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nonparametric least squares

statistical model: we observe n i.i.d. pairs
(X1,Y1), . . . , (Xn,Yn) ∈ [0, 1]× R, with

Yi = f0(Xi ) + εi , i = 1, . . . , n

nonparametric least squares for function class F

f̂n ∈ argmin
f ∈F

n∑
i=1

(
Yi − f (Xi )

)2
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covariate shift

statistical model: we observe n i.i.d. pairs
(X1,Y1), . . . , (Xn,Yn) ∈ [0, 1]× R, with

Yi = f0(Xi ) + εi , i = 1, . . . , n

denote the marginal distribution of the Xi by PX

covariate shift: The distribution of the Xi might be different
during test time,

PX → QX

notation: we assume that PX and QX have densities that are
denoted by p and q
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LSE under covariate shift

how well does nonparametric least squares estimator perform under
covariate shift?

• statistical learning theory yields bounds for the risk

E
[ ∫ 1

0

(
f̂n(x)− f0(x)

)2
p(x) dx

]
• this is very natural, given that the training loss is

n∑
i=1

(
Yi − f (Xi )

)2
• to understand behavior under covariate shift, we need bounds

for

E
[ ∫ 1

0

(
f̂n(x)− f0(x)

)2
q(x) dx

]
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Lipschitz class

• here we study the LSE for the class Lip(1) consisting of all
univariate Lipschitz functions

|f (x)− f (y)| ≤ |x − y |.

• without covariate shift, the convergence rate of the prediction
risk is n−2/3 with n the sample size

Question: What is the rate of the prediction risk under the target
density q,

E
[ ∫ 1

0

(
f̂n(x)− f0(x)

)2
q(x) dx

]
.

motivation for Lip(1) is relation to ReLU networks and
mathematical tractability
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connection to NNs

Denote by ReLUN(1) the function class of all shallow ReLU
networks with N hidden nodes that are moreover 1-Lipschitz. If
N ≥ n − 1, then,

argmin
f ∈ReLUN(1)

n∑
i=1

(
Yi − f (Xi )

)2⊆ argmin
f ∈ Lip(1)

n∑
i=1

(
Yi − f (Xi )

)2
.

suggests that this could also describe behavior of
neural network fits
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local convergence rates
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local convergence rate
• PX source design distribution
• tn(x) unique solution of

tn(x)2 PX

([
x − tn(x), x + tn(x)

])
=

log n

n
• assume doubling property: there exists a constant D such that

for any x and any η > 0,

PX (x − 2η, x + 2η) ≤ D PX (x − η, x + η)

Theorem: Let δ > 0. If f̂n denotes the LSE taken over the class of
1-Lipschitz functions Lip(1), then, for a sufficiently large constant
K ,

sup
f0∈Lip(1−δ)

Pf0

(
sup

x∈[0,1]

|f̂n(x)− f0(x)|
tn(x)

> K

)
→ 0 as n→∞.

we also derived a corresponding minimax lower bound, proving that
tn is the optimal rate
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standard statistical learning approach

If

f̂n ∈ argmin
f ∈ Lip(1)

n∑
i=1

(
Yi − f (Xi )

)2
and if true regression function f0 ∈ Lip(1), then,

1

n

n∑
i=1

(
f̂n(Xi )− f0(Xi )

)2 ≤ 2

n

n∑
i=1

εi
(
f̂n(Xi )− f0(Xi )

)
.

Taking expectation, l.h.s. can be related to prediction error

E
[ ∫ 1

0

(
f̂n(x)− f0(x)

)2
p(x) dx

]
no possibility to extend this to derive local rates
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high-level proof idea
• proof by contradiction
• assume there exists 0 ≤ x∗ ≤ 1 with

f̂n(x∗)− f0(x∗)>Ktn(x∗)

for a large K
• construct a 1-Lipschitz function g as follows:

• contradicts the fact that f̂n is LSE

proving existence of such a g is hard
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on the convergence rate
local convergence rate is given by equation

tn(x)2 PX

([
x − tn(x), x + tn(x)

])
=

log n

n

with n the sample size

• higher density ⇔ smaller local rate tn
• if density is bounded away from zero,

tn(x) =
( log n

n

)1/3
• very different behavior can occur if density is near zero
• to make this visible it makes sense to think of sequences
PX → Pn

X ⇔ pn

although LSE optimizes a global loss, it achieves the (optimal)
local rate tn  no reweighting of loss necessary, cannot be

obtained by kernel smoothing with fixed bandwidth
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application to covariate shift

If q is the density under the target distribution, then w.h.p.,∫ 1

0

(
f̂n(x)− f0(x)

)2
q(x) dx ≤ K 2

∫ 1

0
tn(x)2q(x) dx

Example: Let β ∈ (0, 2]. If infx∈[0,1] pn(x) ≥ n−β/(3+β) log n, and
pn is β-smooth then

tn(x)2 �
( log n

npn(x)

)2/3
,

and w.h.p.∫ 1

0

(
f̂n(x)− f0(x)

)2
q(x) dx .

( log n

n

)2/3 ∫ 1

0

q(x)

pn(x)2/3
dx

13 / 21



decreasing densities

Let α > 0. For source density p(x) =
(α+ 1)xα and uniform target density
q,

tn(x) �
( log n

n

)1/(α+3)
∧
( log n

nxα

)1/3
and∫ 1

0

(
f̂n(x)− f0(x)

)2
q(x) dx .

( log n

n

)3/(3+α)
∨
( log n

n

)2/3

change in the rate occurs for α = 3/2

Pathak, Ma, Wainwright ’22 show that for the Nadaraya-Watson
estimator the change occurs already for α = 1
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covariate shift with two samples

suppose we also observe m iid samples from the target distribution

we observe (X1,Y1), . . . , (Xn+m,Yn+m) ∈ [0, 1]× R with

Xi ∼ PX , for i = 1, . . . , n,

Xi ∼ QX , for i = n + 1, . . . , n + m,

Yi = f0(Xi ) + εi , for i = 1, . . . , n + m,

local rate associated to the subsamples

tPn (x)2 PX

([
x − tPn (x), x + tPn (x)

])
=

log n

n

tQm (x)2QX

([
x − tQm (x), x + tQm (x)

])
=

logm

m
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combined estimator

on the full sample we consider a combined estimator f̂n,m that
copies the value of the LSE with the smaller local rate

f̂n,m(x) := f̂ Pn (x)1
(
t̂Pn (x) ≤ t̂Qm (x)

)
+ f̂ Qm (x)1

(
t̂Pn (x) > t̂Qm (x)

)
with

• f̂ Pn and f̂ Qn the LSEs over Lip(1) functions under the source
and target subsample

• t̂Pn (x) and t̂Qn (x) the empirical versions of the local rates
(can be shown to be consistent estimators as n,m→∞)

all the information this estimator needs from the source sample is
the LSE f̂ Pn and some covariates Xi ∼ PX to estimate t̂Pn (x)

16 / 21



convergence rate

f̂n,m(x) := f̂ Pn (x)1
(
t̂Pn (x) ≤ t̂Qm (x)

)
+ f̂ Qm (x)1

(
t̂Pn (x) > t̂Qm (x)

)

Theorem: For a sufficiently large constant K ,

sup
f0∈Lip(1−δ)

Pn,m
f0

(
sup

x∈[0,1]

|f̂n,m(x)− f0(x)|
tPn (x) ∧ tQm (x)

> K

)
→ 0 as n,m→∞.

we also showed that the local convergence rate tPn (x) ∧ tQm (x) is
minimax optimal in this model

• shows that additional sample can only improve the
convergence rate if tQm (x)� tPn (x) somewhere
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example
(everything up to log-terms)

• p(x) = (α + 1)xα+1,

• Q uniform distribution

• α > 3/2 (regime where LSE rate is � n−2/3)

• if n3/(3+α) � m ≤ n, then, w.h.p.∫ 1

0

(
f̂n,m(x)− f0(x)

)2
q(x) dx . m−2/3

(m
n

)1/α
• if m � n, the rate is

. n−2/3

• if m . n3/(3+α), the rate is

. n−3/(3+α)

and the target sample does not improve the rate
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open problems

a) arbitrary smoothness β and covariate/input dimension d:
local rate should be determined by equation

tn(x)2PX

(
y : |x − y |∞ ≤ tn(x)1/β

)
=

log n

n

issues:

• construction seems difficult to generalize to β > 1, as for two
functions also the pointwise maximum (and minimum) need
to be contained in the class

• properties of the LSE for β < d/2?

b) gradient descent iterates:
what can we say about local convergence of say shallow neural
networks?
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open problems

c) δ = 0 ?
We take the LSE over all 1-Lipschitz functions, but assume that
the true regression function is at mot (1− δ)-Lipschitz for δ > 0.
What happens for δ = 0?
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conclusion
• least squares estimator (LSE) taken over Lipschitz functions

minimizes global criterion, but achieves the optimal local rate
tn(x)
• proof technique is non-standard
• convergence result can be used to derive rates for the

generalization error of the LSE under covariate shift
• if we also have m observations from the target distribution,

we constructed an estimator based on the individual LSEs
that achieves the optimal rate tPn (x) ∧ tQm (x)
• many extensions possible

more details in the paper
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