \ldots, Q_r is $\binom{|V_{\ell_1}|}{s_1} \binom{|V_{\ell_2} \setminus V_{\ell_1}|}{s_2} \cdots \binom{|V_{\ell_r} \setminus (V_{\ell_1} \cup \cdots \cup V_{\ell_{r-1}})|}{s_r} \\ \leq \binom{|V_{\ell_1} \cup \cdots \cup V_{\ell_r}|}{t} \leq \binom{e|V_{\ell_1} \cup \cdots \cup V_{\ell_r}|}{t}^t$ We have

$$\sum_{\vec{\ell},\vec{Q}} \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$

$$\leq \sum_{\vec{\ell}} \max_{\vec{Q}} \left(\frac{e |V_{\ell_1} \cup \dots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$

We have

$$\begin{split} &\sum_{(\vec{\ell},\vec{Q})} \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix} \\ &\leq \max_{\vec{Q}} \sum_{\vec{\ell}} \left(\frac{e|V_{\ell_1} \cup \dots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix} \end{split}$$

letting Q_i range over **functions** $Q_i(\ell_1, \ldots, \ell_i) \in \binom{V_{\ell_i} \setminus (V_{\ell_1} \cup \cdots \cup V_{\ell_{i-1}})}{s_i}$.

$$\sum_{\vec{\ell}} \left(\frac{e|V_{\ell_1} \cup \dots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} \upharpoonright \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} \upharpoonright \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} \upharpoonright \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} \upharpoonright \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} \upharpoonright \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$

$$\sum_{\vec{\ell}} \left(\frac{e|V_{\ell_1} \cup \dots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P}$$

$$C_{1}, \dots, C_{\ell_{1}-1} \upharpoonright \boldsymbol{\sigma} \equiv 0$$

$$C_{\ell_{1}} \upharpoonright \boldsymbol{\sigma} \equiv 1$$

$$C_{\ell_{1}+1}, \dots, C_{\ell_{2}-1} \upharpoonright \boldsymbol{\sigma}^{(Q_{1} \leftarrow A_{1})} \equiv 0$$

$$C_{\ell_{2}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1} \leftarrow A_{1})} \equiv 1$$

$$\vdots$$

$$C_{\ell_{r}} \upharpoonright \boldsymbol{\sigma}^{(Q_{1} \leftarrow A_{1}, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1$$

These events are **mutually exclusive** over choices of $1 \leq \ell_1 < \cdots < \ell_r \leq m$.

Therefore,
$$\sum_{\vec{\ell}} \mathbb{P}["] \leq 1.$$

$$\sum_{\vec{\ell}} \left(\frac{e|V_{\ell_1} \cup \cdots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$
$$= \left(\frac{e}{\ln 2} \right)^t \sum_{\vec{\ell}} \left(\frac{\ln(2^{|V_{\ell_1} \cup \cdots \cup V_{\ell_r}|})}{t} \right)^t \mathbb{P}[""]$$

$$\sum_{\vec{\ell}} \left(\frac{e|V_{\ell_1} \cup \dots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$
$$= \left(\frac{e}{\ln 2} \right)^t \sum_{\vec{\ell}} \underbrace{\left(\frac{\ln(2^{|V_{\ell_1} \cup \dots \cup V_{\ell_r}|})}{t} \right)^t}_{\mathbf{k}} \mathbb{P}["]$$
 is a **concave** function (really: $x \mapsto \left(\frac{\ln(x)}{t} + 1 \right)^t$, but let's ignore this + 1)

$$\sum_{\vec{\ell}} \left(\frac{e|V_{\ell_1} \cup \dots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$
$$= \left(\frac{e}{\ln 2} \right)^t \sum_{\vec{\ell}} \left(\frac{\ln(2^{|V_{\ell_1} \cup \dots \cup V_{\ell_r}|})}{t} \right)^t \mathbb{P}[""]$$
$$\leq \left(\frac{e}{\ln 2} \right)^t \left(\frac{1}{t} \ln \left(\sum_{\vec{\ell}} 2^{|V_{\ell_1} \cup \dots \cup V_{\ell_r}|} \mathbb{P}[""] \right) \right)^t$$
(Jensen's Inequality)

$$\sum_{\vec{\ell}} \left(\frac{e|V_{\ell_1} \cup \dots \cup V_{\ell_r}|}{t} \right)^t \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} \upharpoonright \sigma \equiv 0 \\ C_{\ell_1} \upharpoonright \sigma \equiv 1 \\ C_{\ell_1} \upharpoonright \sigma \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} \upharpoonright \sigma^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} \upharpoonright \sigma^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} \upharpoonright \sigma^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$
$$= \left(\frac{e}{\ln 2} \right)^t \sum_{\vec{\ell}} \left(\frac{\ln(2^{|V_{\ell_1} \cup \dots \cup V_{\ell_r}|})}{t} \right)^t \mathbb{P}["]$$
$$\leq \left(\frac{e}{\ln 2} \right)^t \left(\frac{1}{t} \ln \left(\sum_{\vec{\ell}} 2^{|V_{\ell_1} \cup \dots \cup V_{\ell_r}|} \underbrace{\mathbb{P}["]}_{\leq 2^{-|V_{\ell_1} \cup \dots \cup V_{\ell_r}|} } \right) \right)^t$$

$$\mathbb{P}["] = \mathbb{P} \begin{bmatrix} C_1, \dots, C_{\ell_1-1} | \boldsymbol{\sigma} \equiv 0 \\ C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_1+1}, \dots, C_{\ell_2-1} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 0 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$

$$\leq \mathbb{P} \begin{bmatrix} C_{\ell_1} | \boldsymbol{\sigma} \equiv 1 \\ C_{\ell_2} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1)} \equiv 1 \\ \vdots \\ C_{\ell_r} | \boldsymbol{\sigma}^{(Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1})} \equiv 1 \end{bmatrix}$$

$$= \mathbb{P} \begin{bmatrix} C_{\ell_1} \wedge C_{\ell_2} | Q_1 \leftarrow A_1 \wedge \dots \wedge C_{\ell_r} | Q_1 \leftarrow A_1, \dots, Q_{r-1} \leftarrow A_{r-1} \\ is \text{ satisfied (forced to 1) by } \boldsymbol{\sigma} \end{bmatrix}$$

Finally, we bound:

$$\left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln \left(\sum_{\vec{\ell}} 2^{|V_{\ell_{1}} \cup \dots \cup V_{\ell_{r}}|} \mathbb{P}["]\right)\right)^{t}$$

$$\leq \left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln \left(\sum_{\vec{\ell}} 1\right)\right)^{t} \quad (\text{recall: } 1 \leq \ell_{1} < \dots < \ell_{r} \leq m)$$

$$\leq \left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln \binom{m}{r}\right)^{t} \quad (\text{recall: } r \leq t)$$

$$\leq \left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln(m^{t})\right)^{t}$$

$$= (e \log m)^{t}$$

Finally, we bound:

$$\left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln \left(\sum_{\vec{\ell}} 2^{|V_{\ell_{1}} \cup \dots \cup V_{\ell_{r}}|} \mathbb{P}["]\right)\right)^{t}$$

$$\leq \left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln \left(\sum_{\vec{\ell}} 1\right)\right)^{t} \quad (\text{recall: } 1 \leq \ell_{1} < \dots < \ell_{r} \leq m)$$

$$\leq \left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln \binom{m}{r}\right)^{t} \quad (\text{recall: } r \leq t)$$

$$\leq \left(\frac{e}{\ln 2}\right)^{t} \left(\frac{1}{t} \ln(m^{t})\right)^{t}$$

$$= (e \log m)^{t}$$

Therefore, $\mathbb{E} |\{ \varrho \in \text{Bad}_t : \varrho^* = \mathbf{R}_p \}| \le (4e \log m)^t$.

Therefore, $\mathbb{P}[\mathsf{DT}_{\mathsf{depth}}(F \upharpoonright \mathbf{R}_p) \ge t] = O(p \log m)^t$. Q.E.D.

Recent Developments via "Multi-Switching Lemmas"

• <u>Optimal correlation bounds</u> [Hastad '14] AC⁰ circuits of depth d+1 and size S have correlation $\frac{1}{2} + 2^{-\epsilon n}$ with PARITY_n where $\epsilon = 1 / O(\log S)^d$

• Optimal correlation bounds [Hastad '14]

AC⁰ circuits of depth d+1 and size S have correlation $\frac{1}{2} + 2^{-\epsilon n}$ with PARITY_n where $\epsilon = 1 / O(\log S)^d$

via a "multi-switching lemma" that analyzes multiple DNFs at once

- <u>Optimal correlation bounds</u> [Hastad '14] AC⁰ circuits of depth d+1 and size S have correlation $\frac{1}{2} + 2^{-\epsilon n}$ with PARITY_n where $\epsilon = 1 / O(\log S)^d$
- <u>#SAT algorithm</u> [Impagliazzo-Matthews-Paturi '12]
 Counting the satisfying assignments to AC⁰ circuits of depth d+1 and size S in randomized time 2^{(1-ε)n}

- <u>Optimal correlation bounds</u> [Hastad '14] AC⁰ circuits of depth d+1 and size S have correlation $\frac{1}{2} + 2^{-\epsilon n}$ with PARITY_n where $\epsilon = 1 / O(\log S)^d$
- <u>#SAT algorithm</u> [Impagliazzo-Matthews-Paturi '12]
 Counting the satisfying assignments to AC⁰ circuits of depth d+1 and size S in randomized time 2^{(1-ε)n}

via a similar "multi-switching lemma" (independently discovered)

- <u>Optimal correlation bounds</u> [Hastad '14] AC⁰ circuits of depth d+1 and size S have correlation $\frac{1}{2} + 2^{-\epsilon n}$ with PARITY_n where $\epsilon = 1 / O(\log S)^d$
- <u>#SAT algorithm</u> [Impagliazzo-Matthews-Paturi '12]
 Counting the satisfying assignments to AC⁰ circuits of depth d+1 and size S in randomized time 2^{(1-ε)n}
- <u>Optimal Linial-Mansour-Nisan Theorem</u> [Tal '14] Tight bounds on the Fourier spectrum of AC⁰ circuits

These results all follow from a bound on the *criticality* of AC⁰ circuits.

- <u>Optimal correlation bounds</u> [Hastad '14] AC⁰ circuits of depth d+1 and size S have correlation $\frac{1}{2} + 2^{-\epsilon n}$ with PARITY_n where $\epsilon = 1 / O(\log S)^d$
- <u>#SAT algorithm</u> [Impagliazzo-Matthews-Paturi '12]
 Counting the satisfying assignments to AC⁰ circuits of depth d+1 and size S in randomized time 2^{(1-ε)n}
- <u>Optimal Linial-Mansour-Nisan Theorem</u> [Tal '14] Tight bounds on the Fourier spectrum of AC⁰ circuits

Criticality

Definition

A Boolean function f is λ -critical (where $\lambda \ge 1$) if $\Pr[DT_{depth}(f \upharpoonright R_p) \ge t] \le (p\lambda)^t \text{ for all } p \text{ and } t.$

The **criticality** of **f** is the minimum real $\lambda \ge 1$ such that **f** is **k**-critical.

Criticality

Definition

A Boolean function f is λ -critical (where $\lambda \ge 1$) if $\Pr[DT_{depth}(f \upharpoonright R_p) \ge t] \le (p\lambda)^t \text{ for all } p \text{ and } t.$

For example:

- Every n-var. function $f : \{0,1\}^n \rightarrow \{0,1\}$ is n-critical
- Every depth-k decision tree is k-critical
- Every width-k DNF is O(k)-critical
- Every m-clause DNF is O(log m)-critical

Criticality

Definition

A Boolean function f is λ -critical (where $\lambda \ge 1$) if $\Pr[DT_{depth}(f \upharpoonright R_p) \ge t] \le (p\lambda)^t \text{ for all } p \text{ and } t.$

Proposition

Query all variables from a random set of size (1 - p)n where $p = 1 / 2.01\lambda$

Proposition

Query all variables from a random set of size (1 - p)n where $p = 1 / 2.01 \lambda$

a uniform random branch is a p-random restriction

Proposition

Query all variables from a random set of size (1 - p)n where $p = 1 / 2.01 \lambda$

Proposition

Query all variables from a random set of size (1 - p)n where $p = 1 / 2.01\lambda$

w.h.p. we get a decision tree for f of size $O(2^{(1-p)n})$

Proposition

Definition

A Boolean function **f** is λ -degree-critical if

 $Pr[deg(f ↾ R_p) ≥ t] ≤ (pλ)^t$ for all p and t.

Definition

A Boolean function **f** is λ -degree-critical if

 $Pr[deg(f ∧ R_p) ≥ t] ≤ (pλ)^t$ for all p and t.

<u>Obs</u> λ -critical $\Rightarrow \lambda$ -degree-critical (since deg(.) $\leq DT_{depth}(.)$)

Definition

A Boolean function f is λ -degree-critical if $Pr[deg(f \upharpoonright \mathbf{R}_p) \ge t] \le (p\lambda)^t \text{ for all } p \text{ and } t.$

Theorem [Tal 14]

- Circuits of depth d+1 and size S have degreecriticality O(log S)^d.
- If f is any λ -degree-critical function, then for every k,

 $\sum_{|I|\geq k}\widehat{f}(I)^2\leq O(e^{-k/\lambda}) \text{ and } \sum_{|I|=k}|\widehat{f}(I)|\leq O(\lambda)^k$

Criticality of AC⁰ Circuits

Observation

AC⁰ circuits of depth d+1 and size S have criticality at most $\lambda = O(\log S)^d$

Criticality of AC⁰ Circuits

Observation

AC⁰ circuits of depth d+1 and size S have criticality at most $\lambda = O(\log S)^d$

Criticality of AC⁰ Circuits

Observation

AC⁰ circuits of depth d+1 and size S have criticality at most $\lambda = O(\log S)^d$

- Hastad's Switching Lemma (1986) shows $Pr[DT_{depth}(f \upharpoonright \mathbf{R}_{p}) \ge t] \le (p\lambda/2)^{t} + (1/S)^{O(1)}$ $\le (p\lambda)^{t} \text{ for all } t \le \log S$
- Hastad's Multi-Switching Lemma (2014) shows $\Pr[DT_{depth}(f \upharpoonright \mathbf{R}_{p}) \ge t] \le S*(p\lambda/2)^{t}$ $\le (p\lambda)^{t}$ for all $t > \log S$

Criticality of AC⁰ Formulas

<u>Conjecture</u>

AC⁰ formulas of depth d+1 and size S have criticality at most $\lambda = O((\log S)/d)^d$

Criticality of AC⁰ Formulas

<u>Conjecture</u>

AC⁰ formulas of depth d+1 and size S have criticality at most $\lambda = O((\log S)/d)^d$

- "Stopping time" technique of [R. 15] implies $Pr[DT_{depth}(f \upharpoonright \mathbf{R}_p) \ge t] \le (p\lambda)^t$ for all $t \le \log S$
- Unfortunately, don't know how to show $Pr[DT_{depth}(f \upharpoonright \mathbf{R}_{p}) \ge t] \le (p\lambda)^{t}$ for all $t > \log S$

Criticality of *Regular* AC⁰ Formulas

Theorem [R. 18]

Regular AC⁰ formulas of depth d+1 and size S have criticality at most O((log S)/d)^d

Criticality of *Regular* AC⁰ Formulas

Theorem [R. 18]

Regular AC⁰ formulas of depth d+1 and size S have criticality at most O((log S)/d)^d

- Proof based on alternative analysis of the Switching Lemma with log(size) in place of width
- Introduces and analyses the *canonical decision tree* of an entire depth d+1 formula

Corollaries

Optimal correlation bounds

Regular AC⁰ formulas of depth d+1 and size S have corr. $\frac{1}{2} + 2^{-\epsilon n}$ with PARITY_n where $\epsilon = 1 / O((\log S)/d)^d$

• <u>#SAT algorithm</u>

#SAT for **regular AC⁰ formulas** of depth d+1 and size S is solvable in randomized time $2^{(1-\epsilon)n}$

<u>Optimal Linial-Mansour-Nisan Theorem</u>
 Tight bounds on the Fourier spectrum of regular AC⁰
 formulas

#SAT for **regular AC⁰ formulas** of depth d+1 and size S is solvable in randomized time $2^{(1-\epsilon)n}$

 <u>Optimal Linial-Mansour-Nisan Theorem</u>
 Tight bounds on the Fourier spectrum of regular AC^o formulas

QBF-SAT

[Santhanam-Williams 14] give two rand. algorithms for Quantified-CNF Satisfiability with q quantifier alternations:

- Algorithm #1 has time poly(n)*2^{n-Ω(q)}
 This beats exhaustive search when q >> log n
- Algorithm #2 has time poly(n)*2^{n-Ω(n^(1/q))}
 Beats exhaustive search when q << log n / log log n

QBF-SAT

[Santhanam-Williams 14] give two rand. algorithms for Quantified-CNF Satisfiability with q quantifier alternations:

- Algorithm #1 has time poly(n)*2^{n-Ω(q)}
 This beats exhaustive search when q >> log n
- Algorithm #2 has time poly(n)*2^{n-Ω(q*n^(1/q))}
 Beats exhaustive search when q << log n / log log n

We get an improvement to alg #2

Open Problems

- Show that AC⁰ formulas of depth d+1 and size S have criticality at most O((log S)/d)^d.
- If f₁,...,f_m are λ-critical, is AND(f₁,...,f_m) necessarily O(λ*log m)-critical? (If so, this implies our result on regular AC⁰ formulas.)
- We observed that λ -critical $\Rightarrow \lambda$ -degree-critical. Does λ -degree-critical imply $O(\lambda)$ -critical?

Tour of other switching lemmas

Stars_m

- Stars_m: {x₁,...,x_n} → {0,1,*} with exactly m stars (behaves similarly to R_{m/n})
- Switching Lemma

 $\Pr[DT_{depth}(k-DNF \upharpoonright Stars_m) \ge t] \le O((m/n)k)^t$

R_{p,q}

q-biased p-restriction R_{p,q}

$$\mathbf{R}_{p,q}(\mathbf{x}_{i}) = -\begin{cases} \star & \text{with prob. p} \\ 1 & \text{with prob. } (1-p)q \\ 0 & \text{with prob. } (1-p)(1-q) \end{cases}$$

<u>Switching Lemma</u> (q ≤ ½)

 $\Pr[DT_{depth}(k-DNF \upharpoonright \mathbf{R}_{p,q}) \ge t] \le O(pk/q)^{t}$

 Used for ave-case lower bounds under q-biased distribution on {0,1}ⁿ

Clique_{p,q}

- Beame '90 proved a "clique switching lemma" for the random restriction on (n choose 2) variables where
 - stars are edges of a clique on a p-random set of vertices
 - non-stars are set to 1 with prob. q and 0 with prob. 1 q
- <u>Switching Lemma</u> $(q \le \frac{1}{2})$ Pr[DT_{depth}(k-DNF \upharpoonright Clique_{p,q}) $\ge t$] $\le O(pk/q^{O(k+t)})^t$
- This gives an n^{Ω(k/d^2)} lower bound for k-CLIQUE_n (moreover, in the *average-case* for G(n,q))

Clique_{p,q}

- Beame '90 proved a "clique switching lemma" for the random restriction on (n choose 2) variables where
 - stars are edges of a clique on a mondom cot of vortices

Dependence on d results from the
 standard depth-reduction argument

 $\Pr[DT_{depth}(K-DNF) \subseteq t] \leq O(pk/q^{O(k+t)})^{t}$

 This gives an n^{Ω(k/d^2)} lower bound for k-CLIQUE_n (moreover, in the *average-case* for G(n,q))

Variants of \mathbf{R}_{p}

See Beame's "Switching Lemma Primer" for an account of:

Stars_m

R_{p,q} Clique_{p,q} Matching Restrictions (vs. Pigeonhole Principle)

Hastad's Tseitin Grid Restrictions

AC⁰-Frege

- Proof system whose lines are depth-d AC⁰ formulas
- Generalizes RESOLUTION (essentially "depth-1 Frege")

AC⁰-Frege Lower Bounds

 <u>Pitassi-Beame-Impagliazzo, Krajicek-Pudlak-Woods 90's</u> exp(n^{1/exp(Ω(d))}) lower bound for Pigeonhole Principle

AC⁰-Frege Lower Bounds

AC⁰-Frege Lower Bounds

- <u>Pitassi-Beame-Impagliazzo, Krajicek-Pudlak-Woods 90's</u> exp(n^{1/exp(Ω(d))}) lower bound for Pigeonhole Principle
- <u>Pitassi-R.-Servedio-Tan '16</u>

Mild lower bound via new approach for **Tseitin** on expander graphs (using random projectins)

• <u>Hastad '17</u>

 $exp(n^{\Omega(1/d)})$ lower bound for **Tseitin** on grids

Tseitin Contradiction

• Grid_{n×n} = 4-regular n×n (toroidal) grid graph, n odd

Tseitin Contradiction

- $Grid_{n \times n} = 4$ -regular $n \times n$ (toroidal) grid graph, n odd
- Tseitin(Grid_{n×n}) is the *unsatisfiable* 4-DNF formula with variables X_e for each edge e and clauses

$$X_{e_1} \oplus X_{e_2} \oplus X_{e_3} \oplus X_{e_4} = 1$$

for every four edges e_1 , e_2 , e_3 , e_4 meeting a common vertex

$\textbf{Grid}_{n\times n}$

pick *l* random rows and columns (*l odd*)

randomly set blue edges to 0 or 1 without violating any parity constraint

create a new Y-variable for each red "super-edge" and project each X-variables to Y or \overline{Y} (as dictated by adjacent parity constraints)

 $\leq \epsilon^k$ (for some $\epsilon < 1$)

project to distinct Y-variables]

 $\leq \epsilon^k$ (for some $\epsilon < 1$)

 $\leq \epsilon^k$ (for some $\epsilon < 1$)

Requirement for any useful switching lemma:

- Pr[any k given X-variables (i.e. edges of original grid) project to <u>distinct</u> Y-variables]
- $\leq \epsilon^k$ (for some $\epsilon < 1$)

X, X X, Х If X_1 survives the projection, then w.h.p. all survive and map to distinct Y-variables (hence, no exponential tail bound in # of X-variables) $\leq \epsilon^{k}$

Hastad's random projection

Hastad's random projection

Hastad's random projection

Hastad's random projection

This gives a **topological embedding** of Grid_{$\ell \times \ell$} in Grid_{$n \times n$} (and a projection of corresponding Tseitin instances)

- Pr[any k given X-variables (i.e. edges of original grid) project to <u>distinct</u> Y-variables]
- $\leq \epsilon^k$ (where $\epsilon \approx v(\ell/n)$)

Satisfies key criterion:

- **Pr[any k given X-variables (i.e. edges of original grid)** project to distinct Y-variables]
- $\leq \varepsilon^k$ (where $\varepsilon \approx \sqrt{\ell/n}$)

Switching lemma with respect to a preliminary "partial restriction" (with greater independence properties, needed for the Razborov-style argument)

switching lemma with respect to a preliminary "partial restriction" (with greater independence properties, n ded for the Razborov-style argument)

reduces the depth of each formula in an AC⁰-Frege proof

- <u>switching lemma</u> with respect to a preliminary "partial restriction" (with greater independence properties, needed for the Razborov-style argument)
- 2 <u>clean-up step</u>: (arbitrary) completion of the "partial restriction" to an embedding of Tseitin(Grid_{ℓ×ℓ}) in Tseitin(Grid_{n×n})

- <u>switching lemma</u> with respect to a preliminary "partial restriction" (with greater independence properties, needed for the Razborov-style argument)
- 2 <u>clean-up step</u>: (arbitrary) completion of the "partial restriction" to an embedding of Tseitin(Grid_{ℓ×ℓ}) in Tseitin(Grid_{n×n})

for purpose of induction

AC⁰-Frege Depth Hierarchy?

Open Problem

Find a family of unsatisfiable DNF formulas with poly(n)-size depth d+1 refutations, which require $exp(n^{\Omega(1/d)})$ -size depth d refutations.

Thank You!