# Lower Bounds from Algorithm Design: An Overview

Ryan Williams MIT

# Course Announcement CS294-152. Lower Bounds: Beyond the Boot Camp

### Soda 405 Mondays 4:00pm to ≈ 6:30pm (with a break in the middle) first lecture is next week

### Outline

- A High-Level View
- Algorithms versus Boolean Circuits
- Circuit Analysis => Circuit Lower Bounds
- Some Details and Some Progress: NQP (Quasi-NP) is not in ACC NP doesn't have small depth-two neural nets

# High-level view of algorithms and complexity

- Algorithm designers
- Complexity theorists



- What makes some problems easy to solve? When can we find an *efficient* algorithm?
- What makes other problems difficult? When can we prove that a problem is not easy?

When can we prove a *Lower Bound on the resources (time/space/communication/etc) needed to solve a problem?*  The tasks of the algorithm designer and the complexity theorist appear to be polar opposites.

- Algorithm designers prove upper bounds
- Complexity theorists prove lower bounds



Furthermore, it's generally believed that Algorithm Design is easier than Lower Bounds

- In Algorithm Design: find one clever algorithm
- In Lower Bounds: must reason about "all possible" algorithms, and argue none of them work well

... but there are thousands of worst-case algorithms which analyze all possible finite objects of some kind...

My Opinion: <u>This isn't why lower</u> <u>bounds are hard!</u>

# Why are lower bounds hard to prove?

There are many known "no-go" theorems

- Relativization [70's]
- Natural Properties [9
- Algebrization

[90's] [00's]

Summary: The common proof techniques are not good enough to prove even weak lower bounds!

Great pessimism in complexity theory



# How will we make progress?

There are many known "no-go" theorems

- Relativization [70's]
  Natural Properties [90's]
- Algebrization

Summary: The common proof techniques are not good enough to prove even weak lower bounds!

[00's]

Great pessimism in complexity theory Have to non-relativize, non-algebrize, and non-naturalize!



#### One Direction for Progress: Connect Algorithm Design to Lower Bounds

Much more than *opposites*! There are deeper connections we are slowly uncovering.



Thesis: Designing Algorithms (in some sense) is equivalent to Proving Lower Bounds

A typical result in Algorithm Design: "Here is an algorithm A that solves the problem, on all possible instances of the problem" A typical theorem from Lower Bounds: "Here is a proof that the problem can't be solved, by all possible algorithms of some type"

Meta-computation: Problems whose input is the code of an algorithm

#### A "Plan" For Proving Lower Bounds

Want to prove results of the form:

Task A is impossible for computation model B

Find results showing (algorithm design  $\rightarrow$  lower bounds):

Task A' is possible for computation model B' → Task A is impossible for computation model B

Then, use results from algorithm design to show:

Task A' is possible for computation model B'

# Where do we start????

Want to prove results of the form:

Task A is impossible for computation model B

**Find results showing (algorithm design \rightarrow lower bounds):** 

Define Task A' be about

analyzing model B ????
Task A's possible for computation model B' Task A is impossible for computation model B



**Define Task A** 

in terms of model B' Then, use results from algorithm design to show:

Task A' is possible for computation model B'

# (algorithm design $\rightarrow$ lower bounds)?

A simple example from complexity theory:

**If PSPACE = EXPTIME then PTIME ≠ PSPACE** 

PSPACE = problems solvable in polyncia.....

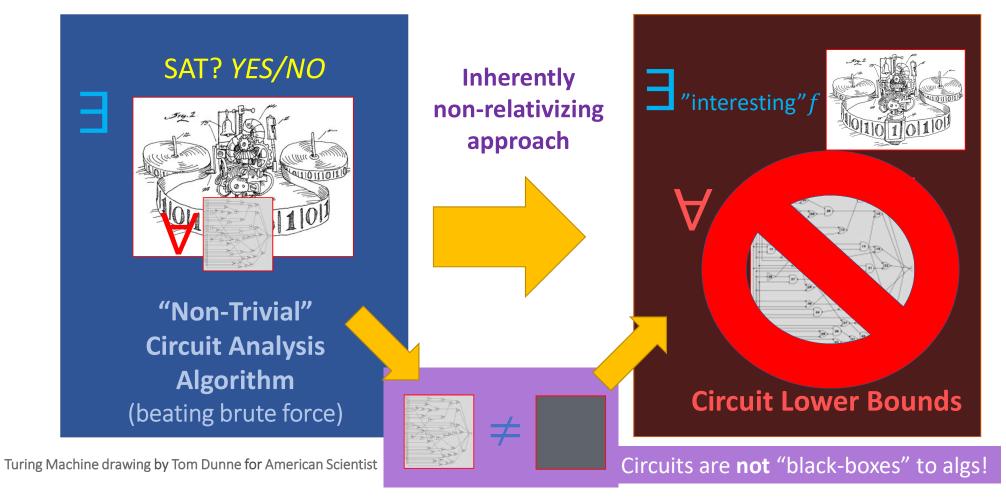
PTIME = .... in polynomial time

**EXPTIME = ...** in exponential time

Proof: PTIME ≠ EXPTIME (time hierarchy theorem) So PTIME = PSPACE implies PSPACE ≠ EXPTIME. QED

> Many such results can be proved.... But they do not seem useful!

# Big Idea: Interesting circuit-analysis algorithms tell us about the *limitations* of circuits in modeling algorithms



Big Idea: Interesting circuit-analysis algorithms tell us about the *limitations* of circuits in modeling algorithms

**Goal:** Algorithmic task A is impossible for "efficient" circuits (this is our model B)

Show: Non-trivial analysis of "efficient" circuits is possible with algorithms (model B')
 → Algorithmic Task A is impossible for "efficient" circuits

Show: Non-trivial analysis of "efficient" circuits is possible with algorithms

# Outline

- A High-Level View
- Algorithms versus Boolean Circuits
- Circuit Analysis => Circuit Lower Bounds
- Some Details and Some Progress

# **Algorithms**



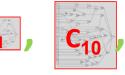
Can take in **arbitrarily** long inputs and still solve the problem  $f: \{0, 1\}^* \rightarrow \{0, 1\}$ 

# (Boolean) Circuits



Only take in fixed-length inputs  $g: \{0, 1\}^n \rightarrow \{0, 1\}$ 









For every input length *n*,

a *circuit family* has a circuit  $C_n$  to be run on all inputs of length n

 $\begin{array}{l} \mathsf{P/poly} = \{ \ f : \{\mathbf{0}, \mathbf{1}\}^* \to \{\mathbf{0}, \mathbf{1}\} \text{ computable by a circuit family } \{\mathsf{C}_n\} \\ \text{ such that } (\exists k \geq 1)(\forall n), \text{ the size of } \mathsf{C}_n \text{ is at most } n^k \} \end{array}$ 

Each circuit is "small" relative to its number of inputs

Circuit model has "programs with *infinite-length descriptions*" *The standard methods in computability theory are powerless...* 



 $\begin{array}{l} \textbf{P/poly} = \{ \ f : \{ \textbf{0}, \textbf{1} \}^* \rightarrow \{ \textbf{0}, \textbf{1} \} \text{ computable with a circuit family} \\ \quad \{ \textbf{C}_n \} \text{ such that } (\exists k \geq 1) (\forall n), \text{ the size of } \textbf{C}_n \text{ is at most } n^k \} \end{array}$ 

# Why study this "infinite" model of computation? 1) Circuits could be easier to analyze than Turing machines! 2) Proving limitations on P/poly is a step towards non-asymptotic complexity theory:

Concrete limitations on computing within the known universe "Any logic circuit solving most instances of my 1000-bit problem needs at least 10<sup>100</sup> bits to be described"

Universe stores < 10<sup>80</sup> bits [Bekenstein '70s] [Meyer-Stockmeyer '70s]

#### Algorithms versus Circuit Families

 $\begin{aligned} \textbf{P/poly} = \{ f : \{0, 1\}^* \to \{0, 1\} \text{ computable with a circuit family} \\ \{\textbf{C}_n\} \text{ such that } (\exists k \geq 1)(\forall n), \text{ the size of } \textbf{C}_n \text{ is at most } n^k \end{aligned} \end{aligned}$ 

Most Boolean functions require huge circuits: Theorem [Shannon '49] W.h.p., random  $f : \{0, 1\}^n \rightarrow \{0, 1\}$  needs circuits of size at least  $2^n/n$ Theorem [Lupanov'58] Every f has a circuit of size  $(1+o(1))2^n/n$ Explicit (non-random) hard functions?

What "uniform" algorithms can be simulated in P/poly? Can huge uniform classes (like PSPACE, EXP, NEXP) be simulated with small non-uniform classes (like P/poly)?

The key obstacle: Non-uniformity can be very powerful!

#### Algorithms versus Circuit Families

What "uniform" algorithms can be simulated in P/poly? Can huge uniform classes (like PSPACE, EXP, NEXP) be simulated with small non-uniform classes (like P/poly)?

**RIDICULOUSLY OPEN:** Is NEXP ⊂ P/poly?
Can all problems with *exponentially-long answers checkable in exponential time*be solved with polynomial-size circuit families?

**Conjecture:** NP  $\not\subset$  P/poly (harder than P  $\neq$  NP)

**OPEN:** NP  $\not\subset$  SIZE(O(n))? **Best known:** NP  $\not\subset$  SIZE(5n), SIZE(3.01n)

Now, problems like NP ⊄ SIZE(O(n)) may be attackable...(?)

# Outline

- A High-Level View
- Algorithms versus Boolean Circuits
- Circuit Analysis => Circuit Lower Bounds
- Some Details and Some Progress

## Generalized Circuit Satisfiability

Let **C** be a class of Boolean circuits

**C** = {formulas}, **C** = {arbitrary circuits}, **C** = {3CNFs}

The C-SAT Problem: Given a circuit  $K(x_1,...,x_n)$  from C, is there an assignment  $(a_1, ..., a_n) \in \{0,1\}^n$  such that  $K(a_1,...,a_n) = 1$ ?

#### A very "simple" circuit analysis problem!

[CL'70s] C-SAT is NP-complete for practically all interesting C C-SAT is solvable in O(2<sup>n</sup> |K|) time by brute force

## Gap Circuit Satisfiability

Let **C** be a class of Boolean circuits

**C** = {formulas}, **C** = {arbitrary circuits}, **C** = {3CNFs}

**Gap-C-SAT:** Given  $K(x_1,...,x_n)$  from C, and the **promise** that either (a)  $K \equiv 0$ , or (b)  $Pr_x[K(x) = 1] \ge 1/2$ , **decide** which is true.

#### Even simpler! In randomized polynomial time

[Folklore?] If Gap-Circuit-SAT ∈ P then P = RP [Hirsch, Trevisan, ...] Gap-kSAT is P for all k

#### Faster C-SAT $\Rightarrow$ Circuit Lower Bounds for C

| Slightly Faster Circuit-SAT<br>[R.W. '10,'11]                                                                     | No "Circuits for NEXP"           |                                               |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------|
| Deterministic algorithms for:                                                                                     | Would imply:                     |                                               |
| <ul> <li>Circuit SAT in O(2<sup>n</sup>/n<sup>10</sup>) time<br/>with n inputs and n<sup>k</sup> gates</li> </ul> | • NEXP ⊄ P/poly                  |                                               |
| <ul> <li>Formula SAT in O(2<sup>n</sup>/n<sup>10</sup>) time</li> </ul>                                           | <ul> <li>NEXP</li></ul>          |                                               |
| <ul> <li>C-SAT in O(2<sup>n</sup>/n<sup>10</sup>) time</li> </ul>                                                 | • NEXP $\not\subset$ poly-size C | Concrete LBs                                  |
| <ul> <li>Gap-C-SAT is in O(2<sup>n</sup>/n<sup>10</sup>)<br/>time on n<sup>k</sup> size</li> </ul>                | NEXP ⊄ poly-size <b>C</b>        | C = ACC<br>[W'11]<br>C = ACC of THR<br>[W'14] |
| (Easily solved w/ randomness!)                                                                                    |                                  |                                               |

### Even Faster SAT ⇒ Stronger Lower Bounds

| Somewhat Faster Circuit SAT<br>[Murray-W. '18]                                                     | No "Circuits for Quasi-NP"                      |                |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| Det. algorithm for some $\epsilon > 0$ :                                                           | Would imply:                                    |                |
| • Circuit SAT in $O(2^{n-n^{\epsilon}})$ time<br>with <i>n</i> inputs and $2^{n^{\epsilon}}$ gates | • NTIME[ $n^{polylog n}$ ] $\not\subset$ P/poly |                |
| • Formula SAT in $O(2^{n-n^{\epsilon}})$ time                                                      | • NTIME[ $n^{polylog n}$ ] $\not\subset$ NC1    |                |
| • <b>C</b> -SAT in $O(2^{n-n^{\epsilon}})$ time                                                    | • NTIME $[n^{polylog n}] \not\subset C$         | C = ACC of THR |
| • Gap- <i>C</i> -SAT is in $O(2^{n-n^{\epsilon}})$<br>time on $2^{n^{\epsilon}}$ gates             | NTIME[ $n^{polylog n}$ ] $\not\subset C$        | [MW'18]        |

### Even Faster SAT $\Rightarrow$ Stronger Lower Bounds

|                                    | "Fine-Grained" SAT Algorithms<br>[Murray-W. '18]                                                                                       | No "Circuits for NP"                                   |                                                                                    |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|
|                                    | Det. algorithm for some $\epsilon > 0$ :                                                                                               | Would imply:                                           |                                                                                    |
| Note: Would<br>refute              | • Circuit SAT in $O(2^{(1-\epsilon)n})$ time<br>on <i>n</i> inputs and $2^{\epsilon n}$ gates                                          | • NP $\not\subset$ SIZE( $n^k$ ) for all $k$           |                                                                                    |
| Strong ETH!                        | • FormSAT in $O(2^{(1-\epsilon)n})$ time                                                                                               | • NP $\not\subset$ Formulas of size $n^k$              |                                                                                    |
|                                    | • <b>C</b> -SAT in $O(2^{(1-\epsilon)n})$ time                                                                                         | • NP $\not\subset$ <b>C</b> -SIZE( $n^k$ ) for all $k$ |                                                                                    |
| Strongly<br>believed to<br>be true | <ul> <li>Gap-<i>C</i>-SAT is in O(2<sup>(1-ε)n</sup>)<br/>time on 2<sup>εn</sup> gates</li> <li>(Implied by PromiseRP in P)</li> </ul> | ND $\rightarrow C$ SIZE( $mk$ ) for all $k$            | <i>C</i> = SUM of THR<br><i>C</i> = SUM of ReLU<br><i>C</i> = SUM of POL<br>[W'18] |

# Outline

- A High-Level View
- Algorithms versus Boolean Circuits
- Circuit Analysis => Circuit Lower Bounds
- Some Details and Some Progress

#### Some Lower Bounds by Algorithm Design

ACC<sup>0</sup>: circuits of polynomial size and constant depth, with AND, OR, and MODm gates for some constant m. ACC<sup>0</sup> ⊂ P/poly, probably a proper subset!

> Annoying Circuit Class to prove lower bounds for, proposed in 1986 (and it is the O<sup>th</sup> such class)

Thm [R.W.'11]: NEXP  $\not\subset$  ACC<sup>0</sup>

Thm [Murray-W'18]: NTIME[ $n^{poly(\log n)}$ ]  $\not\subset$  ACC<sup>0</sup> of THR

ACC • THR: Annoying Circuits with Linear Threshold Gates at the bottom

#### **Progress Report**

[W'14, Murray-W'18] Quasi-NP does not have ACC • THR circuits of polynomial size **SAT algorithm** uses a new depth-two representation of **ACC** • **THR** and *fast rectangular matrix multiplication* to evaluate the representation guickly Improving the lower bounds to multiple layers of THR gates is an open frontier: [Tamaki'16, Alman-Chan-W'16] E<sup>NP</sup> does not have ACC • THR • THR circuits of subquadratic size Uses recent probabilistic polynomials for THR [Srinivasan'13, Alman-W'15] **Open:** Quasi-NP does not have THR  $\circ$  THR circuits of subquadratic size [S.Chen-Papakonstantinou'16] Better size-depth tradeoff lower bound for NEXP vs ACC [R.Chen-Oliveira-Santhanam'18] Average Case: NEXP doesn't have poly-size ACC circuits computing a  $\frac{1}{2} + \frac{1}{nolv(log n)}$  fraction of *n*-bit inputs correctly Carefully applies coding-theoretic techniques on top of the framework [W'18] NP does not have  $O(n^{100})$ -size depth-two neural networks with sign activation function, nor with ReLU activation functions

At the heart: [Horowitz-Sahni 70s] Counting subset sum solutions on n items is in  $\sim 2^{n/2}$  time! New lower bounds from an old algorithm!

#### **Progress Report**

#### [W'14, Murray-W'18] Quasi-NP does not have ACC • THR circuits of polynomial size

**SAT algorithm** uses a new depth-two representation of **ACC** • **THR** and *fast rectangular matrix multiplication* to evaluate the representation guickly Improving the lower bounds to multiple layers of THR gates is an open frontier: [Tamaki'16, Alman-Chan-W'16] E<sup>NP</sup> does not have ACC • THR • THR circuits of subquadratic size Uses recent probabilistic polynomials for THR [Srinivasan'13, Alman-W'15] **Open:** Quasi-NP does not have THR  $\circ$  THR circuits of subquadratic size [S.Chen-Papakonstantinou'16] Better size-depth tradeoff lower bound for NEXP vs ACC [R.Chen-Oliveira-Santhanam'18] Average Case: NEXP doesn't have poly-size ACC circuits computing a  $\frac{1}{2} + \frac{1}{nolv(log n)}$  fraction of *n*-bit inputs correctly Carefully applies coding-theoretic techniques on top of the framework [W<sup>2</sup>18] NP does not have  $O(n^{100})$ -size depth-two neural networks with sign activation function, nor with ReLU activation functions At the heart: [Horowitz-Sahni 70s] Counting subset sum solutions on n items is in  $\sim 2^{n/2}$  time! New lower bounds from an old algorithm!

# Lower Bounds for NEXP, Quasi-NP, and NP From Nontrivial Gap-SAT Algorithms

#### How **NEXP** ⊄ **ACC**<sup>0</sup> Was Proved

Let **C** be a "typical" circuit class (like ACC<sup>0</sup>)

Thm A [W'11] (algorithm design → lower bounds) If for all k, Gap-ℂ-SAT on n<sup>k</sup>-size is in O(2<sup>n</sup>/n<sup>k</sup>) time, then NEXP does not have poly-size ℂ-circuits.

Thm B [W'11] (algorithm)

 $\exists \varepsilon, ACC^{0}$ -SAT on  $2^{n^{\varepsilon}}$  size is in  $O(2^{n-n^{\varepsilon}})$  time. (Used a well-known representation of  $ACC^{0}$  from 1990, that people long suspected should imply lower bounds)

#### Note the inefficiency!

Theorem B gives a much stronger algorithm than is necessary in Theorem A.

This is exactly the starting point of [Murray-W'18]...

### Idea of Theorem A

Let  $\mathbb{C}$  be some circuit class (like ACC<sup>0</sup>)

Thm A [W'11] (algorithm design → lower bounds) If for all k, Gap C-SAT on n<sup>k</sup>-size is in O(2<sup>n</sup>/n<sup>k</sup>) time, then NEXP does not have poly-size C-circuits.

Idea. Show that if we assume both:
(1) NEXP has poly-size C-circuits, AND
(2) a faster Gap C-SAT algorithm
Then we can show NTIME[2<sup>n</sup>] ⊆ NTIME[o(2<sup>n</sup>)] (contradicts the nondeterministic time hierarchy!)

## Proof Ideas in Theorem A

```
Idea. Assume
```

(1) NEXP has poly-size C-circuits, AND
 (2) there's a faster Gap C-SAT algorithm
 Show that NTIME[2<sup>n</sup>] ⊆ NTIME[o(2<sup>n</sup>)]

Take any problem L in **nondeterministic**  $2^n$  time Given an input x, we "compute" L on x by:

- 1. Guessing a witness y of  $O(2^n)$  length.
- 2. Checking y is a witness for x in  $O(2^n)$  time.

Want to "speed-up" both parts 1 and 2, using the above assumptions Proof Ideas in Theorem A

```
Idea. Assume
```

(1) NEXP has poly-size C-circuits, AND
 (2) there's a faster Gap C-SAT algorithm
 Show that NTIME[2<sup>n</sup>] ⊆ NTIME[o(2<sup>n</sup>)]

Take any problem L in **nondeterministic**  $2^n$  time Given an input x, we will "compute" L on x by:

- Use (1) to guess a witness y of o(2<sup>n</sup>) length (Easy Witness Lemma [IKW02]: if NEXP is in P/poly, then L has "small witnesses")
- Use (2) to check y is a witness for x in o(2<sup>n</sup>) time Technical: Use a highly-structured PCPs for NEXP [W'10, BV'14] to reduce the check to Gap C-SAT

Proof Ideas in Theorem A

Idea. Assume

(1) NEXP has poly-size C-circuits, AND
 (2) there's a faster Gap C-SAT algorithm
 Show that NTIME[2<sup>n</sup>] ⊆ NTIME[o(2<sup>n</sup>)]

Take any problem L in **nondeterministic**  $2^n$  time Given an input x, we will "compute" L on x by:

- Use (1) to guess a witness y of o(2<sup>n</sup>) length (Easy Witness Lemma [IKW02]: if NEXP is in P/poly, then L has "small witnesses")
- Use (2) to check y is a witness for x in o(2<sup>n</sup>) time Technical: Use a highly-structured PCPs for NEXP [W'10, BV'14] to reduce the check to Gap C-SAT

#### **Guessing Short Witnesses**

#### 1. Guess a witness y of $O(2^n)$ length.

**Definition.** An NTIME[2<sup>n</sup>] problem L has *easy witnesses* if

 $\exists c \ge 1, \forall \text{ Verifiers V for } L, \text{ if } \exists y \in \{0, 1\}^{2^{|x|+d}} \text{ s.t. V}(x, y) \text{ accepts, then} \\ \exists \text{ circuit } D_x \text{ of } |x|^c \text{ size and } |x| + d \text{ inputs s.t. V}(x, tt(D_x)) \text{ accepts,} \end{cases}$ 

where  $tt(D_x)$  = Truth Table of circuit  $D_x$ .

Easy Witness Lemma [IKW'02]:

If NEXP is in P/poly then all NEXP problems have *easy witnesses* 

Small circuits for solving NEXP problems → Small circuits for *solutions* to NEXP problems

**Replace 1 with:** 1'. Guess poly(|x|)-size circuit  $D_x$ 

### Proof Sketch of Theorem A

```
Idea. Assume
```

(1) NEXP has poly-size C-circuits, and
 (2) there's a faster Gap C-SAT algorithm
 Show that NTIME[2<sup>n</sup>] ⊆ NTIME[o(2<sup>n</sup>)]

Take any problem L in **nondeterministic**  $2^n$  **time**. Given an input x, we compute L on x by:

- Guessing a circuit D<sub>x</sub> of poly(|x|) size (Easy Witness Lemma, using (1))
- 2. Using (2) to check  $D_{\chi}$  encodes a witness for x in  $o(2^n)$  time (Nice PCPs for L)

# Improving Theorem A [MW'18]

Let  $\mathbb{C}$  be a "typical" circuit class (like ACC<sup>0</sup>) Thm A+ [MW18] If there is an  $\mathcal{E}>0$  such that Gap- $\mathbb{C}$ -SAT on  $2^{n^{\mathcal{E}}}$ -size circuits is in O( $2^{n-n^{\mathcal{E}}}$ ) time

then NTIME[ $2^{(\log n)^{0(1)}}$ ] doesn't have poly-size  $\mathbb{C}$ -circuits

Thm A++ [MW18] If there is an  $\mathcal{E}>0$  such that Gap- $\mathbb{C}$ -SAT on  $2^{\mathcal{E}n}$ -size circuits is in  $O(2^{n(1-\mathcal{E})})$  time then for all k, NP doesn't have  $n^k$ -size  $\mathbb{C}$ -circuits and NTIME[ $n^{\log^* n}$ ] doesn't have poly-size  $\mathbb{C}$ -circs [Tell'18]

## Proof of Theorem A++?

Approach: Want to show that given

(1) NP has  $n^k$ -size  $\mathbb{C}$ -circuits, and

(2) Gap- $\mathbb{C}$ -SAT algorithm running in  $2^{(1-\varepsilon)n}$  time Then NTIME[ $n^d$ ]  $\subseteq$  NTIME[ $o(n^d)$ ] for some d

Let  $L \in \mathsf{NTIME}[n^d]$ . To solve L faster on input x,

- **1.** Guess a witness circuit  $C_x$  of  $o(n^d)$  size
- 2. Check  $C_x$  encodes witness for x in  $o(n^d)$  time (Use nice PCP; this still works, if part 1 works)

**Easy Witness Lemma only works for NEXP!** 

# New Easy Witness Lemma [MW'18]

**NTIME[t(n)] has s(n)-size witness circuits if**  $\forall L \in \text{NTIME[t(n)]}, \forall \text{Verifiers V}, \forall x \in L,$  $\exists$  s(n)-size circuit D<sub>x</sub> such that V(x, tt(D<sub>x</sub>)) accepts.

### Old Easy Witness Lemma [IKW02]:

If every problem in NEXP has poly(n)-size circuits, then NEXP has poly(n)-size witness circuits.

New Easy Witness Lemma (Special Case of [MW'18]): If every problem in NP has  $n^k$ -size circuits, then NP has  $n^{O(k^3)}$ -size witness circuits. Similar statement for NTIME[ $n^{polylog n}$ ].

# Proof of Theorem A++?

#### Approach: Want to show that given

- (1) NP has  $n^k$ -size  $\mathbb{C}$ -circuits, and
- (2) Gap-C-SAT algorithm for  $2^{\epsilon n}$  size, in  $2^{n(1-\epsilon)}$  time Then NTIME[ $n^{k^4}$ ]  $\subseteq$  NTIME[ $o(n^{k^4})$ ]

Let  $L \in NTIME[n^{k^4}]$ . To solve L faster on input x,

- 1. Guess circuit  $C_x$  of  $O(n^{k^3})$  size with  $k^4 \log n$  inputs, encoding witness y of length  $n^{k^4}$ (Use (1) and New Easy Witness Lemma)
- 2. Check  $C_x$  encodes witness for x in  $o(n^{k^4})$  time (Use (2) and nice PCP)

**Contradiction!** 

# IKW's Easy Witness Lemma

**Easy Witness Lemma [IKW02]:** NTIME $[2^n] \subset SIZE[n^k]$  for some k  $\Rightarrow$  NTIME $[2^n]$  has  $n^c$ -size witness circuits for some c.

**Strategy:** Assume the negation, prove a contradiction!

- (1)  $\exists k \text{ NTIME}[2^n] \subset \text{SIZE}[n^k]$  and
- (2)  $\forall c$ , NTIME[2<sup>n</sup>] **DOESN'T** have  $n^c$ -size witness circuits

IKW start with  $L_{hard} \in \text{SPACE}[n^{k+1}] / \text{ i.o.-SIZE}[n^k]$ and show how assumptions (1) and (2) imply:  $\text{SPACE}[n^{k+1}] \subseteq \text{MA} \subseteq \text{ i.o.-NTIME}[2^n]_{/n} \subseteq \text{ i.o.-SIZE}[n^k]$ 

> Merlin-Arthur protocols

infinitely often, with *n* bits of advice

(1)  $\exists k \text{ NTIME}[2^n] \subset \text{SIZE}[n^k]$  and (2)  $\forall c$ ,  $\text{NTIME}[2^n]$  **DOESN'T** have  $n^c$ -size witness circuits **Show how assumptions (1) and (2) imply:**  $\text{SPACE}[n^{k+1}] \subseteq \text{MA} \subseteq \text{i.o.-NTIME}[2^n]_{/n} \subseteq \text{i.o.-SIZE}[n^k]$ 

MA: Merlin-Arthur = NP with probabilistic verificationL is in MA means there's a polytime V such that $x \in L \rightarrow$  there is a y such that V(x,y) always accepts $x \notin L \rightarrow$  for every y, V(x,y) rejects with prob >  $\frac{3}{4}$ MerlinArthur

- (1)  $\exists k \text{ NTIME}[2^n] \subset \text{SIZE}[n^k]$  and
- (2)  $\forall c$ , NTIME[2<sup>n</sup>] **DOESN'T** have  $n^c$ -size witness circuits

Show how assumptions (1) and (2) imply:

 $\mathsf{SPACE}[n^{k+1}] \subseteq \mathsf{MA} \subseteq \mathsf{i.o.-NTIME}[2^n]_{/\mathsf{n}} \subseteq \mathsf{i.o.-SIZE}[n^k]$ 

- (1) NTIME[ $2^n$ ]  $\subset$  SIZE[ $n^k$ ]
- $\Rightarrow$  SPACE[O(n)]  $\subset$  P/poly
- $\Rightarrow$  PSPACE  $\subset$  P/poly

#### ⇒ PSPACE = MA [BFNW'93]

Use the fact that PSPACE = IP [Shamir]: Guess a small circuit encoding the prover's strategy, then run the interactive protocol with that circuit

(1)  $\exists k \text{ NTIME}[2^n] \subset \text{SIZE}[n^k]$  and (2)  $\forall c$ ,  $\text{NTIME}[2^n]$  **DOESN'T** have  $n^c$ -size witness circuits **Show how assumptions (1) and (2) imply:**  $\text{SPACE}[n^{k+1}] \subseteq \text{MA} \subseteq \text{i.o.-NTIME}[2^n]_{/n} \subseteq \text{i.o.-SIZE}[n^k]$ 

(1) NTIME[ $2^n$ ]  $\subset$  SIZE[ $n^k$ ]

⇒ i.o.-NTIME[ $2^n$ ]/ $n \subset$  i.o.-SIZE[ $n^k$ ] (Hard-code the advice in the circuit)

- (1)  $\exists k \text{ NTIME}[2^n] \subset \text{SIZE}[n^k]$  and
- (2)  $\forall c, NTIME[2^n]$  **DOESN'T** have  $n^c$ -size witness circuits
- Show how assumptions (1) and (2) imply:

 $\mathsf{SPACE}[n^{k+1}] \subseteq \mathsf{MA} \subseteq \mathsf{i.o.-NTIME}[2^n]_{/n} \subseteq \mathsf{i.o.-SIZE}[n^k]$ 

- (2) NTIME[ $2^n$ ] DOESN'T have  $n^c$ -size witness circuits:
- $\neg (\forall L \in \mathsf{NTIME}[2^n], \forall \text{ Verifiers V, for all but finitely many } x \in L,$ 
  - $\exists y \text{ s.t. } V(x, y) \text{ accepts and (Circuit complexity of } y) \leq n^c$

(1) ∃k NTIME[2<sup>n</sup>] ⊂ SIZE[n<sup>k</sup>] and
(2) ∀c, NTIME[2<sup>n</sup>] DOESN'T have n<sup>c</sup>-size witness circuits
Show how assumptions (1) and (2) imply:
SPACE[n<sup>k+1</sup>] ⊆ MA ⊆ i.o.-NTIME[2<sup>n</sup>]<sub>/n</sub> ⊆ i.o.-SIZE[n<sup>k</sup>]
(2) NTIME[2<sup>n</sup>] DOESN'T have n<sup>c</sup>-size witness circuits:

 $\exists L \in \mathsf{NTIME}[2^n], \exists Verifier V, \exists infinitely many <math>x \in L$ , such that  $\forall y [V(x, y) \text{ accepts} \Rightarrow (Circuit complexity of <math>y) > n^c]$ 

Given a 'bad' input x as advice, can use verifier V to guess-and-check a function with circuit complexity >  $n^c$ in  $O(2^n)$  time Can nondeterministically generate hard functions!

- (1)  $\exists k \text{ NTIME}[2^n] \subset \text{SIZE}[n^k]$  and
- (2)  $\forall c, NTIME[2^n]$  **DOESN'T** have  $n^c$ -size witness circuits

Show how assumptions (1) and (2) imply:

 $\mathsf{SPACE}[n^{k+1}] \subseteq \mathsf{MA} \subseteq \mathsf{i.o.-NTIME}[2^n]_{/n} \subseteq \mathsf{i.o.-SIZE}[n^k]$ 

(2) NTIME[2<sup>n</sup>] DOESN'T have  $n^c$ -size witness circuits:  $\exists L \in \text{NTIME}[2^n], \exists \text{Verifier V}, \exists \text{ infinitely many } x \in L,$ such that  $\forall y [V(x, y) \text{ accepts} \Rightarrow (\text{Circuit complexity of } y) > n^c]$ 

Thm [Hardness-to-PRGs] There's an  $\alpha > 0$  and  $O(2^n)$ -time computable F such that, given a string y with circuit complexity >  $n^c$ , F outputs a set of  $O(2^n)$  strings which "fool" all circuits of size  $n^{\alpha c}$ 

Use *F* to derandomize  $n^{O(c)}$ -time Merlin-Arthur protocols in  $O(2^n)$  time, on *infinitely many* input lengths, with *n* bits of advice

New Easy Witness Lemma (Special Case) If NP has  $n^k$ -size circuits, then NP has  $n^{O(k^3)}$ -size witness circuits.

Idea: Derive a contradiction from assuming that

```
NP \subset SIZE[n^k]and
```

 $\forall c$ , NP does NOT have  $n^c$ -size witness circuits.

What happens when we try to follow the IKW proof? We want to derive something like:

> $PSPACE \subseteq MA \subseteq i.o.NP_{/n} \subseteq i.o.SIZE[n^k]$ These two inclusions are OK!

They follow from NP  $\subset$  SIZE[ $n^k$ ] and NP does NOT have  $n^c$ -size witness circuits

What happens when we try to follow the IKW proof? We want to derive something like:

 $\mathsf{PSPACE} \subseteq \mathsf{MA} \subseteq \mathsf{i.o.NP}_{/\mathsf{n}} \subseteq \mathsf{i.o.SIZE}[n^k]$ 

Problem: Can't conclude PSPACE is in MA from assuming NP  $\subset$  SIZE[ $n^k$ ] and NP does NOT have  $n^c$ -size witness circuits!

Possible fix: Use another circuit lower bound? Thm [San07]  $MA_{/1} \not\subset SIZE[n^k]$ 

What happens when we try to follow the IKW proof? We want to derive something like:

 $MA_{/1} \subseteq i.o.NP_{/n+1} \subseteq i.o.SIZE[n^k]$ 

New problem: We only know  $MA_{/1} \not\subset SIZE[n^k]$ Don't know if  $MA_{/1} \not\subset i.o.SIZE[n^k]$ 

**Possible fix:** Prove a stronger MA lower bound? Turns out we don't need an "almost-everywhere" lower bound...

### New Lower Bound for Merlin-Arthur Protocols

Thm [MW'18] For all k, there is an  $L \in MA-TIME[n^{k^2}]_{O(\log n)}$  such that for all but finitely many input lengths n,

either  $L_n$  has circuit complexity at least  $n^k$ 

or  $L_{n^k}$  has circuit complexity at least  $n^{k^2}$ 

#### Our proof of the new EWL shows:

If every problem in NP has  $n^k$ -size circuits and some NP problem doesn't have  $n^{O(k^3)}$ -size witnesses, then the above Merlin-Arthur lower bound is contradicted!

# Sketch of the New Easy Witness Lemma

Start with  $L \in MA-TIME[n^{k^2}]_{O(\log n)}$  from our new circuit lower bound.

Assuming some NP problem doesn't have  $n^{O(k^3)}$ -size witnesses, we derive a partial derandomization of the MA protocol for *L*:

For infinitely many n, there is an NP<sub>/O(n)</sub> algorithm computing L correctly on all inputs of length n AND of length  $n^k$ .

Assuming NP has  $n^k$ -size circuits, we can derive:

For infinitely many n,  $L_n$  has an  $n^k$ -size circuit AND  $L_{n^k}$  has an  $n^{k^2}$ -size circuit.

This directly contradicts our lower bound for L!

# More Details on Derandomizing MA

Assume: NP does NOT have  $n^{k^3}$ -size witness circuits. Let V be a "bad" verifier (for inf. many x, every witness for x is not easy)

How to derive MA  $_{O(\log n)} \subseteq i.o.NP_{/n+O(\log n)}$ 

Given a 'bad'  $x_w$  as advice,

Guess a 'bad' y such that  $V(x_w, y)$  accepts

// y encodes a function with circuit complexity >  $n^{k^3}$ 

Stick y into a PRG that fools  $n^{\Omega(k^3)}$ -size circuits

Use PRG to derandomize an m-time MA protocol (Guess Merlin's message, construct a circuit of size  $m^2$  that takes Arthur's message as input)

This works as long as  $m^2 << n^{O(k^3)}$ 

# More Details on Derandomizing MA

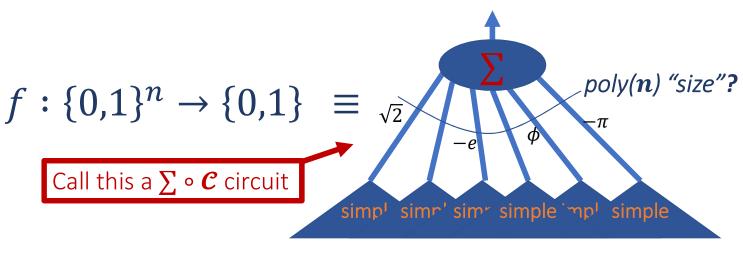
How to derive MA  $_{O(\log n)} \subseteq i.o.NP_{(n+O(\log n))}$ Given a 'bad'  $x_w$  as advice, Guess a 'bad' y such that  $V(x_w, y)$  accepts // y encodes a function with circuit complexity >  $n^{k^3}$ Stick y into a PRG that fools  $n^{\Omega(k^3)}$ -size circuits Use PRG to derandomize an m-time MA protocol (Guess Merlin's message, construct a circuit of size  $m^2$  that takes Arthur's message as input) This works as long as  $m^2 \ll n^{O(k^3)}$ If NP does not have  $n^{k^3}$ -size witness circuits, the same advice  $x_w$  can be used to derandomize MA for all running times up to  $m = n^{O(k^3)}$ 

# Lower Bounds for NP Against Some Depth-Two Classes

# The $\mathbb{R}$ -linear Representation Problem

Let *C* be a class of "simple" functions (take Boolean inputs, but need not be Boolean-valued)

Which "interesting" functions f can(not) be represented by "short"  $\mathbb{R}$ -linear combinations of functions from C?



If  $\mathcal{C}$  spans the vector space of all functions  $f : \{0, 1\}^n \to \mathbb{R}$ then there is always some  $\sum \circ \mathcal{C}$  circuit of  $\leq 2^n$  size...

# The R-linear Representation Problem

Which "interesting" functions f can(not) be represented by "short"  $\mathbb{R}$ -linear combinations of functions from C?

If C is the class of  $2^n AND$  functions on n variables:  $\sum \circ AND \equiv 0/1$  polynomials over  $\mathbb{R}$ 

If C is the class of  $2^n PARITY$  functions on n variables:  $\sum \circ PARITY \equiv -1/1$  polynomials over  $\mathbb{R}$ (Fourier analysis of Boolean functions)

These are well-understood:

 $\mathcal{C}$  is a basis for the vector space of functions  $f: \{0,1\}^n \to \mathbb{R}$ 

 $\Rightarrow$  the  $\mathbb{R}$ -linear representation of f is unique,

so the "shortest" is also the "longest"...

More interesting cases: representations are *not* unique

# [W'18] Three Simple Classes

- 1. Linear Threshold Functions [*LTF*]
- 2. Rectified Linear Units [*ReLU*]
- 3. GF(p)-Polynomials of Degree-d [POLYd[p]] (p prime and  $d \ge 2$ )

For all three classes:

- There are  $\gg 2^n$  functions on n variables, so  $\mathbb{R}$ -linear representations are not unique  $2^{\Theta(n^2)}$  LTFs,  $p^{\Theta(n^d)}$  degree-d polys,  $\infty$  ReLU functions
- $\mathbb{R}$ -linear Representations have been studied!  $\sum \circ LTF$  = Special Case of Depth-2 Threshold Circuits  $\sum \circ ReLU$  = "Depth-2 Neural Net with ReLU activation"  $\sum \circ POLYd[p]$  = "Higher-Order" Fourier Analysis for  $d \ge 2$

# Sums of Linear Threshold Functions

<u>Def.</u>  $f_n: \{0,1\}^n \to \{0,1\}$  is an LTF if  $\exists w_1, \dots, w_n, t \in \mathbb{R}$  such that  $\forall (x_1, \dots, x_n) \in \{0,1\}^n, f(x_1, \dots, x_n) = \mathbf{1} \iff \sum_i w_i x_i \ge t$ 

**Depth-Two LTF Circuits (LTF**  $\circ$  **LTF**): Major problem to find "nice" functions without  $n^k$ -gate LTF  $\circ$  LTF circuits, for all k

[Hajnal et al.'91] exp(n) depth-two lower bounds for *small*  $w_i$ 's [Roychowdhury-Orlitsky-Siu'94] What about  $\sum \circ LTF$ ? Special case of  $LTF \circ LTF$ :

the linear form for output LTF must always evaluate to 0 or 1 Still, no  $n^{1.5}$ -gate lower bounds were known for  $\sum \circ LTF$ !

#### We prove:

<u>Thm</u>  $\forall k, \exists f_k \in NP$  without  $n^k$ -size  $\sum \circ LTF$ 

<u>Thm</u>  $\exists f \in NTIME[n^{log^*n}]$  without poly(n)-size  $\sum \circ LTF$ 

Note: It is a *major* open problem to prove  $\exists f \in NP$  without  $n^k$ -size (unrestricted) circuits

### Sums of ReLUs

Def.  $f_n: \mathbb{R}^n \to \mathbb{R}^+$  is a ReLU if  $\exists w_1, \dots, w_n, t \in \mathbb{R}$  such that  $\forall (x_1, \dots, x_n) \in \mathbb{R}^n, f(x_1, \dots, x_n) = \max(0, \sum_i w_i x_i + t)$  $\sum \circ ReLU$  generalizes  $\sum \circ LTF$ 

 $\sum \circ ReLU =$  "Depth-Two Neural Nets with ReLU Activations" Very widely studied, thousands of references

Several recent references [see paper] give lower bounds for some "weird"  $f : \mathbb{R}^n \to \mathbb{R}$  which vary sharply / sensitive No lower bounds known for discrete-domain / Boolean functions (note: "most sensitive" Boolean fn PARITY has O(n)-size  $\sum \circ LTF$ )

We can generalize the  $\sum \circ LTF$  limits to  $\sum \circ ReLU$ : <u>Thm</u>  $\forall k$ ,  $\exists f_k \in NP$  without  $n^k$ -size  $\sum \circ ReLU$ 

<u>Thm</u>  $\exists f \in NTIME[n^{log^*n}]$  without poly(n)-size  $\sum \circ ReLU$ 

Sums of Low-Degree GF(p)-Polys  $\sum POLYd[p]$ : Linear combination of  $f: \{0,1\}^n \rightarrow \{0,1, ..., p-1\}$ where for every f there is a degree-d polynomial q(x) such that  $\forall x \in \{0,1\}^n$ ,  $f(x) = q(x) \mod p$ Case of d = 2, p = 2 is already very interesting! Compelling Conjecture ["Degree-Two Uncertainty Principle"]: AND (on n inputs) requires  $n^{\omega(1)}$ -size  $\sum POLY2[2]$ Known: AND requires  $\Omega(2^n)$ -size  $\sum POLY2[2]$  AND has  $O(2^{n/2})$ -size  $\sum POLY2[2]$ No non-trivial lower bounds were known for  $\sum POLY2[p]$ 

We prove:

<u>Thm</u>  $\forall d, k, \forall p$  prime,  $\exists f_k \in NP$  without  $n^k$ -size  $\sum \circ POLYd[p]$ 

 $\underline{\mathsf{Thm}} \exists f \in NTIME[n^{log^*n}] \text{ without } poly(n) \text{-size } \sum \circ POLYd[p] \\ \text{ for all fixed } d \text{ and fixed prime } p$ 

# Key Theorem

A new instance of "Circuit Analysis Algorithms ⇒ Circuit Lower Bounds"

Key Theorem: Let  $\mathcal{C}$  be a class of functions  $f : \{0, 1\}^n \to \mathbb{R}$ . Assume: there is an  $\varepsilon > 0$  and an algorithm A so that for any given  $f_1, \dots, f_4 \in \mathcal{C}$ , A can compute the "sum-product"  $\sum_{a \in \{0,1\}^n} \prod_{i=1}^4 f_i(a)$ Solving a generalization of #SAT for  $\mathcal{C}$   $\rightarrow$  Strong lower bounds for  $\Sigma \circ \mathcal{C}$ in  $2^{n(1-\varepsilon)}$  time. Then:  $\forall k, \exists f \in NP$  without  $n^k$ -size  $\Sigma \circ \mathcal{C}$ , and  $\exists f \in NTIME[n^{log^*n}]$  without poly(n)-size  $\Sigma \circ \mathcal{C}$ 

Applies new Easy Witness Lemma [Murray-W'18] We show how to compute sum-products in  $2^{n(1-\varepsilon)}$  time

for LTFs, ReLUs, and low-degree polynomials

# Major Ideas in the Key Theorem

Assume: (1) There is a  $2^{n(1-\varepsilon)}$ -time sum-product algorithm A for  $\mathcal{C}$ (2) For some fixed k, all  $f \in NP$  have  $n^k$ -size  $\sum \mathcal{C} \subset \mathcal{C}$  Goal: Derive a contradiction.

(1) and (2)  $\Rightarrow$  Given (unrestricted) Boolean circuit *T* with *n* inputs and *m* size, we can guess-and-check an  $m^k$ -size  $\sum \circ C$  computing *T*, in  $2^{n(1-\varepsilon)}m^{O(1)}$  time

Notes: (a) Checking that a given ∑∘ C is Boolean-valued is the hardest part.
(b) In order to guess the ∑∘ C circuit, we need that the coefficients in our linear combinations have "small" bit complexity, WLOG

(1)  $\Rightarrow$  Can solve #Circuit-SAT in *nondeterministic*  $2^{n(1-\varepsilon)}m^{0(1)}$  time *Idea: given* (unrestricted) circuit *T*, guess-and-check an equivalent  $m^k$ -size  $\sum \circ \mathcal{C}$  computing *T*. Then, #SAT(*T*) is equiv. to  $\sum_{a \in \{0,1\}^n} (\sum \circ \mathcal{C}(a)) = \sum \sum_a \mathcal{C}(a)$ . [Murray-W'18] + #Circuit-SAT algorithm  $\Rightarrow \forall k, \exists f \in NP$  without  $n^k$ -size unrestricted circuits Contradicts (2) when  $\sum \circ \mathcal{C}$  can be simulated by Boolean circuits!

The proof crucially relies on the  $\sum \circ C$  circuit computing an arbitrary circuit *exactly* 

# Sum-Product Algorithm for LTF

Uses (old) fact that #Subset-Sum is solvable in  $poly(n) \cdot 2^{n/2}$  time! <u>Thm</u> [HS'76] #Subset-Sum on *n* numbers is in  $poly(n) \cdot 2^{n/2}$  time

**<u>Proof</u>** Given  $w_1, ..., w_n, t$ , we want to know the number of  $S \subseteq [n]$  such that  $\sum_{i \in S} w_i = t$ 

 Enumerate all possible 2<sup>n/2</sup> subsets S of {w<sub>1</sub>, ..., w<sub>n/2</sub>}. Make a list L<sub>1</sub> of the 2<sup>n/2</sup> subset sums, and SORT all sums in L<sub>1</sub>
 Enumerate all possible 2<sup>n/2</sup> subsets T of {w<sub>n/2+1</sub>, ..., w<sub>n</sub>}. For each T summing to a value v, BINARY SEARCH for a value v' in L<sub>1</sub> such that v + v' = t
 To compute the total number of subsets summing to t: For each sum value v' appearing in L<sub>1</sub>, store the number n<sub>v'</sub> of subsets in L<sub>1</sub> which have value v'. Later, if value v' is found in the binary search, add n<sub>v'</sub> to a running sum. Takes poly(n) · 2<sup>n/2</sup> time in total

# Sum-Product Algorithm for LTF

Uses (old) fact that #Subset-Sum is solvable in  $poly(n) \cdot 2^{n/2}$  time! <u>Thm</u> For any  $f_1, \dots, f_4 \in LTF$ , we can compute  $\sum_{a \in \{0,1\}^n} \prod_{i=1}^4 f_i(a) \quad \text{in } poly(n) \cdot 2^{n/2} \text{ time.}$ 

Proof An Exact LTF (ELTF) g has the form  $g(x) = 1 \Leftrightarrow \sum_{i} w_{i}x_{i} = t$ #Subset-Sum in  $poly(n) \cdot 2^{n/2}$  time  $\Rightarrow \sum_{a} g(a)$  in  $poly(n) \cdot 2^{n/2}$  time [HP'10]: Every LTF on n inputs can be written as  $\sum_{poly(n)} ELTF$ So we can write  $\sum_{a \in \{0,1\}^{n}} \prod_{i=1}^{4} f_{i}(a) = \sum_{a \in \{0,1\}^{n}} \prod_{i=1}^{4} \left(\sum_{poly(n)} g_{i,j}(a)\right)$  for  $ELTFs g_{i,j}$ Simple algebra:  $= \sum_{a \in \{0,1\}^{n}} \sum_{poly(n)} \prod_{i=1}^{4} g_{i,j'}(a) = \sum_{poly(n)} \sum_{a \in \{0,1\}^{n}} \prod_{i=1}^{4} g_{i,j'}(a)$ Each  $\prod_{i=1}^{4} g_{i,j'}(x) = h(x)$  for some ELTFh Can compute in  $poly(n) \cdot 2^{n/2}$  time!

### **Open Problems**

Know: For each k, there is an  $f \in NTIME\left[n^{O(k^4)}\right]$  without  $n^k$ -size  $\sum \circ LTF$ Show SAT requires  $n^k$ -size  $\sum \circ LTF$ , for all k

Show Quasi-NP does not have THR • THR circuits of subquadratic size

Show there's a function in  $E^{NP}$  without 6n size circuits

I know how to solve #SAT for  $\sum \circ POLY2[2]$  in poly-time. Thus this class should not even represent CNF. Prove that!

If  $SAT \in P$ , then  $TIME(n^{\log n})$  is not in P/poly. If SAT is in  $n^{polylog n}$  time, then Quasi-P is not in P/poly. Is such a connection true for Gap-Circuit-SAT? [IW97] ( $TIME[2^{O(n)}]$  not in  $2^{n/100}$  size)  $\Rightarrow$  Gap-Circuit-SAT is in P Thank you!