On Off-Target Behavior in LLM Alignment

Victor Veitch

Papers + Collaborators

Lin Gui Cristina Garbacea

BoNBoN Alignment for Large Language Models and the Sweetness of Best-of-*n*

David Reber Sean Richardson Todd Nief Cristina Garbacea

RATE: Score Reward Models with Imperfect Rewrites of Rewrites

LLM Alignment

- -
	-
- \blacksquare Try to minimize drift from base model
	-
	-
- **But off-target behavior often changes**
	- **E.g., alignment to improve quality can increase output length**

- Alignment aims to update LLM to bias outputs towards desirable attributes
	- E.g., make outputs helpful, factual, etc.
	- Approaches include RLHF, DPO, IPO, etc.
- \blacksquare Try to minimize drift from base model
	-
	-
- **But off-target behavior often changes**
	-

- Alignment aims to update LLM to bias outputs towards desirable attributes
	- E.g., make outputs helpful, factual, etc.
	- Approaches include RLHF, DPO, IPO, etc.
- \blacksquare Try to minimize drift from base model
	- Intuition: keep capabilities from pre-training
	- Usually controlled by KL divergence between base and aligned model
- **But off-target behavior often changes**
	-

- Alignment aims to update LLM to bias outputs towards desirable attributes
	- E.g., make outputs helpful, factual, etc.
	- Approaches include RLHF, DPO, IPO, etc.
- \blacksquare Try to minimize drift from base model
	- Intuition: keep capabilities from pre-training
	- Usually controlled by KL divergence between base and aligned model
- But off-target behavior often changes
	- \blacksquare E.g., alignment to improve quality can increase output length

Why does this happen?

- **Off-target is actually good.** e.g., making responses longer makes them higher quality
- **Off-target is spuriously correlated with target.** e.g., reward training data has longer responses tend to be better
- \blacksquare It's a bug.

e.g., if we did a better job of optimization/regularization/etc, it wouldn't happen

It's (mostly) a bug.

Why does this happen?

- **Off-target is actually good.** e.g., making responses longer makes them higher quality
- **Off-target is spuriously correlated with target.** e.g., reward training data has longer responses tend to be better
- \blacksquare It's a bug.

e.g., if we did a better job of optimization/regularization/etc, it wouldn't happen

Upshot

It's (mostly) a bug.

BonBon Alignment

Alignment Induces (Avoidable) Off-Target Drift

Best-of-*n* sampling achieves high win rate with minimal off-target variation

Alignment Induces (Avoidable) Off-Target Drift

Best-of-*n* sampling achieves high win rate with minimal off-target variation

Best-of-*n*

Generate *n* independent samples, rank them, then returns the best

Folk Belief

Best-of-*n* has strong performance vs off-target drift (compared to explicit alignment schemes)

- \blacksquare understand why
- **improve alignment schemes**

Best-of-*n*

Generate *n* independent samples, rank them, then returns the best

Folk Belief

Best-of-*n* has strong performance vs off-target drift (compared to explicit alignment schemes)

Goals

- understand why
- **n** improve alignment schemes

Alianment

Large Language Model *π*

 $\pi(Y | x)$ mapping prompts *x* to probability distributions over responses.

Reward *R*

Function *R*(*x*, *y*) assigning goodness of response *y* for prompt *x*. Often encodes *preferences* so that $R(x, y_1) > R(x, y_0)$ iff y_1 preferred to y_0 .

Summarize preference for model *π^r* over base as:

$$
P_{Y \sim \pi_r(\cdot \mid x), Y_0 \sim \pi_0(\cdot \mid x)}(R(x, Y) \ge R(x, Y_0))
$$
\n⁽¹⁾

In particular: invariant to monotonic transformations of *R*.

Alianment

Large Language Model *π*

 $\pi(Y | x)$ mapping prompts *x* to probability distributions over responses.

Reward *R*

Function *R*(*x*, *y*) assigning goodness of response *y* for prompt *x*. Often encodes *preferences* so that $R(x, y_1) > R(x, y_0)$ iff y_1 preferred to y_0 .

Win Rate

Summarize preference for model *π^r* over base as:

$$
P_{Y \sim \pi_r(\cdot \mid x), Y_0 \sim \pi_0(\cdot \mid x)}(R(x, Y) \ge R(x, Y_0))
$$
\n⁽¹⁾

In particular: invariant to monotonic transformations of *R*.

Alignment

Alignment

Update model π_0 to new π_r such that

- ¹ Samples from *π^r* have high reward, and
- 2π ^r_{*r*} is close to π ₀.

- $\pi_{r,\beta} \coloneqq \operatorname{argmin}_{\pi} \mathbb{E}_X[\mathbb{E}_{\pi}[R(Y,X)] + \beta \mathrm{KL}(\pi \mid \pi_0)]$
- hyperparam *β* controls reward-vs-drift

$$
\blacksquare \pi_{r,\beta} \coloneqq \mathrm{argmin}_{\pi} \mathbb{E}_X[\mathbb{E}_{\pi}[f_X(\mathcal{R}(Y,X))] + \beta \mathrm{KL}(\pi \mid \pi_0)]
$$

■ e.g., IPO, Transforming and Combining Reward Models

Alianment

Alignment Update model π_0 to new π_r such that ¹ Samples from *π^r* have high reward, and 2π ^r_{*r*} is close to π ₀.

RLHF / DPO

$$
\blacksquare \pi_{r,\beta} \coloneqq \mathrm{argmin}_{\pi} \mathbb{E}_X[\mathbb{E}_{\pi}[R(Y,X)] + \beta \mathrm{KL}(\pi \mid \pi_0)]
$$

hyperparam *β* controls reward-vs-drift

$$
\blacksquare \pi_{r,\beta} \coloneqq \mathrm{argmin}_{\pi} \mathbb{E}_X[\mathbb{E}_{\pi}[f_X(\mathcal{R}(Y,X))] + \beta \mathrm{KL}(\pi \mid \pi_0)]
$$

■ e.g., IPO, Transforming and Combining Reward Models

Alianment

Alignment Update model π_0 to new π_r such that ¹ Samples from *π^r* have high reward, and 2π ^r_{*r*} is close to π ₀.

RLHF / DPO

$$
\blacksquare \pi_{r,\beta} \coloneqq \mathrm{argmin}_{\pi} \mathbb{E}_X[\mathbb{E}_{\pi}[R(Y,X)] + \beta \mathrm{KL}(\pi \mid \pi_0)]
$$

hyperparam *β* controls reward-vs-drift

Generalization

$$
\blacksquare \pi_{r,\beta} \coloneqq \mathrm{argmin}_{\pi} \mathbb{E}_X[\mathbb{E}_{\pi}[f_X(\mathcal{R}(Y,X))] + \beta \mathrm{KL}(\pi \mid \pi_0)]
$$

■ e.g., IPO, Transforming and Combining Reward Models

Idea: directly maximize win-rate

$$
\pi_{r,\beta}^{\text{opt}} := \operatorname*{argmin}_{\pi} \mathbb{E}[P_{\gamma \sim \pi(\cdot \mid x), Y_0 \sim \pi_0(\cdot \mid x)}(R(x, Y) \geq R(x, Y_0))] - \beta \text{KL}(\pi || \pi_0)
$$

Theorem

Win-rate and KL can be computed as explicit functions of *β* (Treating *R*(*Y*, *x*) as a continuous variable.)

- Define Q_x as CDF of $R(Y, x)$ under π_0 . Win-rate is $Q_x(R(Y, x))$.
- Analytic solution for KL-regularized objective is exponential-tilting of π_{0} .
- Use this + $Q_x(R(Y, x)) \sim$ uniform to solve integrals.

Idea: directly maximize win-rate

$$
\pi_{r,\beta}^{\text{opt}} := \underset{\pi}{\text{argmin}} \mathbb{E}[P_{\gamma \sim \pi(\cdot \mid x), Y_0 \sim \pi_0(\cdot \mid x)}(R(x, Y) \geq R(x, Y_0))] - \beta KL(\pi || \pi_0)
$$

Theorem

Win-rate and KL can be computed as explicit functions of *β* (Treating *R*(*Y*, *x*) as a continuous variable.)

Sketch

- D efine Q_x as CDF of $R(Y, x)$ under π_0 . Win-rate is $Q_x(R(Y, x))$.
- Analytic solution for KL-regularized objective is exponential-tilting of π_0 .
- Use this + $Q_x(R(Y, x)) \sim$ uniform to solve integrals.

Win-Rate Optimal Alignment

Best-of-*n*

\n- Win-rate:
$$
\frac{n}{n+1}
$$
\n- KL: $\log(n) - \frac{n-1}{n}$ (approximating output as continuous)
\n

Best-of-*n* is (essentially) win-rate vs KL optimal

Win Rate Gain from Optimal Policy over Best-of-n Sampling $0.0100 -$ ⌒ 0.0075 Gain $\frac{4}{3}$ 0.0050 \cdot ♦ 0.0025 $\begin{array}{ccccc}\n\circ & & & \\
\circ & & & \\
\circ & & & & \\
\end{array}$ \Diamond ♦ $0.0000 \frac{1}{10}$ ò À 6 Ŕ n

Win-Rate Optimal Alignment

Best-of-*n*

\n- Win-rate:
$$
\frac{n}{n+1}
$$
\n- KL: $\log(n) - \frac{n-1}{n}$ (approximating output as continuous)
\n

Best-of-*n* is (essentially) win-rate vs KL optimal

Win Rate Gain from Optimal Policy over Best-of-n Sampling $0.0100 -$ € 0.0075 Gain $\frac{2}{3}$
 $\frac{2}{3}$ ♦ 0.0025 $\begin{array}{ccccc}\n\circ & & & \\
\circ & & & \\
\circ & & & & \\
\end{array}$ \Diamond ♦ 0.0000 $\frac{1}{10}$ ò ä 6 Ŕ 'n

Align LLM to target policy *equal to its own best-of-n sampling distribution*

If the idea: use supervised finetuning (MLE) on best-of-*n* samples. Problem: very slow.

■ Idea: use best-of-*n* and worst-of-*n* samples to define contrastive objective **theorem:** $log \frac{\pi^{(n)}(Y^{(n)} \mid x)}{(Y^{(n)} \mid x)}$ $\frac{\pi^{(n)}(Y^{(n)}\mid x)}{\pi^{(n)}_0(Y^{(0)}\mid x)}$ — log $\frac{\pi_0(Y^{(n)}\mid x)}{\pi_0(Y^{(0)}\mid x)}$ $\argmin_{\pi} \mathbb{E}[(\log \frac{\pi(Y^{(n)} \mid x)}{\pi(Y^{(0)} \mid x)}]$ $\frac{\pi_0(Y^{(n)}\mid x)}{\pi_0(Y^{(0)}\mid x)}=\beta_n^*$ $\frac{\pi(Y^{(n)}\mid x)}{\pi(Y^{(0)}\mid x)} - \log\frac{\pi_0(Y^{(n)}\mid x)}{\pi_0(Y^{(0)}\mid x)}$ $\frac{\pi_0(Y^{(n)} \mid x)}{\pi_0(Y^{(0)} \mid x)} - \beta_n^*$ problem: only controls *ratio*

■ BonBon alignment: use both.

Notice: KL vs win-rate *implicitly* controlled by *n*.

Align LLM to target policy *equal to its own best-of-n sampling distribution*

BonBon Alignment

■ Idea: use supervised finetuning (MLE) on best-of-*n* samples. Problem: very slow.

■ Idea: use best-of-*n* and worst-of-*n* samples to define contrastive objective **theorem:** $log \frac{\pi^{(n)}(Y^{(n)} \mid x)}{(Y^{(n)} \mid x)}$ $\frac{\pi^{(n)}(Y^{(n)}\mid x)}{\pi^{(n)}_0(Y^{(0)}\mid x)}$ — log $\frac{\pi_0(Y^{(n)}\mid x)}{\pi_0(Y^{(0)}\mid x)}$ $\argmin_{\pi} \mathbb{E}[(\log \frac{\pi(Y^{(n)} \mid x)}{\pi(Y^{(0)} \mid x)}]$ $\frac{\pi_0(Y^{(n)}\mid x)}{\pi_0(Y^{(0)}\mid x)}=\beta_n^*$ $\frac{\pi(Y^{(n)}\mid x)}{\pi(Y^{(0)}\mid x)} - \log\frac{\pi_0(Y^{(n)}\mid x)}{\pi_0(Y^{(0)}\mid x)}$ $\frac{\pi_0(Y^{(n)} \mid x)}{\pi_0(Y^{(0)} \mid x)} - \beta_n^*$ problem: only controls *ratio*

■ BonBon alignment: use both.

Notice: KL vs win-rate *implicitly* controlled by *n*.

Align LLM to target policy *equal to its own best-of-n sampling distribution*

BonBon Alignment

■ Idea: use supervised finetuning (MLE) on best-of-*n* samples. Problem: very slow.

Idea: use best-of-*n* and worst-of-*n* samples to define contrastive objective **theorem:** $log \frac{\pi^{(n)}(Y^{(n)} | x)}{(\sqrt{Y^{(n)}+X})}$ $\frac{\pi^{(n)}(Y^{(n)} | x)}{\pi^{(n)}_0(Y^{(0)} | x)}$ – log $\frac{\pi^{(Y^{(n)} | x)}}{\pi^{(Y^{(0)} | x)}}$ $\argmin_{\pi} \mathbb{E}[(\log \frac{\pi(Y^{(n)} \mid x)}{\pi(Y^{(0)} \mid x)}]$ $\frac{\pi_0(Y^{(n)} | x)}{\pi_0(Y^{(0)} | x)} = \beta_n^*$ *n* $\frac{\pi(Y^{(n)} \mid x)}{\pi(Y^{(0)} \mid x)} - \log \frac{\pi_0(Y^{(n)} \mid x)}{\pi_0(Y^{(0)} \mid x)}$ $\frac{\pi_0(Y^{(n)} | x)}{\pi_0(Y^{(0)} | x)} - \beta_n^*$ *n*) 2] **problem:** only controls *ratio*

■ BonBon alignment: use both.

■ Notice: KL vs win-rate *implicitly* controlled by *n*.

Align LLM to target policy *equal to its own best-of-n sampling distribution*

Measured KL is Deceptive

Helpful and Harmless

Measured KL is Deceptive

RATE: Score Reward Models with Imperfect Rewrites of **Rewrites**

Does a given reward model *R* actually reward an off-target behavior?

■ Naive: measure correlation between reward and off-target behavior

Better: *rewrite* responses to change concept, then compare original and Problem: imperfect rewriting might change many things

Does a given reward model *R* actually reward an off-target behavior?

Naive: measure correlation between reward and off-target behavior Problem: could have spurious correlation

Better: *rewrite* responses to change concept, then compare original and Problem: imperfect rewriting might change many things

Does a given reward model *R* actually reward an off-target behavior?

Naive: measure correlation between reward and off-target behavior Problem: could have spurious correlation

Better: *rewrite* responses to change concept, then compare original and rewrite rewards Problem: imperfect rewriting might change many things

Does a given reward model *R* actually reward an off-target behavior?

Naive: measure correlation between reward and off-target behavior Problem: could have spurious correlation

Better: *rewrite* responses to change concept, then compare original and rewrite rewards Problem: imperfect rewriting might change many things

Rewrite-of-Rewrites

Table 4: Whether for a rewrite or a rewrite-of-a-rewrite, GPT-40 uses well-formatted text and a slightly formal tone. Here, W is length; samples are drawn from the ELI5 dataset, scored using ArmoRM, and truncated to 100 characters for display. The first was selected for illustrative purposes, the latter two were randomly selected from the dataset.

Length Bias

Naive vs RATE Estimates Across Models

BonBon Alignment

- Best-of-*n* shows alignment with minimal off-target drift is possible. $\mathcal{L}_{\mathcal{A}}$
- RATE shows reward models have only moderate off-target bias.

Upshot

much of off-target drift appears to be a methodology bug

Papers + Collaborators

Lin Gui Cristina Garbacea

BoNBoN Alignment for Large Language Models and the Sweetness of Best-of-*n*

David Reber Sean Richardson Todd Nief Cristina Garbacea

RATE: Score Reward Models with Imperfect Rewrites of Rewrites