#### Understanding the abilities of AI systems Memorization, generalization, and points in between

Tom McCoy Unknown Futures of Generalization Simons Institute December 5, 2024

Yale Department of Linguistics

# How can we characterize the abilities of AI systems?

Standard answer: Develop a test for the ability in question, and see how the AI system performs on it!

#### **Clever Hans**

- Horse famous for answering math questions
  - And not just math: Also music, and naming objects, and others
- Turned out to be reading body language, not doing math



"I therefore repeat: Hans can neither read, count nor make calculations. He knows nothing of coins or cards, calendars or clocks, nor can he respond, by tapping or otherwise, to a number spoken to him but a moment before. Finally, he has not a trace of musical ability."

(Pfungst, 1911, page 40)

#### **Clever Hans**

- Horse famous for answering math questions
  - And not just math: Also music, and naming objects, and others
- Turned out to be reading body language, not doing math



Conclusion: A system that appears intelligent might not actually be intelligent (or at least not in the ways we think)

#### Abstraction vs. heuristics

- How can we distinguish deep abstractions from shallow heuristics?
- Answer: Analyze systems through the lens of generalization
- Assumption:
  - Abstractions generalize robustly
  - Shallow heuristics do not

#### Takeaway

- To understand what abilities AI systems have, we should analyze how those abilities generalize beyond the training data
- The scale of current training sets is enormous. So, we should not just assume that something is novel – we should check!









### Case Study 1: Linguistic Structure

#### Text generation

Give a prompt:

#### Once upon a time,

• GPT-2 predicts words to continue it:

#### Generalization or memorization?

- Maybe GPT-2 has learned linguistic structure...
- ...or maybe it is merely repeating sentences it has memorized

How Much Do Language Models Copy From Their Training Data? Evaluating Linguistic Novelty in Text Generation Using RAVEN *«* 

R. Thomas McCoy,<sup>\*1</sup> Paul Smolensky,<sup>2,3</sup> Tal Linzen,<sup>4</sup> Jianfeng Gao,<sup>2</sup> Asli Celikyilmaz<sup> $\dagger 5$ </sup>



 For each value of n, find the proportion of n-grams that are novel

 For each value of n, find the proportion of n-grams that are novel

 For each value of n, find the proportion of n-grams that are novel

 For each value of n, find the proportion of n-grams that are novel

 For each value of n, find the proportion of n-grams that are novel

 For each value of n, find the proportion of n-grams that are novel



Small n-grams: less novel than baseline



Small n-grams: less novel than baseline

Large n-grams: more novel than baseline



### Syntax

 Maybe it has just memorized sentence templates and is filling in slots?



No: 63% of generated sentences have a novel syntactic structure

### Syntax

 Maybe it has just memorized sentence templates and is filling in slots?



No: 63% of generated sentences have a novel syntactic structure



### Syntax

 Maybe it has just memorized sentence templates and is filling in slots?



No: 63% of generated sentences have a novel syntactic structure



#### Morphology

Productive morphology (GPT-2)

#### IKEA-ness Brazilianisms Smurfverse nonneotropical

### Morphology

• Productive morphology, in proper syntactic contexts (GPT-2):

The Sarrats were lucky to have her as part of their lives

### Case Study 2: Algorithmic Tasks

#### Probability/frequency

- In many LLMs, we can't directly analyze the training data:
  - Too big
  - Proprietary
- But we can use proxies: Probability and frequency

#### **PNAS**

#### RESEARCH ARTICLE

PSYCHOLOGICAL AND COGNITIVE SCIENCES COMPUTER SCIENCES

OPEN ACCESS



#### Embers of autoregression show how large language models are shaped by the problem they are trained to solve

R. Thomas McCoy<sup>a,1,2,3</sup>, Shunyu Yao<sup>a,4</sup>, Dan Friedman<sup>a</sup>, Mathew D. Hardy<sup>b</sup>, and Thomas L. Griffiths<sup>a,b</sup>



#### Deciphering the Factors Influencing the Efficacy of Chain-of-Thought: Probability, Memorization, and Noisy Reasoning

Akshara Prabhakar<sup>1</sup>, Thomas L. Griffiths<sup>1,2</sup>, R. Thomas McCoy<sup>3,4</sup>







#### Probability

 Prediction: LLMs will perform better when the correct answer is high-probability than when it is low-probability

#### Article swapping

• Swap each article (a, an, or the) with the previous word

### In box the there was key a. $\rightarrow$ In the box there was a key.

#### Article swapping

Swap each article (a, an, or the) with the word before it.

Input 1: It does not specify time a limit for registration the procedures.
Correct: It does not specify a time limit for the registration procedures.
GPT-4: It does not specify a time limit for the registration procedures.

Input 2: It few with it to lying take the get just a hands would kinds.
Correct: It few with it to lying the take get a just hands would kinds.
X GPT-4: It flew with a few kinds to take the lying just to get the hands.

#### Sensitivity to output probability



#### Counting words

How many words are in this list? "lively news exhibit steep"



#### Task frequency

- Prediction: Better performance on frequent tasks than rarer ones
  - Even if the tasks are equally complex!

### Hello world! Shift of 1: Ifmmp xpsme!

### Hello world! Shift of 1: Ifmmp xpsme! Shift of 2: Jgnng yqtnf!

#### Most common: 13



#### Most common: 13





Output log probability

Decode by shifting each letter 18 positions backward in the alphabet.

Input 1: A lzafc wnwjqgfw zsk lzwaj gof hslz, sfv lzwq usf escw al zshhwf.
Correct: I think everyone has their own path, and they can make it happen.
X GPT-4: I think therefore I am the best, and they can come to debate.

Input 2: Al ak ksv lg kww lzsl al osk jwuwanwv xjge lzsl cafv gx sfydw.

**Correct:** It is sad to see that it was received from that kind of angle.

 $\times$  GPT-4: To be or not to be that is the question whether nobler in the mind.

#### Shift ciphers: Chain-of-thought



#### Shift-ciphers: Chain-of-thought

- So, are LLMs reasoning or using memorization?
- Answer: Both!

#### Conclusion

- In the first case study (syntax):
  - LLMs showed impressive generalization
  - Evidence for capturing abstract syntactic structure!
- In the second case study (algorithmic reasoning):
  - Performance closely correlates with frequency/probability
  - Evidence for more shallow strategies!
- What's different between them?
  - Syntax: Essentially what language models are trained to do
  - Reasoning: Not the direct focus of optimization
- Connects to the broader theme of understanding AI via the lens of what its training looked like

### Thank you!

Collaborators:



Asli Celikyilmaz



Dan Friedman



Jianfeng Gao



Tom Griffiths



Matt Hardy





Marinescu

Tal Linzen



Akshara Prabhakar







Shunyu Yao

- Funding: NSF SPRF #2204152
- You!