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nonparametric least squares

statistical model: we observe 1 i.i.d. pairs
(X1, Y1), ..., (Xn, Ya) €]0,1] x R, with

Yi=1fw(Xi)+e, i=1,...,n

nonparametric least squares for function class F

f, € argmin — (X))
pin 3%
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covariate shift

statistical model: we observe n i.i.d. pairs
(X1, Y1), ..., (Xn, Ya) €]0,1] x R, with

Y,':fo(X,')—‘r{f,', i=1,...,n

denote the marginal distribution of the X; by

covariate shift: The distribution of the X; might be different
during test time,

notation: we assume that Px and (x have densities that are
denoted by p and ¢
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LSE under covariate shift

how well does nonparametric least squares estimator perform under
covariate shift?

¢ statistical learning theory yields bounds for the risk

E[/Ol (F(x) — H(x))° dx}

® this is very natural, given that the training loss is

n

S (Vi - £(X)*

i=1
® to understand behavior under covariate shift, we need bounds
for

E[/Ol (F(x) = fo(x))? dx}
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Lipschitz class

® here we study the LSE for the class Lip(1) consisting of all
univariate Lipschitz functions

[f(x) = f(y) < Ix =yl

® without covariate shift, the convergence rate of the prediction
risk is n=2/3 with n the sample size

Question: What is the rate of the prediction risk under the target
density q,

E[/Ol (F(x) = f(x))? dx}.

motivation for Lip(1) is relation to ReLU networks and
mathematical tractability
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connection to NNs

Denote by ReLUpy(1) the function class of all shallow RelLU
networks with N hidden nodes that are moreover 1-Lipschitz. If
N > n—1, then,

n

i Y, — (X))
ugmin 2 " anamin 3 (Yi— £(X0)

suggests that this could also describe behavior of
neural network fits
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local convergence rates
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local convergence rate

® Pyx source design distribution
® ty(x) unique solution of
log n
ta(x)2 Px ([ = ta(x), x + ta(x)]) = —2

® assume doubling property: there exists a constant D such that
for any x and any n > 0,
Px(x —2n,x+2n) < D Px(x —n,x+n)

Theorem: let 6 > 0. If z?n denotes the LSE taken over the class of

1-Lipschitz functions Lip(1), then, for a sufficiently large constant
K,

n

sup P

| sup
foeLip(1—5)

x€[0,1] tn(x)

< |Fa(x) — fo(x)|

>K>%O as n — oo.

we also derived a corresponding minimax lower bound, proving that
t, is the optimal rate
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standard statistical learning approach

n

1?,, € argmin (Y; — 1‘(X,~))2
felip(l) (25

and if true regression function fy € Lip(1), then,

72? )~ 606)> < 23 (B00) - 50X)).

i=1

Taking expectation, |.h.s. can be related to prediction error

E[/ol (F(x) = H(x))* dx]

no possibility to extend this to derive local rates
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high-level proof idea

® proof by contradiction
® assume there exists 0 < x* < 1 with

fa(x*) — fo(x*) = Kta(x")

for a large K
® construct a 1-Lipschitz function g as follows:

e contradicts the fact that z?,, is LSE

proving existence of such a g is hard
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on the convergence rate

local convergence rate is given by equation

10002 P ([ — ta() x + ()] ) =

n

with n the sample size

higher density < smaller local rate t,
if density is bounded away from zero,

t(x) = (

very different behavior can occur if density is near zero
to make this visible it makes sense to think of sequences
Px — Py < pn

log n) 1/3
n

although LSE optimizes a global loss, it achieves the (optimal)
local rate t, ~» no reweighting of loss necessary, cannot be
obtained by kernel smoothing with fixed bandwidth
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application to covariate shift

If g is the density under the target distribution, then w.h.p.,

Example: Let 3 € (0,2]. If inf,cpo 1) Pa(x) > n=B/G+8) log n, and
Pn is B-smooth then

log n )2/3

)" = <npn(X)

and w.h.p.
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decreasing densities

Let o > 0. For source density p(x) =
(v +1)x“ and uniform target density

q, :_/
log n\ 1/(a+3) log n\1/3 sl —
tn(X) X ( ) /\ ( a ) 0.0 0.2 04 06 08 1.0
n nx
and

log n>3/(3+a) y (Iog n>2/3

n

[ (60~ 50) oo 5

change in the rate occurs for a = 3/2

Pathak, Ma, Wainwright '22 show that for the Nadaraya-Watson
estimator the change occurs already for « =1
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covariate shift with two samples

suppose we also observe m iid samples from the target distribution
we observe (X1, Y1),. .., (Xotm, Yatrm) € [0,1] X R with

X; ~ Px, fori=1,...,n,
Xi ~ Qx, fori=n+1,...,n+m,
Yi=fH(Xi)+e, fori=1,...,n+m,

local rate associated to the subsamples

tF(x)% Px ([x — t2(x), x + t£(x)]) = "’%
3007 Qx([x — 18(x). x + 19(x)]) = &
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combined estimator

on the full sample we consider a combined estimator f, ,, that
copies the value of the LSE with the smaller local rate

um(x) = P COL(E(x) < () ) + B2 001 (2 () > T2())

with
o £P and £Q the LSEs over Lip(1) functions under the source
and target subsample

* tP(x) and t%(x) the empirical versions of the local rates
(can be shown to be consistent estimators as n, m — co)
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convergence rate

() = B (00100 < B()) + B COL(E(x) > 2(x))

Theorem: For a sufficiently large constant K,

we also showed that the local convergence rate tF(x) A tQ(x) is
minimax optimal in this model

® shows that additional sample can only improve the
convergence rate if t3(x) < tF'(x) somewhere
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example

(everything up to log-terms)

p(x) = (a+ )+,

Q@ uniform distribution

o > 3/2 (regime where LSE rate is < n—2/3)
if n3/3+2) < m < n, then, w.h.p.

E)l/a

n

1
/ (am(x) - fO(X))zq(x) dx < m*2/3<
0

if m = n, the rate is
< n72/3
if m< n3/G+) the rate is

S n—3/(3+a)

and the target sample does not improve the rate
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open problems

a) arbitrary smoothness 3 and covariate/input dimension d:
local rate should be determined by equation
log n

tn(X)2PX(y DX = Y]eo < tn(X)l/B) = n

issues:

® construction seems difficult to generalize to S > 1, as for two
functions also the pointwise maximum (and minimum) need
to be contained in the class

* properties of the LSE for g < d/27

b) gradient descent iterates:
what can we say about local convergence of say shallow neural
networks?
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open problems

c) =07

We take the LSE over all 1-Lipschitz functions, but assume that
the true regression function is at mot (1 — §)-Lipschitz for § > 0.
What happens for § = 07
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conclusion

minimizes global criterion, but

proof technique is non-standard
convergence result can be used to derive

if we also have m observations from the target distribution,
we constructed an estimator based on the individual LSEs
that achieves the optimal rate t/'(x) A tQ(x)

many extensions possible

more details in the paper
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