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Outline

• A High-Level View 

• Algorithms versus Boolean Circuits

• Circuit Analysis => Circuit Lower Bounds

• Some Details and Some Progress:
NQP (Quasi-NP) is not in ACC
NP doesn’t have small depth-two neural nets



High-level view of algorithms and complexity
• Algorithm designers

• Complexity theorists

• What makes some problems easy to solve? 
When can we find an efficient algorithm?

• What makes other problems difficult?
When can we prove that a problem is not easy?
When can we prove a Lower Bound on
the resources (time/space/communication/etc) 
needed to solve a problem?



The tasks of the algorithm designer and 
the complexity theorist appear to be polar opposites.

• Algorithm designers
prove upper bounds

• Complexity theorists
prove lower bounds

Furthermore, it’s generally believed that 
Algorithm Design is easier than Lower Bounds
• In Algorithm Design: find one clever algorithm 
• In Lower Bounds: must reason about “all possible” 

algorithms, and argue none of them work well
… but there are thousands of worst-case algorithms 

which analyze all possible finite objects of some kind…

My Opinion:
This isn’t why lower 

bounds are hard!



Why are lower bounds hard to prove?
There are many known “no-go” theorems
• Relativization [70’s]
• Natural Properties     [90’s]
• Algebrization [00’s]

Great pessimism in complexity theory

Summary: The common proof techniques are not 
good enough to prove even weak lower bounds!



There are many known “no-go” theorems
• Relativization [70’s]
• Natural Properties     [90’s]
• Algebrization [00’s]

Great pessimism in complexity theory

How will we make progress?

Summary: The common proof techniques are not 
good enough to prove even weak lower bounds!

Have to non-relativize, non-algebrize,
and non-naturalize!



Much more than opposites!
There are deeper connections we are slowly uncovering.

A typical result in Algorithm Design:
“Here is an algorithm A that solves the problem, 

on all possible instances of the problem"
A typical theorem from Lower Bounds:
“Here is a proof P that the problem can’t be solved, 

by all possible algorithms of some type"

Thesis: Designing Algorithms (in some sense)
is equivalent to Proving Lower Bounds 

One Direction for Progress: 
Connect Algorithm Design to Lower Bounds

Meta-computation:
Problems whose 

input is the code of 
an algorithm 



Want to prove results of the form:

Find results showing (algorithm design  lower bounds):

Then, use results from algorithm design to show:

Task A’ is possible for computation model B’ 
 Task A is impossible for computation model B

A “Plan” For Proving Lower Bounds

Task A’ is possible for computation model B’ 

Task A is impossible for computation model B 



Want to prove results of the form:

Find results showing (algorithm design  lower bounds):

Then, use results from algorithm design to show:

Task A’ is possible for computation model B’ 
 Task A is impossible for computation model B

Where do we start????

Task A’ is possible for computation model B’ 

Task A is impossible for computation model B 

???? ????
Define Task A’ be about

analyzing model B

Define Task A
in terms of model B’



A simple example from complexity theory:

PSPACE = problems solvable in polynomial space
PTIME =    ….  in polynomial time
EXPTIME = …   in exponential time

(algorithm design  lower bounds)?

Many such results can be proved…. 
But they do not seem useful!

If PSPACE = EXPTIME then PTIME PSPACE 

Proof: PTIME EXPTIME (time hierarchy theorem) 
So PTIME = PSPACE implies PSPACE EXPTIME.   QED



Big Idea: Interesting circuit-analysis algorithms 
tell us about the limitations of circuits in modeling algorithms

“Non-Trivial” 
Circuit Analysis

Algorithm
(beating brute force) Circuit Lower Bounds

SAT? YES/NO
”interesting”

Circuits are not “black-boxes” to algs!

Inherently 
non-relativizing 

approach

Turing Machine drawing by Tom Dunne for American Scientist



Big Idea: Interesting circuit-analysis algorithms 
tell us about the limitations of circuits in modeling algorithms

Goal: Algorithmic task A is impossible for 
“efficient” circuits (this is our model B)

Show: Non-trivial analysis of “efficient” circuits 
is possible with algorithms (model B’)
 Algorithmic Task A is impossible for 

“efficient” circuits

Show: Non-trivial analysis of “efficient” circuits 
is possible with algorithms
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(Boolean) Circuits

For every input length , 
a circuit family has a circuit  C𝒏 to be run on all inputs of length 

P/poly = { ∗ computable by a circuit family {C𝒏} 
such that the size of C𝒏 is at most k }

Each circuit is “small” relative to its number of inputs 

C1 C10 C1000

Can take in arbitrarily 
long inputs and still 
solve the problem

Only take in 
fixed-length inputs

…            … …      … …     …C100

Algorithms

Circuit Family =  { ,        ,           , ,  }
𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏}

𝒈: 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Circuit model has “programs with infinite-length descriptions”
The standard methods in computability theory are powerless…



Concrete limitations on computing within the known universe
“Any logic circuit solving most instances of my 1000-bit problem 

needs at least 10100 bits to be described”

C1 C10 C1000
…            … …      … …     …C100

Circuit Family =  { ,        ,           , ,  }

P/poly = { ∗ computable with a circuit family 
{C𝒏} such that the size of C𝒏 is at most k }

Why study this “infinite” model of computation?
1) Circuits could be easier to analyze than Turing machines! 

2) Proving limitations on P/poly is a step towards  
non-asymptotic complexity theory:

[Meyer-Stockmeyer ‘70s]Universe stores < 1080 bits [Bekenstein ‘70s]



Algorithms versus Circuit Families
P/poly = { ∗ computable with a circuit family 

{C𝒏} such that the size of C𝒏 is at most k }

Most Boolean functions require huge circuits:
Theorem [Shannon ‘49] W.h.p., random 𝒏 needs 

circuits of size at least 2n/n
Theorem [Lupanov’58]  Every f has a circuit of size (1+o(1))2n/n
Explicit (non-random) hard functions?

The key obstacle: Non-uniformity can be very powerful!

What “uniform” algorithms can be simulated in P/poly?
Can huge uniform classes (like PSPACE, EXP, NEXP)

be simulated with small non-uniform classes (like P/poly)?



What “uniform” algorithms can be simulated in P/poly?
Can huge uniform classes (like PSPACE, EXP, NEXP)

be simulated with small non-uniform classes (like P/poly)?

Conjecture:  NP  P/poly (harder than P NP)

RIDICULOUSLY OPEN: Is NEXP P/poly?
Can all problems with exponentially-long answers

checkable in exponential time 
be solved with polynomial-size circuit families?

OPEN:  NP  SIZE(O(n))?   Best known: NP  SIZE(5n), SIZE(3.01n)

Now, problems like NP  SIZE(O(n)) may be attackable…(?)

Algorithms versus Circuit Families



Outline

• A High-Level View

• Algorithms versus Boolean Circuits

• Circuit Analysis => Circuit Lower Bounds

• Some Details and Some Progress



Generalized Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

A very “simple” circuit analysis problem! 

[CL’70s] C-SAT is NP-complete for practically all interesting C
C-SAT is solvable in O(2n |K|) time by brute force

The C-SAT Problem:
Given a circuit K(x1,…,xn) from C, is there an 

assignment (a1, …, an) {0,1}n such that K(a1,…,an) =1?



Gap Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

Even simpler! In randomized polynomial time

[Folklore?] If Gap-Circuit-SAT P then P = RP
[Hirsch, Trevisan, …]  Gap-kSAT is P for all k

Gap-C-SAT:
Given (x1,…,xn) from C, and the promise that either 

(a) 0, or (b) 𝒙 ,
decide which is true.



Faster C-SAT Circuit Lower Bounds for C

Slightly Faster Circuit-SAT
[R.W. ’10,’11]

Deterministic algorithms for:
• Circuit SAT in O(2n/n10) time

with n inputs and nk gates

• Formula SAT in O(2n/n10) time

• -SAT in O(2n/n10) time

• Gap- -SAT is in O(2n/n10) 
time on nk size

(Easily solved w/ randomness!)

No “Circuits for NEXP”

Would imply:

• NEXP  P/poly

• NEXP Poly-size formulas

• NEXP poly-size 

NEXP  poly-size

Concrete LBs
𝑪 = ACC
[W’11]
𝑪 = ACC of THR
[W’14]



Even Faster SAT Stronger Lower Bounds
Somewhat Faster Circuit SAT

[Murray-W. ’18]
Det. algorithm for some :
• Circuit SAT in O( ିച

) time
with inputs and ച

gates

• Formula SAT in O( ିച
) time

• -SAT in O( ିച
) time

• Gap- -SAT is in O( 𝒏ି𝒏𝝐
) 

time on ച
gates

No “Circuits for Quasi-NP”

Would imply:

• NTIME[ 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  P/poly

• NTIME[ 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  NC1

• NTIME[ 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] 

NTIME[ 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] 

𝑪 = ACC of THR
[MW’18]



“Fine-Grained” SAT Algorithms
[Murray-W. ’18]

Det. algorithm for some :
• Circuit SAT in O( (ଵିఢ)) time

on inputs and ఢ gates

• FormSAT in O( (ଵିఢ)) time

• -SAT in O( (ଵିఢ)) time

• Gap- -SAT is in O( 𝟏ି𝝐 𝒏) 
time on ఢ gates

(Implied by PromiseRP in P)

No “Circuits for NP”

Would imply:

• NP  SIZE( 𝒌) for all 

• NP  Formulas of size 𝒌

• NP  -SIZE( 𝒌) for all 

NP  -SIZE( 𝒌) for all 

Even Faster SAT Stronger Lower Bounds

𝑪 = SUM of THR
𝑪 = SUM of ReLU
𝑪 = SUM of POL
[W’18]

Note: Would 
refute

Strong ETH!

Strongly 
believed to 

be true…
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Some Lower Bounds by Algorithm Design
ACC0: circuits of polynomial size and constant depth, 

with AND, OR, and MODm gates for some constant m.
ACC0 P/poly, probably a proper subset!

Annoying Circuit Class to prove lower 
bounds for, proposed in 1986
(and it is the 0th such class)

Thm [R.W.’11]:  NEXP ACC0

Thm [Murray-W’18]: NTIME[ ] ACC0 of THR

ACC THR: Annoying Circuits with Linear Threshold Gates at the bottom 



Progress Report
[W’14, Murray-W’18] Quasi-NP does not have ACC THR circuits of polynomial size

SAT algorithm uses a new depth-two representation of ACC THR
and fast rectangular matrix multiplication to evaluate the representation quickly

Improving the lower bounds to multiple layers of THR gates is an open frontier:
[Tamaki’16, Alman-Chan-W’16] ENP does not have ACC THR THR circuits of subquadratic size 

Uses recent probabilistic polynomials for THR [Srinivasan’13, Alman-W’15] 
Open: Quasi-NP does not have THR THR circuits of subquadratic size

[S.Chen-Papakonstantinou’16] Better size-depth tradeoff lower bound for NEXP vs ACC
[R.Chen-Oliveira-Santhanam’18] Average Case: NEXP doesn’t have poly-size ACC circuits 

computing a 𝟏
𝟐

𝟏

𝒑𝒐𝒍𝒚 𝒍𝒐𝒈 𝒏
fraction of -bit inputs correctly

Carefully applies coding-theoretic techniques on top of the framework
[W’18]  NP does not have 𝟏𝟎𝟎 -size depth-two neural networks 

with sign activation function, nor with ReLU activation functions 
At the heart: [Horowitz-Sahni 70s] Counting subset sum solutions on items is in 𝒏/𝟐 time!

New lower bounds from an old algorithm!



Progress Report
[W’14, Murray-W’18] Quasi-NP does not have ACC THR circuits of polynomial size

SAT algorithm uses a new depth-two representation of ACC THR
and fast rectangular matrix multiplication to evaluate the representation quickly

Improving the lower bounds to multiple layers of THR gates is an open frontier:
[Tamaki’16, Alman-Chan-W’16] ENP does not have ACC THR THR circuits of subquadratic size 

Uses recent probabilistic polynomials for THR [Srinivasan’13, Alman-W’15] 
Open: Quasi-NP does not have THR THR circuits of subquadratic size

[S.Chen-Papakonstantinou’16] Better size-depth tradeoff lower bound for NEXP vs ACC
[R.Chen-Oliveira-Santhanam’18] Average Case: NEXP doesn’t have poly-size ACC circuits 

computing a 𝟏
𝟐

𝟏

𝒑𝒐𝒍𝒚 𝒍𝒐𝒈 𝒏
fraction of -bit inputs correctly

Carefully applies coding-theoretic techniques on top of the framework
[W’18]  NP does not have 𝟏𝟎𝟎 -size depth-two neural networks 
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Lower Bounds for 
NEXP, Quasi-NP, and NP

From Nontrivial Gap-SAT Algorithms 



How NEXP ACC0 Was Proved
Let be a “typical” circuit class (like ACC0)
Thm A [W’11] (algorithm design  lower bounds)

If for all k, Gap- -SAT on nk-size is in O(2n/nk) time, 
then NEXP does not have poly-size -circuits.

Thm B [W’11] (algorithm)
, ACC0-SAT on 𝒏ℇ

size is in O( 𝒏ି𝒏ℇ
) time.

(Used a well-known representation of ACC0 from 1990, 
that people long suspected should imply lower bounds)

Note the inefficiency!
Theorem B gives a much stronger algorithm 

than is necessary in Theorem A.
This is exactly the starting point of [Murray-W’18]…



Idea of Theorem A
Let be some circuit class (like ACC0)
Thm A  [W’11] (algorithm design  lower bounds)

If for all k, Gap -SAT on nk-size is in O(2n/nk) time, 
then NEXP does not have poly-size -circuits.

Idea. Show that if we assume both: 
(1) NEXP has poly-size -circuits, 

AND
(2) a faster Gap -SAT algorithm

Then we can show NTIME[ 𝒏] NTIME[o( 𝒏)]
(contradicts the nondeterministic time hierarchy!)



Proof Ideas in Theorem A
Idea. Assume 

(1) NEXP has poly-size -circuits, AND
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[ 𝒏] NTIME[o( 𝒏)]

Take any problem L in nondeterministic 𝒏 time. 
Given an input , we “compute” L on by: 
1. Guessing a witness of O( 𝒏) length.
2. Checking is a witness for in O( 𝒏) time.

Want to “speed-up” both parts 1 and 2, 
using the above assumptions



Proof Ideas in Theorem A
Idea. Assume 

(1) NEXP has poly-size -circuits, AND
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[ 𝒏] NTIME[o( 𝒏)]

Take any problem L in nondeterministic 𝒏 time. 
Given an input , we will “compute” L on by: 
1. Use (1) to guess a witness of o( 𝒏) length 

(Easy Witness Lemma [IKW02]: 
if NEXP is in P/poly, then L has “small witnesses”)

2. Use (2) to check is a witness for in o( 𝒏) time
Technical: Use a highly-structured PCPs for NEXP 
[W’10, BV’14] to reduce the check to Gap -SAT



Proof Ideas in Theorem A
Idea. Assume 

(1) NEXP has poly-size -circuits, AND
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[ 𝒏] NTIME[o( 𝒏)]

Take any problem L in nondeterministic 𝒏 time. 
Given an input , we will “compute” L on by: 
1. Use (1) to guess a witness of o( 𝒏) length 

(Easy Witness Lemma [IKW02]: 
if NEXP is in P/poly, then L has “small witnesses”)

2. Use (2) to check is a witness for in o( 𝒏) time
Technical: Use a highly-structured PCPs for NEXP 
[W’10, BV’14] to reduce the check to Gap -SAT



Guessing Short Witnesses

Definition. An NTIME[ ] problem has easy witnesses if 

, Verifiers V for , if 𝟐 𝒙 శ𝒅
s.t. V( , ) accepts, then

circuit 𝒙 of 𝒄 size and inputs s.t. V( , 𝒙 ) accepts,
where 𝒙 = Truth Table of circuit 𝒙.

Replace 1 with: 1’. Guess poly( )-size circuit 

1. Guess a witness y of ( ) length.

Easy Witness Lemma [IKW’02]: 
If NEXP is in P/poly then all NEXP problems have easy witnesses

Small circuits for solving NEXP problems 
 Small circuits for solutions to NEXP problems



Proof Sketch of Theorem A
Idea. Assume 

(1) NEXP has poly-size -circuits, and
(2) there’s a faster Gap -SAT algorithm

Show that NTIME[ 𝒏] NTIME[o( 𝒏)]

Take any problem in nondeterministic 𝒏 time. 
Given an input , we compute on by: 
1. Guessing a circuit 𝒙 of poly(|x|) size

(Easy Witness Lemma, using (1)) 
2. Using (2) to check 𝒙 encodes a witness for x 

in o( 𝒏) time (Nice PCPs for )



Improving Theorem A [MW’18]
Let be a “typical” circuit class (like ACC0)
Thm A+ [MW18] If there is an >0 such that 

Gap- -SAT on 𝒏ℇ
-size circuits is in O( 𝒏ି𝒏ℇ

) time 
then NTIME[ (𝒍𝒐𝒈 𝒏)𝑶(𝟏)

] doesn’t have poly-size -circuits

Thm A++ [MW18] If there is an >0 such that 
Gap- -SAT on ℇ𝒏-size circuits is in O( 𝒏(𝟏ିℇ)) time
then for all , NP doesn’t have 𝒌-size -circuits

and NTIME[ ୪୭∗ 𝒏] doesn’t have poly-size -circs [Tell’18]



Proof of Theorem A++?
Approach: Want to show that given 
(1) NP has 𝒌-size -circuits, and
(2) Gap- -SAT algorithm running in 𝟏ି𝜺 𝒏 time
Then NTIME[ 𝒅] NTIME[o( 𝒅)] for some 

Let NTIME[ 𝒅]. To solve faster on input ,
1. Guess a witness circuit 𝒙 of o( 𝒅) size
2. Check 𝒙 encodes witness for in o( 𝒅) time

(Use nice PCP; this still works, if part 1 works)

Easy Witness Lemma only works for NEXP!



New Easy Witness Lemma [MW’18]

NTIME[t(n)] has s(n)-size witness circuits if
NTIME[t(n)], Verifiers V, ,

s(n)-size circuit Dx such that V(x, tt(Dx)) accepts.

Old Easy Witness Lemma [IKW02]: 
If every problem in NEXP has poly(n)-size circuits, 
then NEXP has poly(n)-size witness circuits.

New Easy Witness Lemma (Special Case of [MW’18]): 
If every problem in NP has 𝒌-size circuits, 
then NP has 𝑶(𝒌𝟑)-size witness circuits.
Similar statement for NTIME[ 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏].



Proof of Theorem A++?
Approach: Want to show that given 
(1) NP has 𝒌-size -circuits, and
(2) Gap- -SAT algorithm for 𝝐𝒏 size, in 𝒏 𝟏ି𝝐 time

Then NTIME[ 𝒌𝟒
] NTIME[o( 𝒌𝟒

)]

Let L NTIME[ 𝒌𝟒
]. To solve L faster on input ,

1. Guess circuit 𝒙 of O( 𝒌𝟑
) size with 𝟒 inputs, 

encoding witness of length 𝒌𝟒

(Use (1) and New Easy Witness Lemma)

2. Check 𝒙 encodes witness for in o( 𝒌𝟒
) time 

(Use (2) and nice PCP)
Contradiction! 



IKW’s Easy Witness Lemma
Easy Witness Lemma [IKW02]: 
NTIME[ 𝒏] SIZE[ 𝒌] for some k 

NTIME[ 𝒏] has 𝒄-size witness circuits for some c.

Strategy: Assume the negation, prove a contradiction!
(1)  NTIME[ ] SIZE[ ]   and
(2)  c, NTIME[ ] DOESN’T have -size witness circuits

IKW start with 𝒉𝒂𝒓𝒅 SPACE[ 𝒌ା𝟏] / i.o.-SIZE[ 𝒌]
and show how assumptions (1) and (2) imply:
SPACE[ 𝒌ା𝟏] MA i.o.-NTIME[ 𝒏]/n i.o.-SIZE[ 𝒌]

Merlin-Arthur
protocols

infinitely often,
with 𝑛 bits of advice



Proof of IKW’s Easy Witness Lemma
(1)  NTIME[ ] SIZE[ ]   and
(2)  c, NTIME[ ] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[ 𝒌ା𝟏] MA i.o.-NTIME[ 𝒏]/n i.o.-SIZE[ 𝒌]

MA: Merlin-Arthur = NP with probabilistic verification
L is in MA means there’s a polytime V such that
x L  there is a y such that V(x,y) always accepts
x L  for every y, V(x,y) rejects with prob > ¾ 

Merlin Arthur



Proof of IKW’s Easy Witness Lemma
(1)  NTIME[ ] SIZE[ ]   and
(2)  c, NTIME[ ] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[ 𝒌ା𝟏] MA i.o.-NTIME[ 𝒏]/n i.o.-SIZE[ 𝒌]

(1) NTIME[ 𝒏] SIZE[ 𝒌] 
 SPACE[O(n)] P/poly
 PSPACE P/poly
 PSPACE = MA  [BFNW’93]

Use the fact that PSPACE = IP [Shamir]: 
Guess a small circuit encoding the prover’s strategy, 
then run the interactive protocol with that circuit



Proof of IKW’s Easy Witness Lemma
(1)  NTIME[ ] SIZE[ ]   and
(2)  c, NTIME[ ] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[ 𝒌ା𝟏] MA i.o.-NTIME[ 𝒏]/n i.o.-SIZE[ 𝒌]

(1) NTIME[ 𝒏] SIZE[ 𝒌]
 i.o.-NTIME[ ]/ i.o.-SIZE[ ]

(Hard-code the advice in the circuit)



Proof of IKW’s Easy Witness Lemma
(1)  NTIME[ ] SIZE[ ]   and
(2)  c, NTIME[ ] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[ 𝒌ା𝟏] MA i.o.-NTIME[ 𝒏]/n i.o.-SIZE[ 𝒌]

(2) NTIME[ 𝒏] DOESN’T have 𝒄-size witness circuits:
( NTIME[ ], Verifiers V, for all but finitely many , 

s.t. V( ) accepts and (Circuit complexity of )  )



Proof of IKW’s Easy Witness Lemma
(1)  NTIME[ ] SIZE[ ]   and
(2)  c, NTIME[ ] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[ 𝒌ା𝟏] MA i.o.-NTIME[ 𝒏]/n i.o.-SIZE[ 𝒌]

(2) NTIME[ 𝒏] DOESN’T have 𝒄-size witness circuits:
NTIME[ ], Verifier V, infinitely many , 

such that [ V( ) accepts (Circuit complexity of ) >  ]

Given a ‘bad’ input as advice, can use verifier V to 
guess-and-check a function with circuit complexity > 𝒄

in 𝒏 time
Can nondeterministically generate hard functions!



Proof of IKW’s Easy Witness Lemma
(1)  NTIME[ ] SIZE[ ]   and
(2)  c, NTIME[ ] DOESN’T have -size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[ 𝒌ା𝟏] MA i.o.-NTIME[ 𝒏]/n i.o.-SIZE[ 𝒌]

(2) NTIME[ 𝒏] DOESN’T have 𝒄-size witness circuits:
NTIME[ ], Verifier V, infinitely many , 

such that [ V( ) accepts (Circuit complexity of ) >  ]
Thm [Hardness-to-PRGs] There’s an and 𝒏 -time computable 

such that, given a string with circuit complexity > 𝒄, 
outputs a set of 𝒏 strings which “fool” all circuits of size 𝜶 𝒄

Use to derandomize 𝑶(𝒄)-time Merlin-Arthur protocols in 𝒏 time, 
on infinitely many input lengths, with bits of advice



Scaling Down to NP?

New Easy Witness Lemma (Special Case) 
If NP has -size circuits, 
then NP has ை య

-size witness circuits.

Idea: Derive a contradiction from assuming that
NP SIZE[ 𝒌]

and
, NP does NOT have 𝒄-size witness circuits.



Scaling Down to NP?

What happens when we try to follow the IKW proof? 
We want to derive something like:

PSPACE MA i.o.NP/n i.o.SIZE[ 𝒌]
These two inclusions are OK!

They follow from NP SIZE[ 𝒌]
and

NP does NOT have 𝒄-size witness circuits



Scaling Down to NP?

What happens when we try to follow the IKW proof? 
We want to derive something like:

PSPACE MA i.o.NP/n i.o.SIZE[ 𝒌]

Problem: Can’t conclude PSPACE is in MA from
assuming NP SIZE[ 𝒌] and 

NP does NOT have 𝒄-size witness circuits!

Possible fix: Use another circuit lower bound?
Thm [San07] MA/1 SIZE[ 𝒌]



Scaling Down to NP?

What happens when we try to follow the IKW proof? 
We want to derive something like:

MA/1 i.o.NP/n+1 i.o.SIZE[ 𝒌]

New problem: We only know MA/1 SIZE[ 𝒌]
Don’t know if MA/1 i.o.SIZE[ 𝒌]

Possible fix: Prove a stronger MA lower bound?
Turns out we don’t need an 

“almost-everywhere” lower bound…



New Lower Bound for Merlin-Arthur Protocols

Thm [MW’18] For all , there is an MA-TIME[ 𝒌𝟐
]/O(log n)

such that for all but finitely many input lengths ,
either   has circuit complexity at least 

or        ೖ has circuit complexity at least మ

Our proof of the new EWL shows:

If every problem in NP has 𝒌-size circuits 
and some NP problem doesn’t have 𝑶(𝒌𝟑)-size witnesses, 
then the above Merlin-Arthur lower bound is contradicted!



Sketch of the New Easy Witness Lemma
Start with MA-TIME[ 𝒌𝟐

/O(log n) from our new circuit lower bound. 

Assuming some NP problem doesn’t have 𝑶(𝒌𝟑)-size witnesses, 
we derive a partial derandomization of the MA protocol for :

For infinitely many , there is an NP/O(n) algorithm computing 
correctly on all inputs of length AND of length 𝒌.

Assuming NP has 𝒌-size circuits, we can derive:

For infinitely many ,
𝒏 has an 𝒌-size circuit AND 𝒏𝒌 has an 𝒌𝟐

-size circuit.

This directly contradicts our lower bound for !



More Details on Derandomizing MA

How to derive MA /O(log n) i.o.NP/n+O(log n) 

Given a ‘bad’ ௪ as advice, 
Guess a ‘bad’ y such that V( ௪, ) accepts 
// encodes a function with circuit complexity > య

Stick into a PRG that fools ஐ(య)-size circuits
Use PRG to derandomize an -time MA protocol
(Guess Merlin’s message, construct a circuit of 
size ଶ that takes Arthur’s message as input)

This works as long as 𝟐 𝑶 𝒌𝟑

Assume: NP does NOT have 𝒌𝟑
-size witness circuits.

Let V be a “bad” verifier (for inf. many , every witness for is not easy)



More Details on Derandomizing MA
How to derive MA /O(log n) i.o.NP/n+O(log n) 

Given a ‘bad’ ௪ as advice, 
Guess a ‘bad’ y such that V( ௪, ) accepts 
// encodes a function with circuit complexity > య

Stick into a PRG that fools ஐ(య)-size circuits
Use PRG to derandomize an -time MA protocol
(Guess Merlin’s message, construct a circuit of 
size ଶ that takes Arthur’s message as input)

This works as long as ଶ ை య

If NP does not have 𝒌𝟑
-size witness circuits, 

the same advice 𝒘 can be used to derandomize MA 
for all running times up to 𝑶(𝒌𝟑)



Lower Bounds for NP
Against Some Depth-Two Classes



Let be a class of “simple” functions 
(take Boolean inputs, but need not be Boolean-valued)

The -linear Representation Problem

simple simplesimple simplesimplesimple

Which “interesting” functions can(not) be represented by 
“short” -linear combinations of functions from ?

poly( ) “size”?
2 −𝜋

−𝑒 𝜙

Call this a circuit

If spans the vector space of all functions 𝒏

then there is always some circuit of 𝒏 size…



The -linear Representation Problem
Which “interesting” functions can(not) be represented by 

“short” -linear combinations of functions from ?

If is the class of 𝒏 functions on variables: 
polynomials over 

If is the class of 𝒏 functions on variables: 
polynomials over 

(Fourier analysis of Boolean functions)
These are well-understood: 

is a basis for the vector space of functions 

the -linear representation of is unique,
so the “shortest” is also the “longest”…

More interesting cases: representations are not unique 



1. Linear Threshold Functions [ ]
2. Rectified Linear Units [ ]
3. ( )-Polynomials of Degree- [ ]

( prime and )

[W’18] Three Simple Classes

• There are 𝒏 functions on variables,
so -linear representations are not unique

𝚯 𝒏𝟐
LTFs, 𝚯 𝒏𝒅

degree- polys, ReLU functions 

• -linear Representations have been studied!
= Special Case of Depth-2 Threshold Circuits

= “Depth-2 Neural Net with ReLU activation”
= “Higher-Order” Fourier Analysis for 

For all three classes: 



Depth-Two LTF Circuits ( ): Major problem to find 
“nice” functions without -gate circuits, for all 

Sums of Linear Threshold Functions

We prove: 
Thm , 𝒌 without 𝒌-size 

[Hajnal et al.’91] exp(n) depth-two lower bounds for small ’s

Def. 
 is an LTF if  ଵ  such that  

ଵ 
,   𝟏 𝒏 𝒊 𝒊𝒊

[Roychowdhury-Orlitsky-Siu’94] What about ?
Special case of : 

the linear form for output LTF must always evaluate to 0 or 1
Still, no 𝟏.𝟓-gate lower bounds were known for ! 

Thm 𝒍𝒐𝒈∗𝒏 without -size 
Note: It is a major open problem to prove

without 𝒌-size (unrestricted) circuits



generalizes

Sums of ReLUs

We can generalize the limits to : 
Thm , 𝒌 without 𝒌-size 

= “Depth-Two Neural Nets with ReLU Activations”
Very widely studied, thousands of references

Def. 
 ା is a ReLU if  ଵ  such that  

ଵ 
,   𝟏 𝒏 𝒊 𝒊𝒊

Several recent references [see paper] give lower bounds 
for some “weird”  which vary sharply / sensitive

Thm 𝒍𝒐𝒈∗𝒏 without -size 

No lower bounds known for discrete-domain / Boolean functions 
(note: “most sensitive” Boolean fn PARITY has O(n)-size )



Compelling Conjecture [“Degree-Two Uncertainty Principle”]: 
(on inputs) requires 𝝎 𝟏 -size 

Sums of Low-Degree GF(p)-Polys

We prove: 
Thm prime, 𝒌 without 𝒌-size 

Known: requires  -size 

: Linear combination of 

where for every there is a degree- polynomial such that
, mod 

No non-trivial lower bounds were known for 

Thm 𝒍𝒐𝒈∗𝒏 without -size 
for all fixed and fixed prime 

has /ଶ -size 

Case of is already very interesting! 



Key Theorem: Let be a class of functions 𝒏 .
Assume: there is an and an algorithm so that 

for any given 𝟏 𝟒 , can compute the “sum-product”

𝒊

𝟒

𝒊ୀ𝟏𝒂∈ 𝟎,𝟏 𝒏

in 𝒏 𝟏ି𝜺 time.
Then: , without 𝒌-size , and

𝒍𝒐𝒈∗𝒏 without -size

Applies new Easy Witness Lemma [Murray-W’18]

Key Theorem
A new instance of “Circuit Analysis Algorithms Circuit Lower Bounds”

We show how to compute sum-products in 𝒏 𝟏ି𝜺 time  
for LTFs, ReLUs, and low-degree polynomials  

Solving a generalization of #SAT for 𝓒
 Strong lower bounds for ∑∘ 𝓒



[Murray-W’18] + #Circuit-SAT algorithm , without 𝒌-size unrestricted circuits

Major Ideas in the Key Theorem 
Assume: (1) There is a 𝒏 𝟏ି𝜺 -time sum-product algorithm for 

(2) For some fixed , all have 𝒌-size Goal: Derive a contradiction.

(1) and (2) Given (unrestricted) Boolean circuit with inputs and size,
we can guess-and-check an 𝒌-size computing , in 𝒏 𝟏ି𝜺 𝑶 𝟏 time

(1) Can solve #Circuit-SAT in nondeterministic 𝒏 𝟏ି𝜺 𝑶 𝟏 time
Idea: given (unrestricted) circuit , guess-and-check an equivalent 𝒌-size

computing . Then, #SAT( ) is equiv. to 𝒂∈ 𝟎,𝟏 𝒏 𝒂 .

Contradicts (2) when can be simulated by Boolean circuits!

Notes: (a) Checking that a given ∑∘ 𝓒 is Boolean-valued is the hardest part.
(b) In order to guess the ∑∘ 𝓒 circuit, we need that the coefficients in our 

linear combinations have “small” bit complexity, WLOG

The proof crucially relies on the circuit computing an arbitrary circuit exactly



Sum-Product Algorithm for LTF
Uses (old) fact that #Subset-Sum is solvable in 𝒏/𝟐 time!

Thm [HS’76] #Subset-Sum on numbers is in 𝒏/𝟐 time

Proof Given 𝟏 𝒏 , we want to know 
the number of such that 𝒊𝒊∈𝑺

Takes 𝒏/𝟐 time in total

1. Enumerate all possible 𝒏/𝟐 subsets of 𝟏 𝒏/𝟐 . 
Make a list 𝟏 of the 𝒏/𝟐 subset sums, and SORT all sums in 𝟏

2. Enumerate all possible 𝒏/𝟐 subsets of 𝒏/𝟐ା𝟏 𝒏 .
For each summing to a value , 

BINARY SEARCH for a value in 𝟏 such that 
3.  To compute the total number of subsets summing to :

For each sum value appearing in 𝟏, 
store the number 𝒗ᇱ of subsets in 𝟏 which have value . 

Later, if value is found in the binary search, 
add 𝒗ᇱ to a running sum.



Sum-Product Algorithm for LTF
Uses (old) fact that #Subset-Sum is solvable in 𝒏/𝟐 time!

Thm For any 𝟏 𝟒 , we can compute

𝒊

𝟒

𝒊ୀ𝟏𝒂∈ 𝟎,𝟏 𝒏

Proof An Exact LTF ( ) has the form 𝒊 𝒊𝒊

So we can write

[HP’10]: Every on inputs can be written as 𝒑𝒐𝒍𝒚 𝒏

 ෑ 𝒇𝒊(𝒂)

𝟒

𝒊ୀ𝟏

 =  ෑ  𝒈𝒊,𝒋(𝒂)

𝒑𝒐𝒍𝒚 𝒏

𝟒

𝒊ୀ𝟏𝒂∈ 𝟎,𝟏 𝒏𝒂∈ 𝟎,𝟏 𝒏

for s 𝒊,𝒋

=   ෑ 𝒈𝒊,𝒋ᇱ 𝒂

𝟒

𝒊ୀ𝟏𝒑𝒐𝒍𝒚 𝒏𝒂∈ 𝟎,𝟏 𝒏

Simple algebra: =   ෑ 𝒈𝒊,𝒋ᇱ 𝒂

𝟒

𝒊ୀ𝟏𝒂∈{𝟎,𝟏}𝒏𝒑𝒐𝒍𝒚 𝒏

Can compute in 𝒑𝒐𝒍𝒚 𝒏 ⋅ 𝟐𝒏/𝟐 time!Each ∏ 𝒈𝒊,𝒋ᇱ 𝒙 = 𝒉 𝒙𝟒
𝒊ୀ𝟏 for some 𝑬𝑳𝑻𝑭 𝒉

in 𝒏/𝟐 time.

#Subset-Sum in 𝒏/𝟐 time  in 𝒏/𝟐 time



Open Problems

Show requires 𝒌-size , for all k

Know: For each , there is an 𝑶 𝒌𝟒
without 𝒌-size

Show Quasi-NP does not have THR THR circuits of 
subquadratic size

Show there’s a function in 𝑵𝑷 without size circuits

I know how to solve #SAT for in poly-time.
Thus this class should not even represent CNF. Prove that!

If , then ୪୭ 𝒏 is not in .
If is in 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏 time, then Quasi-P is not in .

Is such a connection true for Gap-Circuit-SAT?
[IW97] ( 𝑶 𝒏 not in 𝒏/𝟏𝟎𝟎 size) Gap-Circuit-SAT is in P



Thank you!


