The nonparametric least squares estimator under covariate shift

Johannes Schmidt-Hieber

talk is based on the paper

Bernoulli **30**(3), 2024, 1845–1877 https://doi.org/10.3150/23-BEJ1655

Local convergence rates of the nonparametric least squares estimator with applications to transfer learning

JOHANNES SCHMIDT-HIEBER^a and PETR ZAMOLODTCHIKOV^b

nonparametric least squares

statistical model: we observe *n* i.i.d. pairs $(X_1, Y_1), \ldots, (X_n, Y_n) \in [0, 1] \times \mathbb{R}$, with

$$Y_i = f_0(X_i) + \varepsilon_i, \quad i = 1, \dots, n$$

nonparametric least squares for function class \mathcal{F}

$$\widehat{f}_n \in \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2$$

covariate shift

statistical model: we observe *n* i.i.d. pairs $(X_1, Y_1), \ldots, (X_n, Y_n) \in [0, 1] \times \mathbb{R}$, with

$$Y_i = f_0(X_i) + \varepsilon_i, \quad i = 1, \dots, n$$

denote the marginal distribution of the X_i by P_X

covariate shift: The distribution of the X_i might be different during test time,

 $P_X \rightarrow Q_X$

notation: we assume that P_X and Q_X have densities that are denoted by p and q

LSE under covariate shift

how well does nonparametric least squares estimator perform under covariate shift?

• statistical learning theory yields bounds for the risk

$$\mathbb{E}\Big[\int_0^1 \big(\widehat{f}_n(x) - f_0(x)\big)^2 p(x) \, dx\Big]$$

• this is very natural, given that the training loss is

$$\sum_{i=1}^n \left(Y_i - f(X_i)\right)^2$$

 to understand behavior under covariate shift, we need bounds for

$$\mathbb{E}\Big[\int_0^1 \big(\widehat{f}_n(x) - f_0(x)\big)^2 q(x) \, dx\Big]$$

Lipschitz class

 here we study the LSE for the class Lip(1) consisting of all univariate Lipschitz functions

$$|f(x)-f(y)|\leq |x-y|.$$

• without covariate shift, the convergence rate of the prediction risk is $n^{-2/3}$ with *n* the sample size

Question: What is the rate of the prediction risk under the target density q,

$$\mathbb{E}\Big[\int_0^1 \big(\widehat{f}_n(x) - f_0(x)\big)^2 q(x) \, dx\Big].$$

motivation for Lip(1) is relation to ReLU networks and mathematical tractability

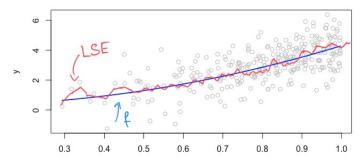
connection to NNs

Denote by $\text{ReLU}_N(1)$ the function class of all shallow ReLU networks with N hidden nodes that are moreover 1-Lipschitz. If $N \ge n-1$, then,

$$\underset{f \in \mathsf{ReLU}_N(1)}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - f(X_i))^2 \subseteq \underset{f \in \mathsf{Lip}(1)}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

suggests that this could also describe behavior of neural network fits

local convergence rates



х

local convergence rate

9/21

- *P_X* source design distribution
- $t_n(x)$ unique solution of

$$t_n(x)^2 P_X([x-t_n(x),x+t_n(x)]) = \frac{\log n}{n}$$

 assume doubling property: there exists a constant D such that for any x and any η > 0,

$$P_X(x-2\eta,x+2\eta) \leq D P_X(x-\eta,x+\eta)$$

Theorem: Let $\delta > 0$. If \hat{f}_n denotes the LSE taken over the class of 1-Lipschitz functions Lip(1), then, for a sufficiently large constant K,

$$\sup_{f_0\in \operatorname{Lip}(1-\delta)} P_{f_0}\left(\sup_{x\in[0,1]} \frac{|\widehat{f_n}(x)-f_0(x)|}{t_n(x)} > K\right) \to 0 \quad \text{as } n \to \infty.$$

we also derived a corresponding minimax lower bound, proving that t_n is the optimal rate

standard statistical learning approach

lf

$$\widehat{f}_n \in \operatorname*{argmin}_{f \in \operatorname{Lip}(1)} \sum_{i=1}^n (Y_i - f(X_i))^2$$

and if true regression function $f_0 \in Lip(1)$, then,

$$\frac{1}{n}\sum_{i=1}^n \big(\widehat{f}_n(X_i) - f_0(X_i)\big)^2 \leq \frac{2}{n}\sum_{i=1}^n \varepsilon_i \big(\widehat{f}_n(X_i) - f_0(X_i)\big).$$

Taking expectation, l.h.s. can be related to prediction error

$$\mathbb{E}\Big[\int_0^1 \big(\widehat{f}_n(x) - f_0(x)\big)^2 \rho(x) \, dx\Big]$$

no possibility to extend this to derive local rates

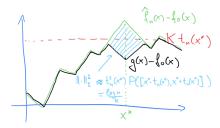
high-level proof idea

- proof by contradiction
- assume there exists $0 \le x^* \le 1$ with

$$\widehat{f}_n(x^*) - f_0(x^*) > Kt_n(x^*)$$

for a large K

construct a 1-Lipschitz function g as follows:



• contradicts the fact that $\hat{f_n}$ is LSE

proving existence of such a g is hard

on the convergence rate

local convergence rate is given by equation

$$t_n(x)^2 P_X([x-t_n(x),x+t_n(x)]) = \frac{\log n}{n}$$

with n the sample size

- higher density \Leftrightarrow smaller local rate t_n
- if density is bounded away from zero,

$$t_n(x) = \left(\frac{\log n}{n}\right)^{1/3}$$

- very different behavior can occur if density is near zero
- to make this visible it makes sense to think of sequences $P_X \to P_X^n \Leftrightarrow p_n$

although LSE optimizes a global loss, it achieves the (optimal) local rate $t_n \rightsquigarrow$ no reweighting of loss necessary, cannot be obtained by kernel smoothing with fixed bandwidth

application to covariate shift

If q is the density under the target distribution, then w.h.p.,

$$\int_0^1 \left(\widehat{f}_n(x) - f_0(x)\right)^2 q(x) \, dx \le K^2 \int_0^1 t_n(x)^2 q(x) \, dx$$

Example: Let $\beta \in (0, 2]$. If $\inf_{x \in [0,1]} p_n(x) \ge n^{-\beta/(3+\beta)} \log n$, and p_n is β -smooth then

$$t_n(x)^2 \asymp \left(\frac{\log n}{np_n(x)}\right)^{2/3},$$

and w.h.p.

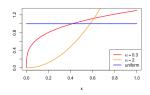
$$\int_0^1 \left(\widehat{f}_n(x) - f_0(x)\right)^2 q(x) \, dx \lesssim \left(\frac{\log n}{n}\right)^{2/3} \int_0^1 \frac{q(x)}{p_n(x)^{2/3}} \, dx$$

decreasing densities

Let $\alpha > 0$. For source density $p(x) = (\alpha + 1)x^{\alpha}$ and uniform target density q,

$$t_n(x) \asymp \left(\frac{\log n}{n}\right)^{1/(\alpha+3)} \wedge \left(\frac{\log n}{nx^{\alpha}}\right)^{1/3}$$

and



$$\int_0^1 \left(\widehat{f}_n(x) - f_0(x)\right)^2 q(x) \, dx \lesssim \left(\frac{\log n}{n}\right)^{3/(3+\alpha)} \vee \left(\frac{\log n}{n}\right)^{2/3}$$

change in the rate occurs for $\alpha = 3/2$

Pathak, Ma, Wainwright '22 show that for the Nadaraya-Watson estimator the change occurs already for $\alpha = 1$

covariate shift with two samples

suppose we also observe m iid samples from the target distribution

we observe $(X_1,Y_1),\ldots,(X_{n+m},Y_{n+m})\in[0,1] imes\mathbb{R}$ with

$$\begin{array}{ll} X_i \sim P_X, & \text{for } i=1,\ldots,n, \\ X_i \sim Q_X, & \text{for } i=n+1,\ldots,n+m, \\ Y_i = f_0(X_i) + \varepsilon_i, & \text{for } i=1,\ldots,n+m, \end{array}$$

local rate associated to the subsamples

$$t_n^P(x)^2 P_X([x - t_n^P(x), x + t_n^P(x)]) = \frac{\log n}{n}$$
$$t_m^Q(x)^2 Q_X([x - t_m^Q(x), x + t_m^Q(x)]) = \frac{\log m}{m}$$

combined estimator

on the full sample we consider a **combined estimator** $\hat{f}_{n,m}$ that copies the value of the LSE with the smaller local rate

$$\widehat{f}_{n,m}(x) := \widehat{f}_n^{\mathcal{P}}(x) \mathbf{1}\Big(\widehat{t}_n^{\mathcal{P}}(x) \leq \widehat{t}_m^{\mathcal{Q}}(x)\Big) + \widehat{f}_m^{\mathcal{Q}}(x) \mathbf{1}\Big(\widehat{t}_n^{\mathcal{P}}(x) > \widehat{t}_m^{\mathcal{Q}}(x)\Big)$$

with

- \hat{f}_n^P and \hat{f}_n^Q the LSEs over Lip(1) functions under the source and target subsample
- $\hat{t}_n^P(x)$ and $\hat{t}_n^Q(x)$ the empirical versions of the local rates (can be shown to be consistent estimators as $n, m \to \infty$)
- all the information this estimator needs from the source sample is the LSE \hat{f}_n^P and some covariates $X_i \sim P_X$ to estimate $\hat{t}_n^P(x)$

convergence rate

$$\widehat{f}_{n,m}(x) := \widehat{f}_n^{\mathcal{P}}(x) \mathbf{1}\left(\widehat{t}_n^{\mathcal{P}}(x) \le \widehat{t}_m^{\mathcal{Q}}(x)\right) + \widehat{f}_m^{\mathcal{Q}}(x) \mathbf{1}\left(\widehat{t}_n^{\mathcal{P}}(x) > \widehat{t}_m^{\mathcal{Q}}(x)\right)$$

Theorem: For a sufficiently large constant K,

$$\sup_{f_0\in \text{Lip}(1-\delta)} \mathbb{P}^{n,m}_{f_0}\left(\sup_{x\in[0,1]} \frac{|\widehat{f}_{n,m}(x)-f_0(x)|}{t^P_n(x)\wedge t^Q_m(x)} > K\right) \to 0 \quad \text{as } n,m\to\infty.$$

we also showed that the local convergence rate $t_n^P(x) \wedge t_m^Q(x)$ is minimax optimal in this model

• shows that additional sample can only improve the convergence rate if $t_m^Q(x) \ll t_n^P(x)$ somewhere

example

(everything up to log-terms)

- $p(x) = (\alpha + 1)x^{\alpha + 1}$,
- Q uniform distribution
- $\alpha > 3/2$ (regime where LSE rate is $\ll n^{-2/3}$)
- if $n^{3/(3+\alpha)} \ll m \le n$, then, w.h.p.

$$\int_0^1 \left(\widehat{f}_{n,m}(x) - f_0(x)\right)^2 q(x) \, dx \lesssim m^{-2/3} \left(\frac{m}{n}\right)^{1/\alpha}$$

• if $m \asymp n$, the rate is

$$\lesssim n^{-2/3}$$

• if $m \lesssim n^{3/(3+\alpha)}$, the rate is

$$\lesssim$$
 n $^{-3/(3+lpha)}$

and the target sample does not improve the rate

open problems

a) arbitrary smoothness β and covariate/input dimension d: local rate should be determined by equation

$$t_n(x)^2 \mathbb{P}_X(y:|x-y|_\infty \le t_n(x)^{1/\beta}) = \frac{\log n}{n}$$

issues:

- construction seems difficult to generalize to $\beta > 1$, as for two functions also the pointwise maximum (and minimum) need to be contained in the class
- properties of the LSE for $\beta < d/2$?
- b) gradient descent iterates:

what can we say about local convergence of say shallow neural networks?

open problems

c) $\delta = 0$?

We take the LSE over all 1-Lipschitz functions, but assume that the true regression function is at mot $(1 - \delta)$ -Lipschitz for $\delta > 0$. What happens for $\delta = 0$?

conclusion

- least squares estimator (LSE) taken over Lipschitz functions minimizes global criterion, but achieves the optimal local rate t_n(x)
- proof technique is non-standard
- convergence result can be used to derive rates for the generalization error of the LSE under covariate shift
- if we also have *m* observations from the target distribution, we constructed an estimator based on the individual LSEs that achieves the optimal rate $t_n^P(x) \wedge t_m^Q(x)$
- many extensions possible

more details in the paper

