Learning Theory of Transformers: Generalization and Optimization of In-Context Learning

Taiji Suzuki

The University of Tokyo / AIP-RIKEN (Deep learning theory team)

THE UNIVERSITY OF TOKYO

4th/Dec/2024 Simons Institute Workshop

Transformer architecture

• Transformer

Figure 1: The Transformer - model architecture.

[Vaswani et al.: Attention is All you Need. NIPS2017]

LLM (e.g., GPT3/GPT4)

[Alammar: How GPT3 Works - Visualizations and Animations, https://jalammar.github.io/how-gpt3-works-visualizations-animations/]

[Brown et al. "Language Models are Few-Shot Learners", NeurIPS2020]

Vision tasks (e.g., ViT)

[Dosovitskiy et al.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv:2010.11929. ICLR2021]

LLM

ChatGPT is an artificial intelligence (AI) language model created by OpenAI. It is designed to understand and generate human-like text based on the input it receives. Here's a detailed breakdown of what ChatGPT is and what it does:

1. Purpose

G

- ChatGPT is primarily used for conversation and can respond to questions, provide explanations, write creatively, assist with tasks, and more.
- It serves as a tool for various applications, such as customer support, learning assistance, idea brainstorming, and general information retrieval.

2. How It Works

• Training: ChatGPT is trained using a mach learning technique called reinforcement learning from human feedback (RLHF), which refines its ability to respond in helpful, accurate, and safe

[OpenAl, ChatGPT 4o]

Why does it work so well?

In-context learning

Pretrained Large Language Models (LLMs) have significant ability of In-Context Learning (ICL) [Brown et al., 2020].

Question

ChatGPT

In-context learning

Pretrained Large Language Models (LLMs) have significant ability of In-Context Learning (ICL) [Brown et al., 2020].

\$

The pattern in the given pairs of words seems to be antonyms:

So, the word that fits in the '?' is "down".

Question

ChatGPT

Fine tuning method

Traditional "fine tuning" approach

(e.g., RLHF)

In-Context learning

ICL is performed <u>without updating model parameters</u> unlike the traditional "fine-tuning" regime in the test task.

 \rightarrow <u>Meta-learning</u>

During pretraining, several tasks are observed to train the model. \rightarrow Task generalization.

Question:

What mechanism allows a Transformer to perform ICL?

Presentation overview

Statistics

Minimax optimality

- Nonparametric analysis
- Approximation error analysis

Optimization

Global optimality of nonlinear feature learning

- Mean field limit
- Strict saddle

Statistics/Optimization

Feature learning with one step GD

- Single index model
- Information exponent
- Advantage of pre-training
- [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024
- [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
- [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

Approximation theory/ Statistical analysis

Nonparametric analysis of in-context learning

[Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024]

Juno Kim

Mathematical formulation of in-context learning

Model:
$$y_{i,t} = F_t^{\circ}(x_{i,t}) + \epsilon_{i,t}$$
 $(i = 1, ..., n)$

t = 1, ..., T: Task index

- The true functions F_t° are different across different tasks.
- F_t° is generated randomly for each task.

Pretraining (*T* **tasks)** :

$$X_t = \begin{bmatrix} x_{1,t}; \dots; x_{n,t} \end{bmatrix} \qquad \begin{array}{c} x_{\text{qr},t} \\ \times T \\ Y_t = \begin{bmatrix} y_{1,t}; \dots; y_{n,t} \end{bmatrix} \qquad \begin{array}{c} y_{\text{qr},t} \end{array}$$

- We observe pretraining task data T times.
- \succ Each task has n data.

Test task (In-context learning) :

$$X_{T+1} = [x_{1,T+1}; \dots; x_{n,T+1}]$$

...
$$Y_{T+1} = [y_{1,T+1}; \dots; y_{n,T+1}]$$

(Implicit) Bayes estimation
➢ Learn prior at pretraining
➢ Perform posterior inference at the test task

Linear combination of features

Suppose that the true function admits a basis function decomposition:

$$F_t^{\circ}(x) = \beta_t^{\top} f^{\circ}(x)$$

where $\beta_t \sim (0, \Sigma)$ and $f^{\circ}(x) \in \mathbb{R}^{\infty}$.

Fourier (Sobolev, γ-smooth)

$$f_{j}^{\circ}(x) = \prod_{k=1}^{\infty} \sqrt{2} \cos(2\pi 2^{s_{j,k}} x_{k} - \delta_{j,k} \pi/2) \implies F_{\beta}^{\circ} \in \mathcal{F}_{2,2}^{\gamma}([0,1]^{\infty})$$

 γ -smooth function class for $d = \infty$ [Okumoto&Suzuki,ICLR2022], [Takakura&Suzuki, ICML2024]

Feature map and linear coeff

•

$F_t^{\circ}(x) = \beta_t^{\top} f^{\circ}(x)$

- Pretraining: Learning feature map [f°]
 - ➢Fourier basis, B-Spline

>Independent of context (t)

- ➢Obtain the most "efficient" basis to represent data → Internal layers
- In-context learning: Estimating coefficient [β_t]
 - > Dependent on context (t)
 - Estimate the context β_t from the instruction (Attention)
 - → Attention layer
- ✓ Guo et al. 2023 and von Oswald et al. 2023 observed that real Transformers extract nonlinear features at lower layers and perform linear regression deeper layers.
 → It is not like performing gradient descent at every layer as in Bai et al. 2023.

Good representation

Distribution of β_t

12

Transformer model

A. Nonlinear feature map (FNN)

We approximate the infinite dimensional nonlinear feature map f° by DNN:

 $\phi : \mathbb{R}^d \to \mathbb{R}^N$ Deep neural network (nonlinear feature map) $(f^\circ \simeq \phi)$

B-1. Soft-max attention model

$$\sum_{i=1}^{n} \overset{\text{Key}}{y_{i,t}} \underbrace{\exp(\phi(x_{i,t})^{\top} KQ\phi(x_{\text{qr},t}))}_{\sum_{i'=1}^{n} \exp(\phi(x_{i',t})^{\top} KQ\phi(x_{\text{qr},t}))} \xrightarrow{\qquad \qquad } y_{\text{qr},t}$$

B-2. Linear attention model [Ahn et al.: Linear attention is (maybe) all you need (to understand transformer optimization). arXiv:2310.01082]

 \times In practice, each token should be a couple ($\phi(x), y$). But, for this theoretical research, we simplify the Q, K, V to a specific form

In-Context Learning (ICL) risk

14

(Linear) attention can implement linear regression:

$$Y^{\top}\phi(X)(\phi(X)^{\top}\phi(X)+n\Lambda)^{-1}\phi(x_{qr}) = \frac{1}{n}\sum_{i=1}^{n}y_{i}\phi(x_{i})^{\top}\left(\frac{\phi(X)^{\top}\phi(X)}{n}+\Lambda\right)^{-1}\phi(x_{qr})$$
$$\simeq \Gamma \text{ (prior information)}$$

Carefully chosen Γ yields (nearly) Bayes optimal estimator.

[Gang et al. 2022; Akyurek et al. 2023; Zhang et al. 2023; Ahn et al. 2023; Mahankali et al., 2023; Wu et al. 2024]

Empirical ICL risk :

$$\widehat{\mathcal{L}}(\phi, \Gamma) := \frac{1}{T} \sum_{t=1}^{T} \left(y_{\mathrm{qr},t} - \frac{1}{n} \sum_{i=1}^{n} y_{i,t} \phi(x_{i,t})^{\top} \Gamma \phi(x_{\mathrm{qr},t}) \right)^{2}$$

 \rightarrow Minimize with respect to ϕ (feature map) and Γ (attention param).

The expected ICL risk:

$$\mathcal{L}(\phi, \Gamma) : \left\{ \begin{array}{l} \text{Question :} \\ \text{(where } I \end{array} \right. \\ \text{- Can we obtain "optimal" expected risk?} \\ \text{- What is the benefit of ICL?} \end{array} \right\}^{2}$$

Empirical risk minimizer

Empirical risk minimizer:

$$\min_{\Gamma \in \mathbb{R}^{N \times N}, \phi \in \text{DNN}} \widehat{\mathcal{L}}(\phi, \Gamma) := \frac{1}{T} \sum_{t=1}^{T} \left(y_{\text{qr},t} - \frac{1}{n} \sum_{i=1}^{n} y_{i,t} \phi(x_{i,t})^{\top} \Gamma \phi(x_{\text{qr},t}) \right)^{2}$$

 $\mathcal{F}_N := \{ \phi : \mathbb{R}^d \to \mathbb{R}^N \mid \phi \in \text{DNN} \}$

Predictive error bound

Empirical risk minimizer:

$$\begin{aligned} (\hat{\phi}, \hat{\Gamma}) \leftarrow \underset{\Gamma \in \mathbb{R}^{N \times N}, \phi \in \text{DNN}}{\arg\min} \hat{\mathcal{L}}(\phi, \Gamma) &:= \frac{1}{T} \sum_{t=1}^{T} \left(y_{\text{qr},t} - \frac{1}{n} \sum_{i=1}^{n} y_{i,t} \phi(x_{i,t})^{\top} \Gamma \phi(x_{\text{qr},t}) \right)^{2} \\ \mathcal{F}_{N} &:= \{ \phi : \mathbb{R}^{d} \to \mathbb{R}^{N} \mid \phi \in \text{DNN with presprcified hyper-param} \} \\ \text{Assumption} \\ (informal) \\ 1. \quad \mathbb{E}[\beta_{t,j}^{2}] \lesssim j^{-2s-1-\epsilon} \\ 2. \quad \inf_{\phi \in \mathcal{F}_{N}} \max_{1 \leq j \leq N} \|f_{j}^{\circ} - \phi_{j}\|_{\infty} \lesssim \delta_{N} \\ 3. \quad \|\sum_{j=1}^{k} (f_{j}^{\circ})^{2}\|_{\infty} \lesssim k^{2r} \\ 4. \quad (f_{j}^{\circ})_{j=1}^{\infty} \text{ are "near" orthonormal} \end{aligned}$$
(Complexity of function space) (Bases are bounded) (Bases are almost orthogonal to each other) \\ \text{Thm. (ICL risk bound; Kim, Nakamaki, TS, NeurIPS2024)} \\ \mathbb{E}[\mathcal{L}(\hat{\phi}, \hat{\Gamma})] \lesssim \underbrace{N^{-2s} + N^{2} \delta_{N}^{4} + N^{2r+1} \delta_{N}^{2}}_{n} \quad \text{Feature approximation error} \\ \quad + \frac{N}{n} + \frac{N^{2r}}{n} \log(N) + \frac{N^{4r}}{n^{2}} \log^{2}(N) \quad \text{In-context generalization gap} \\ \quad + \frac{1}{T} \left(N^{2} \log(\epsilon^{-1}) + \log(\mathcal{N}(\frac{\epsilon}{\sqrt{N}}, \mathcal{F}_{N}, \|\cdot\|_{\infty})) \right) + \epsilon \\ \text{Pretraining generalization to estimate basis functions} \end{aligned}

Examples

• **Example (B-spline basis;** f_i° is B-spline \rightarrow Besov/Sobolev space):

• Example (Holder class basis; $f_i^{\circ} \in H^{\alpha'}(\mathbb{R}^d)$):

Estimator 2 (Γ is restricted to a diagonal matrix):

$$\mathbb{E}[\mathcal{L}(\hat{\phi},\hat{\Gamma})] \lesssim N^{-2s} + \frac{N\log(N)}{n} + \frac{N^{1+\frac{d}{\alpha'}(1+s)}\log(N)}{T}$$
$$\longrightarrow \mathbb{E}[\mathcal{L}(\hat{\phi},\hat{\Gamma})] \lesssim n^{-\frac{2s}{2s+1}} + n^{\frac{1+\frac{d}{\alpha'}(1+s)}{2s+1}}T^{-1}$$

If there is no-pretraining, the minimax lower bound is

$$\mathbb{E}[\mathcal{L}(\hat{\phi},\hat{\Gamma})] \gtrsim \max\{n^{-\frac{2s}{2s+1}}, n^{-\frac{2\alpha'}{2\alpha'+d}}\}$$

With many pretraining data, the pretrained model can outperform direct estimator.

Large T: generalization

Pretraining improves the error by estimating the bases in the pretraining phase

Mini-max lower bound

$$\mathcal{L}(\hat{f}) := \mathbb{E}_{\beta, x_{\mathrm{qr}}} \left| \left(F_{\beta}^{\circ}(x_{\mathrm{qr}}) - \hat{f}(x_{\mathrm{qr}}) \right)^2 \right|$$

 \hat{f} : depending on the pretraining data $(x_{t,i}, y_{t,i})_{t=1,i=1}^{T,n}$ and new task data $(x_{T+1,i}, y_{T+1,i})_{i=1}^{n}$.

Minimax risk:
$$\inf_{\hat{f}} \sup_{f^{\circ} \in \mathcal{F}^{\circ}} \mathbb{E}[\mathcal{L}(\hat{f})]$$

Information theoretic lower bound:

We consider f° as a random variable "uniformly" distributed on a model:

$$\inf_{\hat{f}} \sup_{f^{\circ} \in \mathcal{F}^{\circ}} \mathbb{E}[\mathcal{L}(\hat{f})] \gtrsim \delta^2 \left(1 - \frac{I(D_{1:T+1}||(f^{\circ}, \beta_{T+1})) + \log(2)}{\log(\mathcal{N}(\delta, \{F^{\circ}_{\beta}\}))} \right)$$

Concrete example

$$\begin{array}{ll} \text{Optimal rate when the basis is known.} & \text{Complexity to estimate the basis} \\ \inf_{\hat{f}} \sup_{f^{\circ} \in \mathcal{F}^{\circ}} \mathbb{E}[\mathcal{L}(\hat{f})] \gtrsim n^{-\frac{2s}{2s+1}} + \frac{V(\epsilon_{1,n}, \mathcal{F}^{\circ})}{nT} \\ & \text{where } \epsilon_{1,n}^{2} \simeq \frac{V(\epsilon_{1,n}, \mathcal{F}^{\circ})}{nT} \\ \end{array}$$

$$\begin{array}{ll} \text{functions in Holder space } (f_{j}^{\circ} \in H^{\alpha'}(\mathbb{R}^{d})) \text{:} & \frac{V(\epsilon_{1,n}, \mathcal{F}^{\circ})}{nT} \simeq \frac{\epsilon_{1,n}^{-d/\alpha'}}{nT} \end{array}$$

$$\inf_{\hat{f}} \sup_{f^{\circ} \in \mathcal{F}^{\circ}} \mathbb{E}[\mathcal{L}(\hat{f})] \gtrsim n^{-\frac{2s}{2s+1}} + (nT)^{-\frac{2\alpha'}{2\alpha'+d}}$$

Suppose that $\alpha'/d < s$, then

No pretraining (T = 1):

Basis

No pretraining (T = 1):
$$n^{-\frac{2\alpha'}{2\alpha'+d}}$$

Pretraining setting (T >> 1): $n^{-\frac{2s}{2s+1}}$

When T is large, pretraining can give better generalization for test instruction than learning from scratch

Task diversity matters

[Raventós, Paul, Chen, Ganguli: Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression. 2023]

Presentation overview

Statistics

Minimax optimality

- Nonparametric analysis
- Approximation error analysis

Optimization

Global optimality of nonlinear feature learning

- Mean field limit
- Strict saddle

Statistics/Optimization

Feature learning with one step GD

- Single index model
- Information exponent
- Advantage of pre-training
- [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024
- [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
- [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

So far, we have considered approximation theory. From now on, we discuss optimization theory.

Global optimality of GD for in-context learning

[Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. **ICML2024, oral presentation** (arXiv:2402.01258)]

Juno Kim

Mathematical formulation of in-context learning

Model:
$$y_{i,t} = F_t^{\circ}(x_{i,t}) + \epsilon_{i,t}$$
 $(i = 1, ..., n)$

t = 1, ..., T: Task index

- The true functions F_t are different across different tasks.
- F_t° is generated randomly for each task.

Pretraining (*T* **tasks)** :

$$X_t = [x_{1,t}; \dots; x_{n,t}] \qquad \begin{array}{c} x_{qr,t} \\ \times T \\ \end{array}$$
$$Y_t = [y_{1,t}; \dots; y_{n,t}] \qquad \begin{array}{c} y_{qr,t} \\ \end{array}$$

- We observe pretraining task data T times.
- \succ Each task has n data.

Predict

Test task (In-context learning) :

Model: Nonlinear feature

Linear model with nonlinear features:

$$F_t^{\circ}(x) = v_t^{\top} f^{\circ}(x)$$
 where $v_t \sim N(0, I)$ and $f^{\circ}(x) \in \mathbb{R}^k$.

24

We want to estimate the nonlinear feature f° by pretraining.

• Mean field neural network (Barron class):

Why mean field?

Mean field Langevin dynamics: [Nitanda,Wu,Suzuki, 2022; Chizat, 2022]
 → Linear convergence with a log-Sobolev inequality for optimizing 2-layer NN.

 $\mathcal{L}(\mu_t) - \mathcal{L}^* \le \exp(-\lambda \alpha t) (\mathcal{L}(\mu_0) - \mathcal{L}^*)$

In-Context Learning (ICL) risk

Empirical ICL risk :

$$\widehat{\mathcal{L}}(\mu,\Gamma) := \frac{1}{T} \sum_{t=1}^{T} \left(y_{\mathrm{qr},t} - \frac{1}{n} \sum_{i=1}^{n} y_{i,t} h_{\mu}(x_{i,t})^{\top} \Gamma h_{\mu}(x_{\mathrm{qr},t}) \right)^{2}$$

 \rightarrow Minimize with respect to μ , Γ .

The expected ICL risk: (Large sample limit: $n \to \infty$ and $T \to \infty$)

$$\mathcal{L}(\mu,\Gamma) := \mathbb{E}_{x_{\mathrm{qr}}} \left[\left\| f^{\circ}(x_{\mathrm{qr}}) - \mathbb{E}_{x} [f^{\circ}(x)h_{\mu}(x)^{\top}] \Gamma h_{\mu}(x_{qr}) \right\|^{2} \right]$$

(note that $y_{i,t} = v_t^T f^{\circ}(x_{i,t})$)

26

Question : Can we optimize μ , Γ by a gradient descent? (<u>Infinite-dimensional non-convex problem</u>)

There have been many work on optimization guarantee on ICL for **linear model**: Zhang et al., (2023), Mahankali et al. (2023), Guo et al. (2023) to name a few. Bu, this is a **nonlinear feature learning**.

Two time-scale dynamics

Feature covariance
$$\Sigma_{\mu,\nu} := \mathbb{E}_X[h_\mu(X)h_\nu^\top(X)]$$

Assumption (realizability of the true feature)

There exists μ° such that $f^{\circ} = h_{\mu^{\circ}}$ and $\Sigma_{\mu^{\circ},\mu^{\circ}} \propto I_k$.

Two time-scale dynamics (Γ is optimized first):

$$\mathcal{L}(\mu) := \min_{\Gamma} \mathcal{L}(\mu, \Gamma) = \min_{\Gamma} \mathbb{E}_{x_{\mathrm{qr}}} \left[\left\| f^{\circ}(x_{\mathrm{qr}}) - \mathbb{E}_{x} [f^{\circ}(x)h_{\mu}(x)^{\top}] \Gamma h_{\mu}(x_{qr}) \right\|^{2} \right]$$
$$= \mathbb{E}_{x_{\mathrm{qr}}} \left[\left\| f^{\circ}(x_{\mathrm{qr}}) - \Sigma_{\mu^{\circ},\mu} \Sigma_{\mu,\mu}^{-1} h_{\mu}(x_{qr}) \right\|^{2} \right]$$

• μ is the minimizer iff $h_{\mu} = Rh_{\mu^{\circ}}$ for an invertible matrix R

Wasserstein gradient flow to minimize *L*:

•
$$\partial_t \mu_t = \nabla \cdot \left(\mu_t \nabla \frac{\delta \mathcal{L}(\mu_t)}{\delta \mu} \right)$$

• $\frac{\mathrm{d}\theta_t}{\mathrm{d}t} = -\nabla \frac{\delta \mathcal{L}(\mu_t)}{\delta \mu} (\theta_t) \quad (\mu_t = \mathrm{Law}(\theta_t))$

27

 $h_{\mu}(x) := \int h_{\theta}(x) \mathrm{d}\mu(\theta)$

Strict saddle

- There is no spurious local minima.
- All critical points are saddle and have negative curvature.

Theorem 1 (**Strict saddle** property of the loss landscape)

There exists a **descent direction** or **negative curvature**. Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapalli et al. 2016; Li et al., 2019].

Strict saddle

For an orthogonal matrix $\mathbf{R} \in O(k)$, define $\mathbf{R} # \mu$ as the push-forward of μ along the rotation $\mathbf{R}: (a, w) \mapsto (\mathbf{R}a, w)$, i.e., $h_{\mathbf{R}\#\mu} = \mathbf{R}h_{\mu}$.

Theorem 1 (**Strict saddle** property of the loss landscape)

If $\mu \in \mathcal{P}$ is not the global minimum, then one of the followings holds: (1) (1-1) There exists $\mathbf{R} \in \operatorname{conv}(O(k))$ such that $\left. \frac{\mathrm{d}}{\mathrm{d}s} \mathcal{L}(\bar{\mu}_s) \right|_{s=0} < 0 \quad \text{where } \bar{\mu}_s = (1-s)\mu + s\mathbf{R} \sharp \mu^{\circ}.$ (1-2) Furthermore, if $0 < \mathcal{L}(\mu) < r^{\circ}/2$, then $\left. \frac{\mathrm{d}}{\mathrm{d}s} \mathcal{L}(\bar{\mu}_s) \right|_{s=0} \le -\frac{4}{\|\sigma\|^2} \mathcal{L}(\mu) \left(\frac{r_0}{2} - \mathcal{L}(\mu) \right)$ (2)Otherwise, (2) $\mathcal{L}(\mu) > \frac{r_0}{2} \quad \text{and} \quad \frac{\mathrm{d}^2 \mathcal{L}(\bar{\mu}_s)}{\mathrm{d}s^2} \Big|_{s=0} \le -\frac{4}{k \|\sigma\|^2} \mathcal{L}(\mu)^2.$

There exists a **descent direction** or **negative curvature**. Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapal 2019].

Behavior around the critical point ³⁰

Let the "Hessian" at μ be

$$H_{\mu}(\theta, \theta') := \nabla_{\theta} \nabla_{\theta'} \frac{\delta^2 \mathcal{L}(\mu)}{\delta \mu^2} (\theta, \theta')$$

Lemma

The Wasserstein GF μ_t around a critical point μ^+ can be written as $(id + \epsilon v_t) # \mu^+$ where the velocity field v_t follows

$$\partial_t v_t(\theta) = -\int H_{\mu^+}(\theta, \theta') v_t(\theta') d\mu^+(\theta') + O(\epsilon)$$

(c.f., Otto calculus)

Negative curvature direction exponentially grows up!

 μ_t moves away from the critical point.

Theorem (Informal)

The solution is not captured by any critical point *almost surely*. (The solution converges to the global optimal solution almost surely)

Decay speed of objective

Suppose that $\left\|\frac{d\mu^{\circ}}{d\mu_{t}}\right\|_{\infty} \leq R$ (which could be ensured by using birth-death process).

Theorem (GF moves toward a descent direction (1))

$$\frac{\mathrm{d}}{\mathrm{d}s}\mathcal{L}(\bar{\mu}_s)\Big|_{s=0} < -\delta \quad \Rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{L}(\mu_t) \leq -R^{-1}\delta^2.$$

Theorem (Accelerated convergence phase (2))

Once
$$\mathcal{L}(\mu_t) \leq \frac{r^{\circ}}{2} - \epsilon$$
 is satisfied,
 $\mathcal{L}(\mu_{t+T}) \leq O\left(\frac{Rk^2}{T}\right)$

Theorem (Negative curvature around a saddle point (3))

$$\frac{\mathrm{d}^2 \mathcal{L}(\bar{\mu}_s)}{\mathrm{d}s^2} \le -\Lambda \quad \Rightarrow \quad \text{min-eigen-value}(H_{\mu_t}) \le -\Lambda/R$$

Escape from the critical point exponentially fast.

Numerical experiment

We compare 3 models with d = 20, k = 5, and 500 neurons with sigmoid act. All models are pre-trained using SGD on 10K prompts of 1K token pairs.

- **1. attention**: jointly optimizes $\mathcal{L}(\mu, \Gamma)$.
- **2. static**: directly minimizes $\mathcal{L}(\mu)$.
- 3. modified: static model implementing birth-death & GP

→ verify global convergence as well as improvement for misaligned model $(k_{\text{true}} = 7)$ and nonlinear test tasks $g(x) = \max_{j \le k} h_{\mu^{\circ}}(x)_j$ or $g(x) = \|h_{\mu^{\circ}}(x)\|^2$.

Presentation overview

Statistics

Minimax optimality

- Nonparametric analysis
- Approximation error analysis

Optimization

Global optimality of nonlinear feature learning

- Mean field limit
- Strict saddle

Statistics/Optimization

Feature learning with one step GD

- Single index model
- Information exponent
- Advantage of pre-training
- [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024
- [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
- [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

Nonlinear feature learning with optimization guarantee

[Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024]

Kazusato Oko (The University of Tokyo/RIKEN-AIP)

Yujin Song (The University of Tokyo)

Denny Wu (NYU/Flatiron Institute)

Mathematical formulation of in-context learning

Model:
$$y_{i,t} = f_*^t(x_{i,t}) + \epsilon_{i,t}$$
 $(i = 1, ..., n)$
 $t = 1, ..., T$: Task index

Pretraining (*T* **tasks)** :

$$X_t = \begin{bmatrix} x_{1,t}; \dots; x_{n,t} \end{bmatrix} \qquad \begin{array}{c} x_{\text{qr},t} \\ \times T \\ Y_t = \begin{bmatrix} y_{1,t}; \dots; y_{n,t} \end{bmatrix} \qquad \begin{array}{c} y_{\text{qr},t} \\ \end{array}$$

- We observe pretraining task data T times.
- \succ Each task has n data.

Test task (In-context learning) : $X_{T+1} = [x_{1,T+1}; \dots; x_{n,T+1}]$ $x_{qr,T+1}$ $y_{qr,T+1}$ $y_{qr,T+1}$ $y_{qr,T+1}$

Teacher model

Gaussian single index model:

$$f^t_*(x) = \sigma^t_*(\langle x, \beta_t \rangle)$$

where the link σ_*^t and the direction β_t are generated randomly:

 β_t β_t is distributed uniformly on a unit sphere in an r < d dimensional linear subspace S:

 $\beta_t \sim \mathrm{Unif}(\mathrm{Unit}(\mathcal{S}))$ where $\dim(\mathcal{S}) = r \ll d$

$$\sigma_*^t \qquad \sigma_*^t(z) = \sum_{i=k}^P c_i^t \operatorname{He}_i(z)$$
where c_i^t is randomly generated from a distribution satisfying
$$\mathbb{E}[c_2^t] \neq 0, \quad \sum_{i=2}^P (c_i^t)^2 = \Theta(1) \text{ (a.s.)}, \quad (c_2^t, \dots, c_P^t) \neq (0, \dots, 0) \text{ (a.s.)}$$

\Rightarrow Information exponent = k.

The feature has a low dimensional structure.

We want to estimate the subspace S and the basis functions He_i in the pretraining stage.

(Linear) Attention

• FNN layer $(f_W : \mathbb{R}^d \to \mathbb{R}^m)$:

$$f_{\mathbf{W},\mathbf{b}}(x) = \begin{pmatrix} \sigma(\mathbf{w}_1^\top x + b_1) \\ \sigma(\mathbf{w}_2^\top x + b_2) \\ \vdots \\ \sigma(\mathbf{w}_m^\top x + b_m) \end{pmatrix} =: \sigma(\mathbf{W}x + \mathbf{b})$$

(\sigma: ReLU)

• Linear attention model: [Ahn et al.: Linear attention is (maybe) all you need (to understand transformer optimization). arXiv:2310.01082]

 y_{n+1}

 x_{n+1}

*

OOO

 x_2

 y_2

Attention

 x_1

 y_1

FNN

Connection to soft-max attention³⁸

$$E = \begin{pmatrix} \sigma(\mathbf{w}_{1}^{\top}x_{1}+b_{1}) & \dots & \sigma(\mathbf{w}_{1}^{\top}x_{n}+b_{1}) & \sigma(\mathbf{w}_{1}^{\top}x_{n+1}+b_{1}) \\ \vdots & \ddots & \vdots & \vdots \\ \sigma(\mathbf{w}_{m}^{\top}x_{1}+b_{m}) & \dots & \sigma(\mathbf{w}_{m}^{\top}x_{n}+b_{m}) & \sigma(\mathbf{w}_{m}^{\top}x_{n+1}+b_{m}) \\ y_{1} & \dots & y_{n} & 0 \end{pmatrix}$$
Attention
$$f_{\text{Att}}(X,Y) = W_{V}E \cdot \text{softmax} \left(\frac{(W_{K}E)^{\top}W^{Q}E}{\lambda}\right)$$
$$= \frac{1}{C_{n+1}} \sum_{j=1}^{n} (W_{V}E_{:,j}) \exp\left(\frac{(W_{K}E_{:,j})^{\top}(W_{Q}E_{:,n+1})}{\lambda}\right)$$

Consider the following special setting:

$$W_V = \begin{bmatrix} 0_{1 \times m} & 1 \end{bmatrix} \qquad W_K^\top W_Q = \begin{pmatrix} \Gamma & * \\ 0_{1 \times m} & * \end{pmatrix}$$

Then,

$$f_{\text{Att}}(X,Y) = \frac{1}{C_{n+1}} \sum_{j=1}^{n} y_j \exp\left(f_{\mathbf{W},\mathbf{b}}(x_j)^\top \Gamma f_{\mathbf{W},\mathbf{b}}(x_{n+1})\right)$$

By ignoring the normalization constant C_{n+1} and the nonlinear term exp, we obtain the linear attention in the previous slide.

In-Context Learning (ICL) risk

Empirical ICL risk :

$$\widehat{\mathcal{L}}(\mathbf{W}, \mathbf{b}, \Gamma) := \frac{1}{T} \sum_{t=1}^{T} \left(y_{\mathrm{qr},t} - \frac{1}{n} \sum_{i=1}^{n} y_{i,t} f_{\mathbf{W},\mathbf{b}}(x_{i,t})^{\top} \Gamma f_{\mathbf{W},\mathbf{b}}(x_{\mathrm{qr},t}) \right)^{2}$$

 \rightarrow Minimize with respect to W, b, Γ .

The expected ICL risk: (Large sample limit: $n \to \infty$ and $T \to \infty$)

$$\mathcal{L}(\mathbf{W}, \mathbf{b}, \Gamma) := \mathbb{E}_{x_{\mathrm{qr}}, f_*} \left[\left(f_*(x_{\mathrm{qr}}) - \mathbb{E}_x [f_*(x) f_{\mathbf{W}, \mathbf{b}}(x)^\top] \Gamma f_{\mathbf{W}, \mathbf{b}}(x_{qr}) \right)^2 \right]$$

(note that $y_{i,t} = f_*^t(x_{i,t}) + \epsilon_{i,t}$)

Question :

- Can we estimate *W*, *b*, Γ by gradient descent? (<u>Non-convex problem</u>)
- How large is the sample complexity?

Optimization algorithm

Initialize $w_j^{(0)} \sim \text{Unif}(\mathbb{S}^{d-1})$, $b_j = 0$, $\Gamma_{j,j}^{(0)} = \text{Unif}(\{\pm 1\})$ (diagonal).

• Stage 1: One-step gradient descent.

Optimize *W* by a **one-step gradient descent**:

Find the subspace S

$$\mathbf{w}_{j}^{(1)} \leftarrow \mathbf{w}_{j}^{(0)} - \eta \left[\nabla_{\mathbf{w}_{j}} \frac{1}{T_{1}} \sum_{t=1}^{T_{1}} \left(y_{\mathrm{qr},t} - f(X_{t}, Y_{t}, x_{\mathrm{qr},t}; \mathbf{W}^{(0)}, \mathbf{b} = 0, \Gamma^{(0)}) \right)^{2} + \lambda \mathbf{w}_{j}^{(0)} \right]$$

- Analogous to one-step GD for 2-layer NN [Damian et al. 22; Ba et al. 22].
- Since the true link function has IE = 2, we can recover the subspace S by one-step GD with large step size.

• Stage 2: Optimization of Γ.

Randomly re-initialize $b_j \sim \text{Unif}([-1,1])$. Optimize Γ based on the feature W obtained at Stage 1:

Stage 2

$$\widehat{\Gamma} \leftarrow \arg\min_{\Gamma} \left\{ \frac{1}{T_2} \sum_{t=T_1+1}^{T_1+T_2} \left(y_{\mathrm{qr},t} - f(X_t, Y_t, x_{\mathrm{qr},t}; \mathbf{W}^{(1)}, \mathbf{b}, \Gamma) \right)^2 + \lambda \|\Gamma\|_F^2 \right\}$$
$$f_t(X_t, Y_t, x_{\mathrm{qr},t}; \mathbf{W}, \mathbf{b}, \Gamma) = \frac{1}{n} \sum_{i=1}^n y_{i,t} f_{\mathbf{W}, \mathbf{b}}(x_{i,t})^\top \Gamma f_{\mathbf{W}, \mathbf{b}}(x_{\mathrm{qr},t})$$

Then,
$$\hat{\Gamma}$$
 performs the ridge regression:

$$f_t(X_t, Y_t, x_{\mathrm{qr}, t}; \mathbf{W}^{(1)}, \mathbf{b}, \hat{\Gamma}) = f_{\mathbf{W}^{(1)}, \mathbf{b}}(x_{\mathrm{qr}, t})^\top \left(\frac{1}{nT_2} F_{T_1:T_2}^\top F_{T_1:T_2} + \lambda I\right)^{-1} F_t Y_t$$

where
$$F_t = [f_{\mathbf{W}^{(1)}, \mathbf{b}}(x_{1,t}), \dots, f_{\mathbf{W}^{(1)}, \mathbf{b}}(x_{n,t})].$$

If we can obtain <u>**nice basis functions**</u> $f_{W^{(1)},b}$ at Stage 1, the target function can be well estimated in the test task.

Main result

Theorem (ICL risk bound)

Let n^* be the number of examples in test task. If the one-step GD is performed with

 $T_1 = \Theta(d^{k+1})$ and $n = \widetilde{\Omega}(d^k)$,

then the trained Transformer achieves the following test loss:

m: width of NN, T_1 : number of tasks in Stage 1 (learning *W*), T_2 : number of tasks in Stage 2 (learning Γ), *n*: number of examples in pretraining-task.

- Without pretraining (non-ICL setting), n* = Ω(d^p) for kernel method and n* = Ω(d^{k/2}) for CSQ algorithm are required. But, in ICL, n* can be independent of d (n* = poly (r)).
- To estimate W, it requires $T_1 n = \Theta(d^{2k+1})$ datapoints while Damian et al. (2022) required only $\Theta(d^2)$ data points because we need enough task diversity.
 - But, ICL does not update their parameters based on the in-context examples.

Main result

Theorem (ICL risk bound)

Let n^* be the number of examples in test task. If the one-step GD is performed with

Proof overview

• The one-step GD update (with regularization) projects the initial vector $w_i^{(0)}$ to the subspace S.

- If we have many neurons, $\left(w_{j}^{(1)}\right)_{j=1}^{m}$ spans the subspace \mathcal{S} (1st -stage).
- If we have sufficiently large number of neuros $\left(\sigma(w_j^{(1)\mathsf{T}}w + b_j)\right)_{j=1}^m$, the model can well approximate the target polynomial $\sigma^*(\langle \beta_t, x \rangle)$ by **linear combination of the ReLU-neurons (2nd-stage + test prompt)**.

Numerical experiment

GPT2 model with 12-layers (~22M parameters) Only r affects the result, d does not.

Summary

• Learning theory of in-context learning $F_t^{\circ}(x) = \beta_t^{\top} f^{\circ}(x)$

> **Pretraining:** Obtaining nonlinear feature $[f^{\circ}]$

> In-context instruction: Learning coefficient $[\beta_t]$

- Nonparametric regression theory
 Minimax optimality
 Task diversity matters.
- Optimization theory

>Feature learning by mean-field neural network

Estimating single-index model by gradient descent

 \rightarrow Feature learning helps to improve the sample complexity of in-context learning.