
Lower Bounds from Algorithm
Design: An Overview

Ryan Williams
MIT

Course Announcement
CS294-152. Lower Bounds: Beyond

the Boot Camp

Soda 405
Mondays 4:00pm to 6:30pm

(with a break in the middle)
first lecture is next week

Outline

• A High-Level View

• Algorithms versus Boolean Circuits

• Circuit Analysis => Circuit Lower Bounds

• Some Details and Some Progress:
NQP (Quasi-NP) is not in ACC
NP doesn’t have small depth-two neural nets

High-level view of algorithms and complexity
• Algorithm designers

• Complexity theorists

• What makes some problems easy to solve?
When can we find an efficient algorithm?

• What makes other problems difficult?
When can we prove that a problem is not easy?
When can we prove a Lower Bound on
the resources (time/space/communication/etc)
needed to solve a problem?

The tasks of the algorithm designer and
the complexity theorist appear to be polar opposites.

• Algorithm designers
prove upper bounds

• Complexity theorists
prove lower bounds

Furthermore, it’s generally believed that
Algorithm Design is easier than Lower Bounds
• In Algorithm Design: find one clever algorithm
• In Lower Bounds: must reason about “all possible”

algorithms, and argue none of them work well
… but there are thousands of worst-case algorithms

which analyze all possible finite objects of some kind…

My Opinion:
This isn’t why lower

bounds are hard!

Why are lower bounds hard to prove?
There are many known “no-go” theorems
• Relativization [70’s]
• Natural Properties [90’s]
• Algebrization [00’s]

Great pessimism in complexity theory

Summary: The common proof techniques are not
good enough to prove even weak lower bounds!

There are many known “no-go” theorems
• Relativization [70’s]
• Natural Properties [90’s]
• Algebrization [00’s]

Great pessimism in complexity theory

How will we make progress?

Summary: The common proof techniques are not
good enough to prove even weak lower bounds!

Have to non-relativize, non-algebrize,
and non-naturalize!

Much more than opposites!
There are deeper connections we are slowly uncovering.

A typical result in Algorithm Design:
“Here is an algorithm A that solves the problem,

on all possible instances of the problem"
A typical theorem from Lower Bounds:
“Here is a proof P that the problem can’t be solved,

by all possible algorithms of some type"

Thesis: Designing Algorithms (in some sense)
is equivalent to Proving Lower Bounds

One Direction for Progress:
Connect Algorithm Design to Lower Bounds

Meta-computation:
Problems whose

input is the code of
an algorithm

Want to prove results of the form:

Find results showing (algorithm design lower bounds):

Then, use results from algorithm design to show:

Task A’ is possible for computation model B’
 Task A is impossible for computation model B

A “Plan” For Proving Lower Bounds

Task A’ is possible for computation model B’

Task A is impossible for computation model B

Want to prove results of the form:

Find results showing (algorithm design lower bounds):

Then, use results from algorithm design to show:

Task A’ is possible for computation model B’
 Task A is impossible for computation model B

Where do we start????

Task A’ is possible for computation model B’

Task A is impossible for computation model B

???? ????
Define Task A’ be about

analyzing model B

Define Task A
in terms of model B’

A simple example from complexity theory:

PSPACE = problems solvable in polynomial space
PTIME = …. in polynomial time
EXPTIME = … in exponential time

(algorithm design lower bounds)?

Many such results can be proved….
But they do not seem useful!

If PSPACE = EXPTIME then PTIME PSPACE

Proof: PTIME EXPTIME (time hierarchy theorem)
So PTIME = PSPACE implies PSPACE EXPTIME. QED

Big Idea: Interesting circuit-analysis algorithms
tell us about the limitations of circuits in modeling algorithms

“Non-Trivial”
Circuit Analysis

Algorithm
(beating brute force) Circuit Lower Bounds

SAT? YES/NO
”interesting”

Circuits are not “black-boxes” to algs!

Inherently
non-relativizing

approach

Turing Machine drawing by Tom Dunne for American Scientist

Big Idea: Interesting circuit-analysis algorithms
tell us about the limitations of circuits in modeling algorithms

Goal: Algorithmic task A is impossible for
“efficient” circuits (this is our model B)

Show: Non-trivial analysis of “efficient” circuits
is possible with algorithms (model B’)
 Algorithmic Task A is impossible for

“efficient” circuits

Show: Non-trivial analysis of “efficient” circuits
is possible with algorithms

Outline

• A High-Level View

• Algorithms versus Boolean Circuits

• Circuit Analysis => Circuit Lower Bounds

• Some Details and Some Progress

(Boolean) Circuits

For every input length ,
a circuit family has a circuit C𝒏 to be run on all inputs of length

P/poly = { ∗ computable by a circuit family {C𝒏}
such that the size of C𝒏 is at most k }

Each circuit is “small” relative to its number of inputs

C1 C10 C1000

Can take in arbitrarily
long inputs and still
solve the problem

Only take in
fixed-length inputs

… … … … … …C100

Algorithms

Circuit Family = { , , , , }
𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏}

𝒈: 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Circuit model has “programs with infinite-length descriptions”
The standard methods in computability theory are powerless…

Concrete limitations on computing within the known universe
“Any logic circuit solving most instances of my 1000-bit problem

needs at least 10100 bits to be described”

C1 C10 C1000
… … … … … …C100

Circuit Family = { , , , , }

P/poly = { ∗ computable with a circuit family
{C𝒏} such that the size of C𝒏 is at most k }

Why study this “infinite” model of computation?
1) Circuits could be easier to analyze than Turing machines!

2) Proving limitations on P/poly is a step towards
non-asymptotic complexity theory:

[Meyer-Stockmeyer ‘70s]Universe stores < 1080 bits [Bekenstein ‘70s]

Algorithms versus Circuit Families
P/poly = { ∗ computable with a circuit family

{C𝒏} such that the size of C𝒏 is at most k }

Most Boolean functions require huge circuits:
Theorem [Shannon ‘49] W.h.p., random 𝒏 needs

circuits of size at least 2n/n
Theorem [Lupanov’58] Every f has a circuit of size (1+o(1))2n/n
Explicit (non-random) hard functions?

The key obstacle: Non-uniformity can be very powerful!

What “uniform” algorithms can be simulated in P/poly?
Can huge uniform classes (like PSPACE, EXP, NEXP)

be simulated with small non-uniform classes (like P/poly)?

What “uniform” algorithms can be simulated in P/poly?
Can huge uniform classes (like PSPACE, EXP, NEXP)

be simulated with small non-uniform classes (like P/poly)?

Conjecture: NP P/poly (harder than P NP)

RIDICULOUSLY OPEN: Is NEXP P/poly?
Can all problems with exponentially-long answers

checkable in exponential time
be solved with polynomial-size circuit families?

OPEN: NP SIZE(O(n))? Best known: NP SIZE(5n), SIZE(3.01n)

Now, problems like NP SIZE(O(n)) may be attackable…(?)

Algorithms versus Circuit Families

Outline

• A High-Level View

• Algorithms versus Boolean Circuits

• Circuit Analysis => Circuit Lower Bounds

• Some Details and Some Progress

Generalized Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

A very “simple” circuit analysis problem!

[CL’70s] C-SAT is NP-complete for practically all interesting C
C-SAT is solvable in O(2n |K|) time by brute force

The C-SAT Problem:
Given a circuit K(x1,…,xn) from C, is there an

assignment (a1, …, an) {0,1}n such that K(a1,…,an) =1?

Gap Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

Even simpler! In randomized polynomial time

[Folklore?] If Gap-Circuit-SAT P then P = RP
[Hirsch, Trevisan, …] Gap-kSAT is P for all k

Gap-C-SAT:
Given (x1,…,xn) from C, and the promise that either

(a) 0, or (b) 𝒙 ,
decide which is true.

Faster C-SAT Circuit Lower Bounds for C

Slightly Faster Circuit-SAT
[R.W. ’10,’11]

Deterministic algorithms for:
• Circuit SAT in O(2n/n10) time

with n inputs and nk gates

• Formula SAT in O(2n/n10) time

• -SAT in O(2n/n10) time

• Gap- -SAT is in O(2n/n10)
time on nk size

(Easily solved w/ randomness!)

No “Circuits for NEXP”

Would imply:

• NEXP P/poly

• NEXP Poly-size formulas

• NEXP poly-size

NEXP poly-size

Concrete LBs
𝑪 = ACC
[W’11]
𝑪 = ACC of THR
[W’14]

Even Faster SAT Stronger Lower Bounds
Somewhat Faster Circuit SAT

[Murray-W. ’18]
Det. algorithm for some :
• Circuit SAT in O(ିച

) time
with inputs and ച

gates

• Formula SAT in O(ିച
) time

• -SAT in O(ିച
) time

• Gap- -SAT is in O(𝒏ି𝒏𝝐
)

time on ച
gates

No “Circuits for Quasi-NP”

Would imply:

• NTIME[𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] P/poly

• NTIME[𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] NC1

• NTIME[𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]

NTIME[𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]

𝑪 = ACC of THR
[MW’18]

“Fine-Grained” SAT Algorithms
[Murray-W. ’18]

Det. algorithm for some :
• Circuit SAT in O((ଵିఢ)) time

on inputs and ఢ gates

• FormSAT in O((ଵିఢ)) time

• -SAT in O((ଵିఢ)) time

• Gap- -SAT is in O(𝟏ି𝝐 𝒏)
time on ఢ gates

(Implied by PromiseRP in P)

No “Circuits for NP”

Would imply:

• NP SIZE(𝒌) for all

• NP Formulas of size 𝒌

• NP -SIZE(𝒌) for all

NP -SIZE(𝒌) for all

Even Faster SAT Stronger Lower Bounds

𝑪 = SUM of THR
𝑪 = SUM of ReLU
𝑪 = SUM of POL
[W’18]

Note: Would
refute

Strong ETH!

Strongly
believed to

be true…

Outline

• A High-Level View

• Algorithms versus Boolean Circuits

• Circuit Analysis => Circuit Lower Bounds

• Some Details and Some Progress

Some Lower Bounds by Algorithm Design
ACC0: circuits of polynomial size and constant depth,

with AND, OR, and MODm gates for some constant m.
ACC0 P/poly, probably a proper subset!

Annoying Circuit Class to prove lower
bounds for, proposed in 1986
(and it is the 0th such class)

Thm [R.W.’11]: NEXP ACC0

Thm [Murray-W’18]: NTIME[] ACC0 of THR

ACC THR: Annoying Circuits with Linear Threshold Gates at the bottom

Progress Report
[W’14, Murray-W’18] Quasi-NP does not have ACC THR circuits of polynomial size

SAT algorithm uses a new depth-two representation of ACC THR
and fast rectangular matrix multiplication to evaluate the representation quickly

Improving the lower bounds to multiple layers of THR gates is an open frontier:
[Tamaki’16, Alman-Chan-W’16] ENP does not have ACC THR THR circuits of subquadratic size

Uses recent probabilistic polynomials for THR [Srinivasan’13, Alman-W’15]
Open: Quasi-NP does not have THR THR circuits of subquadratic size

[S.Chen-Papakonstantinou’16] Better size-depth tradeoff lower bound for NEXP vs ACC
[R.Chen-Oliveira-Santhanam’18] Average Case: NEXP doesn’t have poly-size ACC circuits

computing a 𝟏
𝟐

𝟏

𝒑𝒐𝒍𝒚 𝒍𝒐𝒈 𝒏
fraction of -bit inputs correctly

Carefully applies coding-theoretic techniques on top of the framework
[W’18] NP does not have 𝟏𝟎𝟎 -size depth-two neural networks

with sign activation function, nor with ReLU activation functions
At the heart: [Horowitz-Sahni 70s] Counting subset sum solutions on items is in 𝒏/𝟐 time!

New lower bounds from an old algorithm!

Progress Report
[W’14, Murray-W’18] Quasi-NP does not have ACC THR circuits of polynomial size

SAT algorithm uses a new depth-two representation of ACC THR
and fast rectangular matrix multiplication to evaluate the representation quickly

Improving the lower bounds to multiple layers of THR gates is an open frontier:
[Tamaki’16, Alman-Chan-W’16] ENP does not have ACC THR THR circuits of subquadratic size

Uses recent probabilistic polynomials for THR [Srinivasan’13, Alman-W’15]
Open: Quasi-NP does not have THR THR circuits of subquadratic size

[S.Chen-Papakonstantinou’16] Better size-depth tradeoff lower bound for NEXP vs ACC
[R.Chen-Oliveira-Santhanam’18] Average Case: NEXP doesn’t have poly-size ACC circuits

computing a 𝟏
𝟐

𝟏

𝒑𝒐𝒍𝒚 𝒍𝒐𝒈 𝒏
fraction of -bit inputs correctly

Carefully applies coding-theoretic techniques on top of the framework
[W’18] NP does not have 𝟏𝟎𝟎 -size depth-two neural networks

with sign activation function, nor with ReLU activation functions
At the heart: [Horowitz-Sahni 70s] Counting subset sum solutions on items is in 𝒏/𝟐 time!

New lower bounds from an old algorithm!

Lower Bounds for
NEXP, Quasi-NP, and NP

From Nontrivial Gap-SAT Algorithms

How NEXP ACC0 Was Proved
Let be a “typical” circuit class (like ACC0)
Thm A [W’11] (algorithm design lower bounds)

If for all k, Gap- -SAT on nk-size is in O(2n/nk) time,
then NEXP does not have poly-size -circuits.

Thm B [W’11] (algorithm)
, ACC0-SAT on 𝒏ℇ

size is in O(𝒏ି𝒏ℇ
) time.

(Used a well-known representation of ACC0 from 1990,
that people long suspected should imply lower bounds)

Note the inefficiency!
Theorem B gives a much stronger algorithm

than is necessary in Theorem A.
This is exactly the starting point of [Murray-W’18]…

Idea of Theorem A
Let be some circuit class (like ACC0)
Thm A [W’11] (algorithm design lower bounds)

If for all k, Gap -SAT on nk-size is in O(2n/nk) time,
then NEXP does not have poly-size -circuits.

Idea. Show that if we assume both:
(1) NEXP has poly-size -circuits,

AND
(2) a faster Gap -SAT algorithm

Then we can show NTIME[𝒏] NTIME[o(𝒏)]
(contradicts the nondeterministic time hierarchy!)

Proof Ideas in Theorem A
Idea. Assume

(1) NEXP has poly-size -circuits, AND
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[𝒏] NTIME[o(𝒏)]

Take any problem L in nondeterministic 𝒏 time.
Given an input , we “compute” L on by:
1. Guessing a witness of O(𝒏) length.
2. Checking is a witness for in O(𝒏) time.

Want to “speed-up” both parts 1 and 2,
using the above assumptions

Proof Ideas in Theorem A
Idea. Assume

(1) NEXP has poly-size -circuits, AND
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[𝒏] NTIME[o(𝒏)]

Take any problem L in nondeterministic 𝒏 time.
Given an input , we will “compute” L on by:
1. Use (1) to guess a witness of o(𝒏) length

(Easy Witness Lemma [IKW02]:
if NEXP is in P/poly, then L has “small witnesses”)

2. Use (2) to check is a witness for in o(𝒏) time
Technical: Use a highly-structured PCPs for NEXP
[W’10, BV’14] to reduce the check to Gap -SAT

Proof Ideas in Theorem A
Idea. Assume

(1) NEXP has poly-size -circuits, AND
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[𝒏] NTIME[o(𝒏)]

Take any problem L in nondeterministic 𝒏 time.
Given an input , we will “compute” L on by:
1. Use (1) to guess a witness of o(𝒏) length

(Easy Witness Lemma [IKW02]:
if NEXP is in P/poly, then L has “small witnesses”)

2. Use (2) to check is a witness for in o(𝒏) time
Technical: Use a highly-structured PCPs for NEXP
[W’10, BV’14] to reduce the check to Gap -SAT

Guessing Short Witnesses

Definition. An NTIME[] problem has easy witnesses if

, Verifiers V for , if 𝟐 𝒙 శ𝒅
s.t. V(,) accepts, then

circuit 𝒙 of 𝒄 size and inputs s.t. V(, 𝒙) accepts,
where 𝒙 = Truth Table of circuit 𝒙.

Replace 1 with: 1’. Guess poly()-size circuit

1. Guess a witness y of () length.

Easy Witness Lemma [IKW’02]:
If NEXP is in P/poly then all NEXP problems have easy witnesses

Small circuits for solving NEXP problems
 Small circuits for solutions to NEXP problems

Proof Sketch of Theorem A
Idea. Assume

(1) NEXP has poly-size -circuits, and
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[𝒏] NTIME[o(𝒏)]

Take any problem in nondeterministic 𝒏 time.
Given an input , we compute on by:
1. Guessing a circuit 𝒙 of poly(|x|) size

(Easy Witness Lemma, using (1))
2. Using (2) to check 𝒙 encodes a witness for x

in o(𝒏) time (Nice PCPs for)

Improving Theorem A [MW’18]
Let be a “typical” circuit class (like ACC0)
Thm A+ [MW18] If there is an >0 such that

Gap- -SAT on 𝒏ℇ
-size circuits is in O(𝒏ି𝒏ℇ

) time
then NTIME[(𝒍𝒐𝒈 𝒏)𝑶(𝟏)

] doesn’t have poly-size -circuits

Thm A++ [MW18] If there is an >0 such that
Gap- -SAT on ℇ𝒏-size circuits is in O(𝒏(𝟏ିℇ)) time
then for all , NP doesn’t have 𝒌-size -circuits

and NTIME[୪୭∗ 𝒏] doesn’t have poly-size -circs [Tell’18]

Proof of Theorem A++?
Approach: Want to show that given
(1) NP has 𝒌-size -circuits, and
(2) Gap- -SAT algorithm running in 𝟏ି𝜺 𝒏 time
Then NTIME[𝒅] NTIME[o(𝒅)] for some

Let NTIME[𝒅]. To solve faster on input ,
1. Guess a witness circuit 𝒙 of o(𝒅) size
2. Check 𝒙 encodes witness for in o(𝒅) time

(Use nice PCP; this still works, if part 1 works)

Easy Witness Lemma only works for NEXP!

New Easy Witness Lemma [MW’18]

NTIME[t(n)] has s(n)-size witness circuits if
NTIME[t(n)], Verifiers V, ,

s(n)-size circuit Dx such that V(x, tt(Dx)) accepts.

Old Easy Witness Lemma [IKW02]:
If every problem in NEXP has poly(n)-size circuits,
then NEXP has poly(n)-size witness circuits.

New Easy Witness Lemma (Special Case of [MW’18]):
If every problem in NP has 𝒌-size circuits,
then NP has 𝑶(𝒌𝟑)-size witness circuits.
Similar statement for NTIME[𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏].

Proof of Theorem A++?
Approach: Want to show that given
(1) NP has 𝒌-size -circuits, and
(2) Gap- -SAT algorithm for 𝝐𝒏 size, in 𝒏 𝟏ି𝝐 time

Then NTIME[𝒌𝟒
] NTIME[o(𝒌𝟒

)]

Let L NTIME[𝒌𝟒
]. To solve L faster on input ,

1. Guess circuit 𝒙 of O(𝒌𝟑
) size with 𝟒 inputs,

encoding witness of length 𝒌𝟒

(Use (1) and New Easy Witness Lemma)

2. Check 𝒙 encodes witness for in o(𝒌𝟒
) time

(Use (2) and nice PCP)
Contradiction!

IKW’s Easy Witness Lemma
Easy Witness Lemma [IKW02]:
NTIME[𝒏] SIZE[𝒌] for some k

NTIME[𝒏] has 𝒄-size witness circuits for some c.

Strategy: Assume the negation, prove a contradiction!
(1) NTIME[] SIZE[] and
(2) c, NTIME[] DOESN’T have -size witness circuits

IKW start with 𝒉𝒂𝒓𝒅 SPACE[𝒌ା𝟏] / i.o.-SIZE[𝒌]
and show how assumptions (1) and (2) imply:
SPACE[𝒌ା𝟏] MA i.o.-NTIME[𝒏]/n i.o.-SIZE[𝒌]

Merlin-Arthur
protocols

infinitely often,
with 𝑛 bits of advice

Proof of IKW’s Easy Witness Lemma
(1) NTIME[] SIZE[] and
(2) c, NTIME[] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[𝒌ା𝟏] MA i.o.-NTIME[𝒏]/n i.o.-SIZE[𝒌]

MA: Merlin-Arthur = NP with probabilistic verification
L is in MA means there’s a polytime V such that
x L there is a y such that V(x,y) always accepts
x L for every y, V(x,y) rejects with prob > ¾

Merlin Arthur

Proof of IKW’s Easy Witness Lemma
(1) NTIME[] SIZE[] and
(2) c, NTIME[] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[𝒌ା𝟏] MA i.o.-NTIME[𝒏]/n i.o.-SIZE[𝒌]

(1) NTIME[𝒏] SIZE[𝒌]
 SPACE[O(n)] P/poly
 PSPACE P/poly
 PSPACE = MA [BFNW’93]

Use the fact that PSPACE = IP [Shamir]:
Guess a small circuit encoding the prover’s strategy,
then run the interactive protocol with that circuit

Proof of IKW’s Easy Witness Lemma
(1) NTIME[] SIZE[] and
(2) c, NTIME[] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[𝒌ା𝟏] MA i.o.-NTIME[𝒏]/n i.o.-SIZE[𝒌]

(1) NTIME[𝒏] SIZE[𝒌]
 i.o.-NTIME[]/ i.o.-SIZE[]

(Hard-code the advice in the circuit)

Proof of IKW’s Easy Witness Lemma
(1) NTIME[] SIZE[] and
(2) c, NTIME[] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[𝒌ା𝟏] MA i.o.-NTIME[𝒏]/n i.o.-SIZE[𝒌]

(2) NTIME[𝒏] DOESN’T have 𝒄-size witness circuits:
(NTIME[], Verifiers V, for all but finitely many ,

s.t. V() accepts and (Circuit complexity of))

Proof of IKW’s Easy Witness Lemma
(1) NTIME[] SIZE[] and
(2) c, NTIME[] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[𝒌ା𝟏] MA i.o.-NTIME[𝒏]/n i.o.-SIZE[𝒌]

(2) NTIME[𝒏] DOESN’T have 𝒄-size witness circuits:
NTIME[], Verifier V, infinitely many ,

such that [V() accepts (Circuit complexity of) >]

Given a ‘bad’ input as advice, can use verifier V to
guess-and-check a function with circuit complexity > 𝒄

in 𝒏 time
Can nondeterministically generate hard functions!

Proof of IKW’s Easy Witness Lemma
(1) NTIME[] SIZE[] and
(2) c, NTIME[] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[𝒌ା𝟏] MA i.o.-NTIME[𝒏]/n i.o.-SIZE[𝒌]

(2) NTIME[𝒏] DOESN’T have 𝒄-size witness circuits:
NTIME[], Verifier V, infinitely many ,

such that [V() accepts (Circuit complexity of) >]
Thm [Hardness-to-PRGs] There’s an and 𝒏 -time computable

such that, given a string with circuit complexity > 𝒄,
outputs a set of 𝒏 strings which “fool” all circuits of size 𝜶 𝒄

Use to derandomize 𝑶(𝒄)-time Merlin-Arthur protocols in 𝒏 time,
on infinitely many input lengths, with bits of advice

Scaling Down to NP?

New Easy Witness Lemma (Special Case)
If NP has -size circuits,
then NP has ை య

-size witness circuits.

Idea: Derive a contradiction from assuming that
NP SIZE[𝒌]

and
, NP does NOT have 𝒄-size witness circuits.

Scaling Down to NP?

What happens when we try to follow the IKW proof?
We want to derive something like:

PSPACE MA i.o.NP/n i.o.SIZE[𝒌]
These two inclusions are OK!

They follow from NP SIZE[𝒌]
and

NP does NOT have 𝒄-size witness circuits

Scaling Down to NP?

What happens when we try to follow the IKW proof?
We want to derive something like:

PSPACE MA i.o.NP/n i.o.SIZE[𝒌]

Problem: Can’t conclude PSPACE is in MA from
assuming NP SIZE[𝒌] and

NP does NOT have 𝒄-size witness circuits!

Possible fix: Use another circuit lower bound?
Thm [San07] MA/1 SIZE[𝒌]

Scaling Down to NP?

What happens when we try to follow the IKW proof?
We want to derive something like:

MA/1 i.o.NP/n+1 i.o.SIZE[𝒌]

New problem: We only know MA/1 SIZE[𝒌]
Don’t know if MA/1 i.o.SIZE[𝒌]

Possible fix: Prove a stronger MA lower bound?
Turns out we don’t need an

“almost-everywhere” lower bound…

New Lower Bound for Merlin-Arthur Protocols

Thm [MW’18] For all , there is an MA-TIME[𝒌𝟐
]/O(log n)

such that for all but finitely many input lengths ,
either has circuit complexity at least

or ೖ has circuit complexity at least మ

Our proof of the new EWL shows:

If every problem in NP has 𝒌-size circuits
and some NP problem doesn’t have 𝑶(𝒌𝟑)-size witnesses,
then the above Merlin-Arthur lower bound is contradicted!

Sketch of the New Easy Witness Lemma
Start with MA-TIME[𝒌𝟐

/O(log n) from our new circuit lower bound.

Assuming some NP problem doesn’t have 𝑶(𝒌𝟑)-size witnesses,
we derive a partial derandomization of the MA protocol for :

For infinitely many , there is an NP/O(n) algorithm computing
correctly on all inputs of length AND of length 𝒌.

Assuming NP has 𝒌-size circuits, we can derive:

For infinitely many ,
𝒏 has an 𝒌-size circuit AND 𝒏𝒌 has an 𝒌𝟐

-size circuit.

This directly contradicts our lower bound for !

More Details on Derandomizing MA

How to derive MA /O(log n) i.o.NP/n+O(log n)

Given a ‘bad’ ௪ as advice,
Guess a ‘bad’ y such that V(௪,) accepts
// encodes a function with circuit complexity > య

Stick into a PRG that fools ஐ(య)-size circuits
Use PRG to derandomize an -time MA protocol
(Guess Merlin’s message, construct a circuit of
size ଶ that takes Arthur’s message as input)

This works as long as 𝟐 𝑶 𝒌𝟑

Assume: NP does NOT have 𝒌𝟑
-size witness circuits.

Let V be a “bad” verifier (for inf. many , every witness for is not easy)

More Details on Derandomizing MA
How to derive MA /O(log n) i.o.NP/n+O(log n)

Given a ‘bad’ ௪ as advice,
Guess a ‘bad’ y such that V(௪,) accepts
// encodes a function with circuit complexity > య

Stick into a PRG that fools ஐ(య)-size circuits
Use PRG to derandomize an -time MA protocol
(Guess Merlin’s message, construct a circuit of
size ଶ that takes Arthur’s message as input)

This works as long as ଶ ை య

If NP does not have 𝒌𝟑
-size witness circuits,

the same advice 𝒘 can be used to derandomize MA
for all running times up to 𝑶(𝒌𝟑)

Lower Bounds for NP
Against Some Depth-Two Classes

Let be a class of “simple” functions
(take Boolean inputs, but need not be Boolean-valued)

The -linear Representation Problem

simple simplesimple simplesimplesimple

Which “interesting” functions can(not) be represented by
“short” -linear combinations of functions from ?

poly() “size”?
2 −𝜋

−𝑒 𝜙

Call this a circuit

If spans the vector space of all functions 𝒏

then there is always some circuit of 𝒏 size…

The -linear Representation Problem
Which “interesting” functions can(not) be represented by

“short” -linear combinations of functions from ?

If is the class of 𝒏 functions on variables:
polynomials over

If is the class of 𝒏 functions on variables:
polynomials over

(Fourier analysis of Boolean functions)
These are well-understood:

is a basis for the vector space of functions

the -linear representation of is unique,
so the “shortest” is also the “longest”…

More interesting cases: representations are not unique

1. Linear Threshold Functions []
2. Rectified Linear Units []
3. ()-Polynomials of Degree- []

(prime and)

[W’18] Three Simple Classes

• There are 𝒏 functions on variables,
so -linear representations are not unique

𝚯 𝒏𝟐
LTFs, 𝚯 𝒏𝒅

degree- polys, ReLU functions

• -linear Representations have been studied!
= Special Case of Depth-2 Threshold Circuits

= “Depth-2 Neural Net with ReLU activation”
= “Higher-Order” Fourier Analysis for

For all three classes:

Depth-Two LTF Circuits (): Major problem to find
“nice” functions without -gate circuits, for all

Sums of Linear Threshold Functions

We prove:
Thm , 𝒌 without 𝒌-size

[Hajnal et al.’91] exp(n) depth-two lower bounds for small ’s

Def.
 is an LTF if ଵ such that

ଵ
, 𝟏 𝒏 𝒊 𝒊𝒊

[Roychowdhury-Orlitsky-Siu’94] What about ?
Special case of :

the linear form for output LTF must always evaluate to 0 or 1
Still, no 𝟏.𝟓-gate lower bounds were known for !

Thm 𝒍𝒐𝒈∗𝒏 without -size
Note: It is a major open problem to prove

without 𝒌-size (unrestricted) circuits

generalizes

Sums of ReLUs

We can generalize the limits to :
Thm , 𝒌 without 𝒌-size

= “Depth-Two Neural Nets with ReLU Activations”
Very widely studied, thousands of references

Def.
 ା is a ReLU if ଵ such that

ଵ
, 𝟏 𝒏 𝒊 𝒊𝒊

Several recent references [see paper] give lower bounds
for some “weird” which vary sharply / sensitive

Thm 𝒍𝒐𝒈∗𝒏 without -size

No lower bounds known for discrete-domain / Boolean functions
(note: “most sensitive” Boolean fn PARITY has O(n)-size)

Compelling Conjecture [“Degree-Two Uncertainty Principle”]:
(on inputs) requires 𝝎 𝟏 -size

Sums of Low-Degree GF(p)-Polys

We prove:
Thm prime, 𝒌 without 𝒌-size

Known: requires -size

: Linear combination of

where for every there is a degree- polynomial such that
, mod

No non-trivial lower bounds were known for

Thm 𝒍𝒐𝒈∗𝒏 without -size
for all fixed and fixed prime

has /ଶ -size

Case of is already very interesting!

Key Theorem: Let be a class of functions 𝒏 .
Assume: there is an and an algorithm so that

for any given 𝟏 𝟒 , can compute the “sum-product”

𝒊

𝟒

𝒊ୀ𝟏𝒂∈ 𝟎,𝟏 𝒏

in 𝒏 𝟏ି𝜺 time.
Then: , without 𝒌-size , and

𝒍𝒐𝒈∗𝒏 without -size

Applies new Easy Witness Lemma [Murray-W’18]

Key Theorem
A new instance of “Circuit Analysis Algorithms Circuit Lower Bounds”

We show how to compute sum-products in 𝒏 𝟏ି𝜺 time
for LTFs, ReLUs, and low-degree polynomials

Solving a generalization of #SAT for 𝓒
 Strong lower bounds for ∑∘ 𝓒

[Murray-W’18] + #Circuit-SAT algorithm , without 𝒌-size unrestricted circuits

Major Ideas in the Key Theorem
Assume: (1) There is a 𝒏 𝟏ି𝜺 -time sum-product algorithm for

(2) For some fixed , all have 𝒌-size Goal: Derive a contradiction.

(1) and (2) Given (unrestricted) Boolean circuit with inputs and size,
we can guess-and-check an 𝒌-size computing , in 𝒏 𝟏ି𝜺 𝑶 𝟏 time

(1) Can solve #Circuit-SAT in nondeterministic 𝒏 𝟏ି𝜺 𝑶 𝟏 time
Idea: given (unrestricted) circuit , guess-and-check an equivalent 𝒌-size

computing . Then, #SAT() is equiv. to 𝒂∈ 𝟎,𝟏 𝒏 𝒂 .

Contradicts (2) when can be simulated by Boolean circuits!

Notes: (a) Checking that a given ∑∘ 𝓒 is Boolean-valued is the hardest part.
(b) In order to guess the ∑∘ 𝓒 circuit, we need that the coefficients in our

linear combinations have “small” bit complexity, WLOG

The proof crucially relies on the circuit computing an arbitrary circuit exactly

Sum-Product Algorithm for LTF
Uses (old) fact that #Subset-Sum is solvable in 𝒏/𝟐 time!

Thm [HS’76] #Subset-Sum on numbers is in 𝒏/𝟐 time

Proof Given 𝟏 𝒏 , we want to know
the number of such that 𝒊𝒊∈𝑺

Takes 𝒏/𝟐 time in total

1. Enumerate all possible 𝒏/𝟐 subsets of 𝟏 𝒏/𝟐 .
Make a list 𝟏 of the 𝒏/𝟐 subset sums, and SORT all sums in 𝟏

2. Enumerate all possible 𝒏/𝟐 subsets of 𝒏/𝟐ା𝟏 𝒏 .
For each summing to a value ,

BINARY SEARCH for a value in 𝟏 such that
3. To compute the total number of subsets summing to :

For each sum value appearing in 𝟏,
store the number 𝒗ᇱ of subsets in 𝟏 which have value .

Later, if value is found in the binary search,
add 𝒗ᇱ to a running sum.

Sum-Product Algorithm for LTF
Uses (old) fact that #Subset-Sum is solvable in 𝒏/𝟐 time!

Thm For any 𝟏 𝟒 , we can compute

𝒊

𝟒

𝒊ୀ𝟏𝒂∈ 𝟎,𝟏 𝒏

Proof An Exact LTF () has the form 𝒊 𝒊𝒊

So we can write

[HP’10]: Every on inputs can be written as 𝒑𝒐𝒍𝒚 𝒏

 ෑ 𝒇𝒊(𝒂)

𝟒

𝒊ୀ𝟏

 = ෑ 𝒈𝒊,𝒋(𝒂)

𝒑𝒐𝒍𝒚 𝒏

𝟒

𝒊ୀ𝟏𝒂∈ 𝟎,𝟏 𝒏𝒂∈ 𝟎,𝟏 𝒏

for s 𝒊,𝒋

= ෑ 𝒈𝒊,𝒋ᇱ 𝒂

𝟒

𝒊ୀ𝟏𝒑𝒐𝒍𝒚 𝒏𝒂∈ 𝟎,𝟏 𝒏

Simple algebra: = ෑ 𝒈𝒊,𝒋ᇱ 𝒂

𝟒

𝒊ୀ𝟏𝒂∈{𝟎,𝟏}𝒏𝒑𝒐𝒍𝒚 𝒏

Can compute in 𝒑𝒐𝒍𝒚 𝒏 ⋅ 𝟐𝒏/𝟐 time!Each ∏ 𝒈𝒊,𝒋ᇱ 𝒙 = 𝒉 𝒙𝟒
𝒊ୀ𝟏 for some 𝑬𝑳𝑻𝑭 𝒉

in 𝒏/𝟐 time.

#Subset-Sum in 𝒏/𝟐 time in 𝒏/𝟐 time

Open Problems

Show requires 𝒌-size , for all k

Know: For each , there is an 𝑶 𝒌𝟒
without 𝒌-size

Show Quasi-NP does not have THR THR circuits of
subquadratic size

Show there’s a function in 𝑵𝑷 without size circuits

I know how to solve #SAT for in poly-time.
Thus this class should not even represent CNF. Prove that!

If , then ୪୭ 𝒏 is not in .
If is in 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏 time, then Quasi-P is not in .

Is such a connection true for Gap-Circuit-SAT?
[IW97] (𝑶 𝒏 not in 𝒏/𝟏𝟎𝟎 size) Gap-Circuit-SAT is in P

Thank you!

