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Differential privacy

A privacy mechanism is a randomised algorithm taking an input dataset

X = (X1, . . . , Xn) ∈ X n
and producing publishable data Z . Formally, it is a

collection of conditional distributionsQ = {Q(·|x) : x ∈ X n} such that

Z |{X = x} ∼ Q(·|x).

Privacy mechanism Q is called α-(central) differentially private (Dwork et al., 2006) if

sup
A

Q(A|x)
Q(A|x ′) = sup

A

P(Z ∈ A|X = x)
P(Z ∈ A|X = x ′)

≤ eα,

for all x, x ∈ X n
such that

∑n
i=1

1{xi ̸= x ′i } ≤ 1. We focus on the regime α ∈ (0, 1].
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Differential privacy

For the central differential privacy (CDP), where there is a trusted central data

curator having access to all the raw data. For example, when estimating a univariate

mean, we can have

θ̂ = Z =
1

n

n∑
i=1

Xi +
1

nα
W , withW ∼ Lap(1).

Total added noise is of order (n2α2)−1

.

A stronger notion of differential privacy is the local differential privacy (LDP), where

data are randomised before collection, that is

sup
A

sup
x,x′∈X

P(Zi ∈ A|Xi = x)
P(Zi ∈ A|Xi = x ′)

≤ eα, i ∈ {1, . . . , n}.

For example, when estimating a univariate mean, we can have

θ̂ =
1

n

n∑
i=1

Zi =
1

n

n∑
i=1

(
Xi +

1

α
Wi

)
, with {Wi}ni=1

i.i.d.∼ Lap(1).

Total added noise is of order (nα2)−1

.
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Differential privacy

Remarks

▶ Non-interactive, sequentially interactive and fully-interactive LDP mechanisms.

▶ Pure and approximate DP.

Pure DP: Q(A|x) ≤ eαQ(A|x) and Approximate DP: Q(A|x) ≤ eαQ(A|x) + β.

▶ Similarity: both CDP and LDP assume that each user possesses one unit of data.

▶ Difference: all raw data can be used before privatisation in CDP, but every unit of

raw data needs to be privatised before any statistical inference in LDP.

▶ Question: do we have something in between when each user possesses multiple

units of data?
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User-level LDP & federated DP

User/server 1 2 … n

Raw data {	𝑋!
(#)	}!%#,…( {	𝑋!

())	}!%#,…( … {	𝑋!
(*)	}!%#,…(

Privatised data 𝑍# 𝑍) … 𝑍*

Final estimator &𝜃

Under certain privacy constraints

LDP, CDP or a mixture of both…
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Privatised data 𝑍# 𝑍) … 𝑍*

Final estimator &𝜃

Under certain privacy constraints

LDP, CDP or a mixture of both…

▶ LDP: Rate optimality and phase transition for user-level local differential privacy

(arXiv: 2405.11923, Alexander Kent, Thomas B. Berrett and Y.)

▶ CDP: Federated transfer learning with differential privacy (arXiv: 2403.11343, Mengchu Li,

Ye Tian, Yang Feng and Y.)

▶ A mixture of both: Private distributed learning in functional data (ongoing work, Gengyu

Xue, Zhenhua Lin and Y.)
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User-level LDP & federated DP

A simple example: univariate mean estimation measured in squared loss, with n
users/sites and T units of data per user.

Setting Minimax rates References

No privacy 1/(nT ) Very easy to show

Local item-level 1/(nTα2) Duchi et al. (2018)

Local user-level (small T ) 1/(nTα2) Our result

Local user-level (large T ) e−nα2

Our result

Central item-level 1/(nT ) ∨ 1/(n2T 2α2) Levy et al. (2021)

Central user-level (small T ) 1/(nT ) ∨ 1/(n2Tα2) Levy et al. (2021)

Federated 1/(nT ) ∨ 1/(nT 2α2) Our result

Extensions

▶ Hierarchy

▶ Heterogeneity
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Extension 1: Hierarchy
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Extension 1: Hierarchy

Sparse functional mean estimation: Sobolev classW(γ,C) mean function

estimation measured in functional L2-norm squared loss, with n users/sites, T
functions data per user and m observational points per function.

Imposing central user-level for within each user and federated across users, we have

1

nT
∨ 1

nT 2α2
∨ (nTm)−

2γ
2γ+1 ∨ (nT 2mα2)−

γ
γ+1 .

Private distributed learning in functional data (ongoing work, Gengyu Xue, Zhenhua Lin and Y.)
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Extension 2: Heterogeneity

In general, we have that

Minimax rate ≍ target-only minimax rate ∧ transfer-learning minimax rate,

where

target-only rate ≍ non-private rate ∨ central DP rate

and

transfer-learning rate

≍ upper bound on source-target diff ∨ non-private rate ∨ federated DP rate

Problem Target only Transfer learning

Univariate mean estimation
1

T + 1

T 2α2
h2 + 1

nT + 1

nT 2α2

Low-dim regression
d
T + d2

T 2α2
h2 + d

nT + d
nT 2α2

High-dim regression
s
T + s2

T 2α2
h2 + s

nT + sd
nT 2α2

Federated transfer learning with differential privacy (arXiv: 2403.11343, Mengchu Li, Ye Tian, Yang Feng and

Y.)
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User-level local differential privacy

(with Alexander Kent and Thomas B. Berrett, arXiv: 2405.11923)



Illustration

User/server 1 2 … n

Raw data { 𝑋(1)
𝑡  }𝑡=1, …𝑇 { 𝑋(2)

𝑡  }𝑡=1, …𝑇 … { 𝑋(𝑛)
𝑡  }𝑡=1, …𝑇

Privatised data 𝑍1 𝑍2 … 𝑍𝑛

Final estimator �̂�

User-level LDP
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Outline

▶ A minimax framework

▶ Infinite-T scenario with general minimax upper and lower bounds

▶ Finite-T scenario

▶ Multivariate mean estimation (omitted in the talk)

▶ Sparse, high-dimensional mean estimation

▶ Nonparametric density estimation (omitted in the talk)
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A minimax framework

For α > 0, a collection of conditional distributions {Qi}ni=1
constitutes a user-level

α-LDP mechanism if, for all i ∈ {1, . . . , n}, all x(i)
1:T , x

′(i)
1:T ∈ X T

and all

z1:(i−1) ∈ Z i−1

,

sup
S

Qi(Zi ∈ S|X (i)
1:T = x(i)

1:T ,Z1:(i−1) = z1:(i−1))

Qi(Zi ∈ S|X (i)
1:T = x ′(i)

1:T ,Z1:(i−1) = z1:(i−1))
≤ eα.

We consider the user-level α-LDP minimax risk

Rn,T ,α(θ(P),Φ ◦ ρ) = inf
Q∈Qα

inf
θ̂

sup
P∈P

EP,Q
{
Φ ◦ ρ

(
θ̂, θ(P)

)}
.
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Infinite-T scenario

A motivating example

Estimating the mean of a distribution from the family P = {P : EP(X) ∈ [−1, 1]},
we can show that the user-level LDP minimax risk is lower bounded

Rn,T ,α
(
θ(P), (·)2

)
≳ 1 ∧ 1

nTα2
.

This coincides with the item-level minimax rate (Duchi et al., 2018).

Question: When T → ∞, will Rn,T ,α
(
θ(P), (·)2

)
vanish?

Answer: Up to logarithmic factor

Rn,∞,α

(
θ(P), (·)2

)
≍ e−cnα2

,

where

▶ Rn,∞,α
(
θ(P), (·)2

)
= Rn,1,α

(
θ(P∞), (·)2

)
and

▶ P∞ = {δθ : θ ∈ θ(P)} - collection of Dirac distributions.
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Infinite-T scenario

General infinite-T rates

Given δ > 0, let N(δ) be the δ-covering number of the metric space (Θ, ρ) with
Θ = θ(P) and suppose that N(2δ) > 1. For α ∈ (0, 1] and with

diam(Θ) = supθ,θ′∈Θ ρ(θ, θ′), it holds that

Φ(δ)

2

{
1− 12nα2 + log(2)

log
(
N(2δ)

) }
≤ Rn,∞,α

(
θ(P), Φ ◦ ρ

)
≤ Φ(δ) + Φ

(
diam(Θ)

)
N(δ)e−nα2/20.
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Infinite-T scenario

Φ(δ)

2

{
1− 12nα2 + log(2)

log
(
N(2δ)

) }
≤ Rn,∞,α

(
θ(P), Φ ◦ ρ

)
≤ Φ(δ) + Φ

(
diam(Θ)

)
N(δ)e−nα2/20

Remarks

▶ For all T ∈ N, it holds that

Rn,T ,α
(
θ(P), Φ ◦ ρ

)
≳

Φ(δ)

2

{
1− 12nα2 + log(2)

log
(
N(2δ)

) }
.

▶ Choosing

N(2δLB) ≥ exp
(
⌈24nα2 + 2 log(2)⌉

)
and Φ(δUB) ≥ Φ

(
diam(Θ)

)
N(δUB)e

−nα2/20,

we have that

Φ(δLB) ≲ Rn,∞,α

(
θ(P), Φ ◦ ρ

)
≲ Φ(δUB).
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Infinite-T scenario

Φ(δ)

2

{
1− 12nα2 + log(2)

log
(
N(2δ)

) }
≤ Rn,∞,α

(
θ(P), Φ ◦ ρ

)
≤ Φ(δ) + Φ

(
diam(Θ)

)
N(δ)e−nα2/20

The lower bound is due to an application of Fano’s inequality and an upper bound

on the private Kullback–Leibler divergence (Duchi et al., 2018).

The upper bound is obtained via a non-interactive mechanism with a voting

procedure.
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Infinite-T scenario

Rn,∞,α

(
θ(P), Φ ◦ ρ

)
≤ Φ(δ) + Φ

(
diam(Θ)

)
N(δ)e−nα2/20

An upper bound procedure

▶ Step 1. Construct a δ-cover of (Θ, ρ) and make it non-overlapping.

▶ Step 2. Each user publicises a private vote for which ball their data lie in.

▶ Step 3. Output the centre of the majority-vote ball.
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Infinite-T scenario

Rn,∞,α

(
θ(P), Φ ◦ ρ

)
≤ Φ(δ) + Φ

(
diam(Θ)

)
N(δ)e−nα2/20

An upper bound procedure

▶ Step 1. Construct a δ-cover of (Θ, ρ) and make it non-overlapping.

▶ Step 2. Each user publicises a private vote for which ball their data lie in.

▶ Step 3. Output the centre of the majority-vote ball.

Interpretation of the upper bound

▶ Φ(δ) - the error occurred when the correct ball is chosen.

▶ Φ
(
diam(Θ)

)
- the error occurred when the correct ball is not chosen.

▶ N(δ)e−nα2/20
- the probability upper bound of the correct ball is not chosen.
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Infinite-T scenario

Applications of the general bounds

d-dim. mean (B2(1)) Sparse mean Density (Sobolev β-smooth)

No privacy d/n s log(d/s)/n n−2β/(2β+1)

P d/(nα2) sd/(nα2) (nα2)−2β/(2β+2)

P∞ e−nα2/d e−nα2/s (nα2)−2β
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Finite-T scenario: Sparse, high-dim. mean estimation

Consider the family of distributions

Pd,s =
{
P : supp(P) ⊂ B∞(1) ⊂ Rd , ∥EP(X)∥0 ≤ s

}
and the functional θ(P) = EP(X).

Theorem For s satisfying 16 log(d)/3 ≤ s ≤ d , assume that nα2 ≳ s log(ed). We

have that

s

[
1

T
∧

{(
1+

d
nα2

)
1/T

− 1

}]
∨ e−Cnα2/s ≲ Rn,T ,α

(
θ(Pd,s), ∥ · ∥22

)
{
s log(nTα2d)

T
∨ e−cnα2/s

}
∧
{
sd log2(nTα2)

nTα2
∨ e−cnα2/d

}
.
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Finite-T scenario: Sparse, high-dim. mean estimation

s

[
1

T
∧

{(
1+

d
nα2

)
1/T

− 1

}]
∨ e−Cnα2/s ≲ Rn,T ,α

(
θ(Pd,s), ∥ · ∥22

)
{
s log(nTα2d)

T
∨ e−cnα2/s

}
∧
{
sd log2(nTα2)

nTα2
∨ e−cnα2/d

}
.

Remarks

Roughly speaking, under the condition that T ≳ log{d/(nα2)}, we consider two
regimes.

▶ If nα2 ≲ dγ , for some 0 < γ < 1, then up to logarithmic factors

Rn,T ,α
(
θ(Pd,s), ∥ · ∥2

2

)
≍ s/T ∨ e−Cnα2/s.

▶ If nα2 ≳ d log(nTα2), then up to logarithmic factors

Rn,T ,α
(
θ(Pd,s), ∥ · ∥2

2

)
≍ sd/(nTα2).

Roughly speaking, we say the rate is

Rn,T ,α
(
θ(Pd,s), ∥ · ∥22

)
≍ s

T
∨ s

T
d
nα2

∨ e−Cnα2/s.
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Finite-T scenario: Sparse, high-dim. mean estimation

s

[
1

T
∧

{(
1+

d
nα2

)
1/T

− 1

}]
∨ e−Cnα2/s ≲ Rn,T ,α

(
θ(Pd,s), ∥ · ∥22

)
{
s log(nTα2d)

T
∨ e−cnα2/s

}
∧
{
sd log2(nTα2)

nTα2
∨ e−cnα2/d

}
.

The lower bound is due to an application of Assouad’s method and an upper bound

on the private total-variation distance (Acharya et al., 2023).

The upper bound is obtained by a two-component procedure depending on the

value of T .

▶ Large T . If nα2 ≲ d log(nTα2), then we summon a hashing-type voting procedure. Half

of the users voting for the non-zero coordinates and the other half conduct an

s-dimensional mean estimation.

▶ Small T . If nα2 ≳ d log(nTα2), then we summon a thresholding step after initial

estimation.

Yi Yu



Finite-T scenario: Sparse, high-dim. mean estimation

In the large T scenario, the intuition is that T data points are enough to obtain a

good enough coordinate selection.

With a pre-specified threshold ε, which is also used to select entries to be non-zero

as long as the T -sample average exceeds ε, let

S1 = {j : |θj| > 2ε}, S2 = {j : 0 < |θj| ≤ 2ε} and S0 = {j : θj = 0}.

Let A be the event that S1 are all chosen and S0 are all non-chosen.

the estimation error follows

E
{
∥θ̂ − θ∥2

2

}
≲

∑
j:θ̂j=0,θj=0

0+
∑

j:θ̂j=0,θj ̸=0

[
ε2P{A}+ 1P{Ac}

]
+

∑
j:θ̂j ̸=0

error

≲0+ sε2 + sP{Ac}+ s-dim vector est error rate

≲
s log(dTα2)

T
+

s2 log(nTα2/s)
nTα2

∨ e−Cnα2/s
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Finite-T scenario: Sparse, high-dim. mean estimation

Lying in the core of the sparse,

high-dimensional mean estimation

procedures is a multivariate mean

estimation procedure (with

dist. supported on B∞(1)).

Lying in the core of the multivariate

(B∞(1)) mean estimation procedure is

a univariate mean estimation

procedure (with dist. supported on

[−1, 1]).

user site I 2 n

them I I Trawdata

LDP

privatised data 2

L

final estimator

Step 1 1
a

partition into intervalsofwidth 28

Step 2
him majorityvotes

First halfofusers

privatelyvoteforwheretheir samplemeans are

winner majorityvotes It
step 3

Second halfof user

8 Th Li

step 4
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Finite-T scenario: Sparse, high-dim. mean estimation

s

[
1

T
∧

{(
1+

d
nα2

)
1/T

− 1

}]
∨ e−Cnα2/s ≲ Rn,T ,α

(
θ(Pd,s), ∥ · ∥22

)
{
s log(nTα2d)

T
∨ e−cnα2/s

}
∧
{
sd log2(nTα2)

nTα2
∨ e−cnα2/d

}
.

Discussions

▶ Comparisons with item-level LDP rates.

▶ The exponential terms in upper and lower bounds: Where are they from?

▶ What if we do not have the knowledge of s?
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Finite-T scenario

d-dim. mean (B2(1)) s-sparse d-dim. mean Density (Sobolev β-smooth)

Small T d/(nTα2) s/T ∧ sd/(nTα2) (nTα2)−2β/(2β+2)

Large T e−nα2/d e−nα2/s (nα2)−2β

Boundary enα
2/d

{
snα

2/s, d/(nα2) ≳ 1

enα
2/d , d/(nα2) ≲ 1

(nα2)2β+1
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Discussions

▶ User-level LDP in other statistical tasks, e.g. testing.

▶ Mixture of different notions of DP, including use of public data in distributed

learning.

▶ Phase transition regarding T in FDP.

▶ Large ε.

▶ Adaptivity.

▶ Dependent data.

Yi Yu



Discussions

▶ User-level LDP in other statistical tasks, e.g. testing.

▶ Mixture of different notions of DP, including use of public data in distributed

learning.

▶ Phase transition regarding T in FDP.

▶ Large ε.

▶ Adaptivity.

▶ Dependent data.

Yi Yu


