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Transformer architecture
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Figure 1: The Transformer - model architecture.

[Vaswani et al.: Attention is All you Need. NIPS2017]

LLM (e.g., GPT3/GPT4)

a robot must obey the orders given it
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[Alammar: How GPT3 Works - Visualizations and Animations,
https://jalammar.github.io/how-gpt3-works-visualizations-
animations/]

[Brown et al. “Language Models are Few-
Shot Learners”, NeurlPS2020]

Vision tasks (e.g., ViT)
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[Dosovitskiy et al.: An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale.
arXiv:2010.11929. ICLR2021]



LLM

Please explain what is ChatGPT

&) ChatGPT is an artificial intelligence (Al) language model created by OpenAl. It is designed to
understand and generate human-like text based on the input it receives. Here's a detailed
breakdown of what ChatGPT is and what it does:

1. Purpose

e ChatGPT is primarily used for conversation and can respond to questions, provide explanations,

write creatively, assist with tasks, and more.

* |t serves as a tool for various applications, such as customer support, learning assistance, idea

brainstorming, and general information retrieval.

2. How It Works

® Training: ChatGPT is trained using a mack'\b learning technique called reinforcement learning

from human feedback (RLHF), which refines its ability to respond in helpful, accurate, and safe

[OpenAl, ChatGPT 40]

Why does it work so well?



In-context learning ‘

Pretrained Large Language Models (LLMs) have significant
ability of In-Context Learning (ICL) [Brown et al., 2020].

Please guess the number that fits in the '?". ®  The pattern in the given pairs of numbers appears

to be the sum of the two numbers.

11->2 So, the number that fits in the '?" is 32.
2,3->5
8,13 -> 21

6,0->6
10,1 -> 11
527 ->7

context

Question ChatGPT



In-context learning :

Pretrained Large Language Models (LLMs) have significant
ability of In-Context Learning (ICL) [Brown et al., 2020].

@ The pattern in the given pairs of words

Please guess the word that fits in the '?".
seems to be antonyms:

left -> right So, the word that fits in the '?' is "down".
dark -> light

short -> long
small -> big
up ->7?

context

Question ChatGPT



Fine tuning method

Traditional “fine tuning” approach

Context #1 1,1->2

Context#2 | 2,3->5

Context#3 | 8,13 -> 21

Context#N [10,1 -> 11

Query 5,27 -> 7?

\

IR  read context

Update
Parameter

learning model

(e.g., RLHF)



In-Context learning 7

ICL is performed without updating model parameters unlike the
traditional “fine-tuning” regime in the test task.

— Meta-learning

night -> knight n N

2,5 -3 ] g
101 - not -> knot 2.3->5 m| dark ->right m

’ light -> bright S
g g 8.13 -> 21 |3 | short -> long >§
read f . > : =1
Update 10.1->11 |/ small -> big )
Parameter
5,27 -> ? up -> ?
learning model Query Query

Question:

During pretraining, several tasks :
are observed to train the model. What mechanism allows

— Task generalization. d Transformer to perform |CL?




Presentation overview

Statistics ) Optimization

-

Global optimality of
nonlinear feature learning
* Mean field limit

 Strict saddle

Minimax optimality
* Nonparametric analysis
« Approximation error analysis

\_ J

Statistics/Optimization

Feature learning with one step GD
* Single index model

* Information exponent

« Advantage of pre-training

« [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are
Minimax Optimal Nonparametric In-Context Learners. NeurlPS2024

« [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context:
Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).

 [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu:
Transformer efficiently learns low-dimensional functions in context. NeurlPS2024.



pproximation theory
Statistical analysis

Nonparametric analysis
of in-context learning

[Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context
Learners. NeurlPS2024]

- Juno Kim



Mathematical formulation of

in-context learning

[ Model: Vit — Fto(il?z',t) + €5 ¢ (2=1,...,n) ]

t =1,..., T: Task index

« The true functions F;{ are different across different tasks.
* F{ is generated randomly for each task.

Pretraining (T tasks) :

- L » We observe pretraining
Xt =|T14;...3ZTn ] [Fart task data T times.
| o XT 5 Each task has n data.

Yi = y1,5-- 3 Ynit]  |[Yart

Test task (In-context learning) :

' (Implicit) Bayes estimation
| > Learn prior at pretraining
| > Perform posterior inference at
| the test task

Xry1 = [T1,7415- -} Tn,T

Yri, = [yl,T+1; e ;yn,T+1]




Linear combination of features "

Suppose that the true function admits a basis function decomposition:

FyY(x) = By f°()

where f; ~ (0,Z) and f°(x) € R*.

« B-Spline (Besov) i

I (xe0.1) PO

o (otherwise) : 1 2 3 '

Tensor product B-spline:

Non(@) = QN x < N)@) Ma (2) = [T, Non(29 — b;)

m + 1 times

fi(x) = Mgm,b(j)(ﬂ?) —> Fg = B'foe By,
* Fourier (Sobolev y-smooth)
H V2 cos(2m25k xy — 85 4m/2) T F5 € F,([0,1])

y-smooth functlon class for d = oo [Okumoto&Suzuki,ICLR2022], [Takakura&Suzuki, ICML2024]



Feature map and linear coeff

Fy(z) =B, f°(x)
* Pretraining: Learning feature map [f°]

»Fourier basis, B-Spline  Good representation
»Independent of context (t) - Distribution of 3,

»Obtain the most “efficient” basis to represent data
— Internal layers

* In-context learning: Estimating
coefficient [3;]
»Dependent on context (t)

»Estimate the context f; from the instruction
(Attention)
— Attention layer

v Guo et al. 2023 and von Oswald et al. 2023 observed that real Transformers extract

nonlinear features at lower layers and perform linear regression deeper layers.
— It is not like performing gradient descent at every layer as in Bai et al. 2023.




Transformer model

A. Nonlinear feature map (FNN)
We approximate the infinite dimensional nonlinear feature map f° by DNN:

gb : Rd — RN Deep neural network (nonlinear feature map)
(f° =¢)
B-1. Soft-max attention model
n Key Query

ZVaIue exp(qﬁ(xi,t)TKng(afqr,t))

Yit =n Yar,t
— Zile 6Xp(¢($i’,t)TKQ¢(Iqr,t)) Predict

B_Z Linear attention model [Ahn et al.: Linear attention is (maybe) all you need (to understand
° transformer optimization). arXiv:2310.01082]

* % D yind(@ie) TK Qo (are)

__________ Attention
Today’s 1=1
Interest
Prompt Anhn
AL
' \
Key | ¢(x1,t) d(xi ) d(xn,t) d(xqrt) Query X X, X,
Value Yi,¢ Vit Ynt ?

¥ In practice, each token should be a couple (¢(x),y). But, for this theoretical research, we simplify the Q, K,V to a specific form



In-Context Learning (ICL) risk

(Linear) attention can implement linear regression:

_____________________________________________

n ] T _
Y0600 TG00 +n8)olene) = 1 Y wioan) [ LFL X

1=1

............................................

=~ [" (prior information)
Carefully chosen T yields (nearly) Bayes optimal estimator.
[Gang et al. 2022; Akyurek et al. 2023; Zhang et al. 2023; Ahn et al. 2023; Mahankali et al., 2023; Wu et al. 2024]

Empirical ICL risk :

T

2
~ 1 1 —
E’(d)ar) F= T Z (yqr,t — E Zyi,tgb(wi,t)—rrqb(xqr,t))
1=1

t=1
— Minimize with respect to ¢ (feature map) and I' (attention param).

The expected ICL risk:
I RYE Question :

- Can we obtain “"optimal” expected risk?
- What is the benefit of ICL?

(where




Empirical risk minimizer

Empirical risk minimizer:

AN

min L
TeRN XN $cDNN (¢




Predictive error bound

Empirical risk minimizer:

T n 2
(6,T) «  argmin E(@,F) = %Z (yqr,t — %Zyi,tcb(a?i,t)TFqb(ﬂ?qr,t))

FeRNXN AcDNN

Fn:={¢:R* - RY | ¢ € DN

Z

with presprcified hyper-param}

Assumption IR E[ij] < j2sm1me )

. (Complexity of function space)
(informal)

2. infycr, maxi<j<n ||f;-> — ¢ ||oo SoN (Approx. error of each basis)

3. || Z?Zl(f;)gnoo < k2 (Bases are bounded)

4. (f])jozl are "near” orthonormal ~/ (Bases are almost
orthogonal to each other)

~

Thm. (ICL risk bound; Kim, Nakamaki, TS, NeurlPS2024)

logQ(N) In-context generalization gap

n2

Covering number of DN

+ % (N log(e™) 4008 (S v - 1)) + e

\_ Pretraining generalization to estimate basis function5/




Examples

* Example (B-spline basis; f;” is B-spline—Besov/Sobolev space):

Nlog(N) NZ?log(N)
_I_
n T

— oy 2 mEE 2. TIID
B[L(6, 1)) s 77 + 2 AT 4
n
Small T: memorization
Large T: generalization

Estimator 1: E[ﬁ(q@, )] <N~% +

Bias-variance
trade-off

Minimax optimal w.r.t. n (if T is large)

» Example (Holder class basis; [ € HY (RY)):
Estimator 2 (T is restricted to a diagonal matrix):

E(L(). Ty <n-2 4 Vloed) | N (9 Jog(N)

A . 1+ % (1+5)
= EL@.D)] Sn 7 4t

If there is no-pretraining, the minimax lower bound is With many pretraining data,

A A 2a’ the pretrained model can
E[ﬁ(qﬁ, F)] > max{n 23+1 ;T 204'+d} outperform direct estimator.

Pretraining improves the error by estimating the bases in the pretraining phase



Mini-max lower bound

£(f) =Epa., [(Fg(xqr) - f(iﬁqr))zl

n
_,i; @nd new task data (*re1oYre1i) -

f: depending on the pretraining data (xt,i,yt,i)

Minimax risk: inf sup E[ﬁ(f)]
fofeere

Information theoretic lower bound:

Prop. (ICL risk lower bound) . : : ™\

p (Iog—c‘;\/zrrlng nur}bg% CompIeX|ty to estimate

. 9 61,71, . . . o

inf sup E[L(f)] > 5TQL’T €1y N : the basis function f

f fOGJ; ; where < L/
> €, 1t e, €5, o~ 2m : coefficient 1
’ n

N ~ J

We consider f° as a random variable “uniformly” distributed on a model:

inf sup E[L(f)] 2 6°

f peere

(1

I(Dy:r41||(f°, Br1)) +10g(2)

log(N'(6,{F3}))

)



Concrete example

Optimal rate when the basis is known. Complexity to estimate the basis

\ (log-covering number)
A 2s V(e]_,n’ IO

inf sup E[L(f)] 2 n =+ +

ffoeFe ) nl’
where €] o~ Viern, F7)
’ nI’
V(€1 Fo) El—d/a’
b 1 i i ° a’ d\\e. NeX! ~ R
Basis functions in Holder space ( f’ € H* (R)): - ~
N s _ 2a’
inf sup E[L(f)] = n~ 7T (nT) ™ 2a’+4
f feere

Suppose that a'/d < s, then
When T is large,

/

2 - e o .
No pretraining (T = 1): n~ 2a’+d pretraining el 1t
\/ better generalization
\4 for test instruction
2s

Pretraining setting (T > 1): n 2s+1

than learning from
scratch



Task diversity matters

0.4
< A 0.3
o =
¢ 0o2-
= = o f
P @
0.1 o8
| | | | |
4@
1.5 —e— Ridge
—— dMMSE
& PT
E E 1.0 - 8
S s
If # of pretraining 0.5+
tasks is enough, ICL _— G6606060058000008T6H
| |

coincides with optimal 50 24 o8 212 216 520

ridge regression. # Pretraining Tasks

[Raventds, Paul, Chen, Ganguli: Pretraining task diversity and the emergence of
non-Bayesian in-context learning for regression. 2023 ]



Presentation overview

Statistics 4 Optimization )

Global optimality of
nonlinear feature learning
* Mean field limit

 Strict saddle
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Statistics/Optimization

Feature learning with one step GD
* Single index model

* Information exponent

« Advantage of pre-training

[Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are
Minimax Optimal Nonparametric In-Context Learners. NeurlPS2024

[Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context:
Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
[ldentifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu:
Transformer efficiently learns low-dimensional functions in context. NeurlPS2024.



Global optimality of GD

for in-context learning

[Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex
Mean-field Dynamics on the Attention Landscape. ICML2024, oral presentation
(arXiv:2402.01258)]

Juno Kim



Mathematical formulation of

in-context learning

Model: Vit = F,(zi:) + €t (2=1,...,n)
t =1,...,T: Task index

» The true functions F; are different across different tasks.
* F{ is generated randomly for each task.

Pretraining (T tasks) :

= St » We observe pretraining
! — . e e e s | 2 Jt .

A [331,t, ’ x”?t] 4 X T task data T times.

» Each task has n data.

Yi = y1,5-- 3 Ynit]  |[Yart

Test task (In-context learning) : Predict

VR

Yqr, T+1

XTH‘ — [5171,T+1; cee xn,T—}—l] Lqr,T+1

Yri, = [yl,T+1; e ;yn,T+1]




Model: Nonlinear feature

Linear model with nonlinear features:
Fto (3;) — U;rfo (:C) where v, ~ N(0,I) and f°(x) € R*.

We want to estimate the nonlinear feature f° by pretraining.

* Mean field neural network (Barron class):

h,(z) = f he(x)du(9) € R*

ho(z) =ac(w'z) (6= (a,w) € R" xR

i Lineal‘ attention: [Ahn et al.: Linear attention is (maybe) all you need (to understand
transformer optimization). arXiv:2310.01082]

e’

1
n Z Yi,thy (xiat)TFhu (Tar,t) : Yar,t
n i=1 Value Key Query Predict

yqr,t
ProAmpt ‘Amear a ;ention

" A
Key hﬂ (xl,t) hu (xi,t) hu (xn,t) hy (xqr,t)
Query
Value Y1t Yit Ynt ?

(P c kak)




Why mean field?

% mZ:l ho (z) — / o (2)d(0)

(Non-linear w.r.t. (6,,)M_,) (Linear w.rt. u)
£ (ﬁ >t ham) \/ L (f thM(Q))
As a function of 6 As a function of u

« Mean field Langevin dynamics: [Nitanda,Wu,Suzuki, 2022; Chizat, 2022]
— Linear convergence with a log-Sobolev inequality for optimizing 2-layer NN.

L(pe) — L7 < exp(=Aat)(L (po) — £7)



In-Context Learning (ICL) risk

Empirical ICL risk :

T n

2
~ 1 1
L(p,T) = T Z (yqr,t T Zyi,thu(xi,t)—rrhu(xqr,t))

t=1 =1

— Minimize with respect to y, T.

The expected ICL risk: (Large sample limit: n - c0o and T — o0)
@] O 2
L(p,T):= qur Mf (5qu) —E[f (x)hu(m)T]Phu($qr)H }

(note that y; , = v/ f°(x; 1))

Question : Can we optimize u,I" by a gradient descent?
(Infinite-dimensional non-convex problem)

There have been many work on optimization guarantee on
ICL for linear model: Zhang et al., (2023), Mahankali et al.

(2023), Guo et al. (2023) to name a few.
Bu, this is a nonlinear feature learning.




Two time-scale dynamics

Feature covariance X, , 1= Ex [hM(X)hI (X)]

Assumption (realizability of the true feature)

There exists p° such that f° = hyo and Z o o o< I. 1

Two time-scale dynamics (T is optimized first):

£(4) = min £, T) = minEq,, [[|°(ar) — Ealf* () () I h(agr)|

= o (|17 @) — S S|

. 1t 1s the minimizer iff h, = Rh, o for an invertible matrix R
Wasserstein gradient flow to minimize L:

oL
o Ot =V - (Mtv (M))

Op
do, . 5['(/«%) _
=V 7 (0:)  (ue = Law(6;))




Strict saddle

* There is no spurious local minima.
« All critical points are saddle and have negative curvature.

Theorem 1 (Strict saddle property of the loss landscape)

There exists a descent direction or negative curvature.
Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapalli et al. 2016; Li et al.,

2019].



Strict saddle

For an orthogonal matrix R € O(k), define R#u as the push-forward
of u along the rotation R: (a,w) » (Ra,w),i.e., hgy, = Rh,,.

Theorem 1 (Strict saddle property of the loss landscape)
If u € P is not the global minimum, then one of the followings holds:

(1) (1-1) There exists R € conv(0(k)) such that
d

&ﬁ(ﬂs)

(1-2) Furthermore, if 0 < L(u) < 1r°/2, then

<0 where jig = (1 — s)u + sRiu°.

s=0

d _ 4 T
&E(Ms) I o ||O_||?)O£(“) (5 o E(M))
(2) Otherwise,
T0 d*L(fis) 4 2
L) > 5 and =3 0 S "R FW

There exists a descent direction or negative curvature.
Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapal

2019].




Behavior around the critical point *

Let the “Hessian” at u be
H,(0,0") :=VyVy

0° L)
o2

Lemma

The Wasserstein GF u; around a critical point u* can be written as
(id + ev,)#u™ where the velocity field v, follows

v (0) = — / H . (0.6)0,(0')du* (&) + O(6)

(c.f., Otto calculus)

(6,0")

Negative curvature direction exponentially
grows up!

U; moves away from the critical point.

Theorem (Informal)

The solution is not captured by any critical point almost surely.
(The solution converges to the global optimal solution almost surely)




Decay speed of objective :

du®
S ose that H—
upp du,

< R (which could be ensured by using birth-death

process).

Theorem (GF moves toward a descent direction (1))

<) = iﬁ(ﬂt) < —-R7'5%
s=0 dt

Theorem (Accelerated convergence phase (2))

Once L(u;) < % — € Is satisfied,

L(pe+r) <O (RTkQ)

Theorem (Negative curvature around a saddle point (3))

d*L(fis)

1.2 < —-A = min-eigen-value(H,,) < —-A/R

Escape from the critical point exponentially fast.




Numerical experiment

We compare 3 models withd = 20, k = 5, and 500 neurons with sigmoid act.
All models are pre-trained using SGD on 10K prompts of 1K token pairs.

-

. attention: jointly optimizes L(u,T).
. static: directly minimizes L(u).

N

3. modified: static model implementing birth-death & GP
(a) training error (b) misspecified (c) test task: max (d) test task: norm
0.6 1.8 1.0
—— attention 3.0
0.5 —— static 1.6 0.9
— modified = 2-3
0.4 2o 14 0.8
0.3 15 1o 0.7
0.2 10 Lo 0.6 -Mﬂ
0.1 05 T 0.5
0.8
0.0 0.0 0.4
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
epochs (1e4)

— verify global convergence as well as improvement for misaligned model
(kerye = 7) and nonlinear test tasks g(x) = max hy: «(x)j or g(x) = ||k, (x)|| .
Js
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[Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are
Minimax Optimal Nonparametric In-Context Learners. NeurlPS2024

[Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context:
Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
[ldentifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu:
Transformer efficiently learns low-dimensional functions in context. NeurlPS2024.



Nonlinear feature learning

with optimization guarantee

[Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context.
NeurlPS2024]

Kazusato Oko Yujin Song Denny Wu
(The University of (The University (NYU/Flatiron
Tokyo/RIKEN-AIP) of Tokyo) Institute)



Mathematical formulation of

in-context learning

{ Model: y;: = fﬁ(%t) T €4t (l =1,... an) ]

t =1,..,T: Task index

Pretraining (T tasks) :

= St » We observe pretraining
! — . e e e s | 2 Jt .

A [wl’t’ ’ x"”t] 4 X T task data T times.

» Each task has n data.

Yi = y1,5-- 3 Ynit]  |[Yart

Test task (In-context learning) : Predict

VR

Yqr, T+1

XTH‘ — [331,T+1; cee xn,T—}—l] Lqr,T+1

Yri, = [yl,T+1; e ;yn,T+1]




Teacher model

Gaussian single index model:

filz) = o ((z, B))

where the link ¢! and the direction B, are generated randomly:

4 N
B:  Btis distributed uniformly on a unit sphere inanr < d

dimensional linear subspace S:

Bt ~ Unif (Unit(S)) where dim(S) =r < d
ot 0.(2)= Zf:k c;He; ()

where ¢} is randomly generated from a distribution satisfying
P
Elch] # 0, Y7 ,(c)? = 0(1) (as.), (chs-...ch) £ (0,...,0) (as.)
= Information exponent = k.

N/

A

The feature has a low dimensional structure.

We want to estimate the subspace § and the
basis functions He; in the pretraining stage.




(Linear) Attention

* FNN layer (fw : R* — R™) :

(J(WITQU + b1) \
o(wg x + bo)
fw,b(w) = : =:0(Wx + b)

\o(Wz + b))
(o: ReLU)

° Linear attention modeI: [Ahn et al.: Linear attention is (maybe) all you need (to

understand transformer optimization). arXiv:2310.01082]
f(Xtay;faaj; W 7b7F) —
T

1
_ Z yi,tfw,b(ﬂfi,t)—rrfw’b (ajqr) ! yqr (F c kak)
N —JValue Key Query Predict

(linear regression)

Yqr

Prg\mpt inear attention
A

)
ey [fwnCae)  [fwoCio|  [fwoGined wa,b (xan
. e Query

Value Vit Vit Ynt ?




Connection to soft-max attention =

o(wjxy+b) ... oWw/x,+b) o(w]x,1+b)
E = Attention
o(w) x1+by,) ... olw z,+b,) oW z,1+0by)
Y1 o Yn 0
E)TWCE
fawe(X,Y) = Wy E - softmax ((WK ))\ )
1 (Wi E. ;)" (WQE: nt1)
= Wv E. ;)ex : :
oy Wy (S
Consider the following special setting:
I *
Wy = [01xm 1 TW, —
v [ 1x ] WKWQ (lem *>

Then,
fau(X,Y) mzww fwb () T fw b (ni1))

By ignoring the normalization constant C,,,; and the nonlinear term exp,
we obtain the linear attention in the previous slide.



In-Context Learning (ICL) risk

Empirical ICL risk :
T

2

~ 1 1 — -

L(W,b,T) = = ; (yqr,t - gyi,th,b(ici,t) wa,b(l'qr,t))
— Minimize with respect to W, b, T.

The expected ICL risk: (Large sample limit: n = co and T — )

L(W,b,T) :=E,_ ;. [(f*(:rqr) — E, [f*(x)fw,b(x)T]FfW,b(qu))Q]
(note that y; , = £ (x;,) + €1)

Question :

« Can we estimate W, b, T by gradient descent? (Non-convex problem)
* How large is the sample complexity?




Optimization algorithm

Initialize w” ~ Unif(S%~1), b; = 0, [ = Unif({+1}) (diagonal).

-Stage 1: One-step gradient descent.
Optimize W by a one-step gradient descent:

1 0
WJS ) <—W§ )—77

Ty
1 2
s 3 s~ SO WO = 0.10)

W pr—
Iy t—1

> Analogous to one-step GD for 2-layer NN [Damian et al. 22; Ba et al. 22].
> Since the true link function has IE = 2, we can recover the subspace § by
one-step GD with large step size.

Stage 2: Optimization of I.

Randomly re-initialize b; ~ Unif([—1,1]).
Optimize I" based on the feature W obtained at Stage 1:

R - 1 T1+T> 1) 2 )
[' < arg minp T Z (yqr,t — (X, Y, 2qet; W ,b,F)) + AT || %
t:T1—|—1

1 n
H Z yi,th,b(xi,t)TFfW,b (xqr)
1=1



Stage 2

B . 1 T1+Ts (1) 2 5
I' <— argminp ¢ — Z (yqr,t—f(Xt,Y;taqur,tSW abar)) + Al %
1s
t=T1+1
f (Xt,YtaCqu t7W b F Zyz th b($z t) FfW b(ajqrt)
1=1

Then, T performs the ridge regression:

—1
R 1
ft(Xta Yi, Tqr ¢ W(l)a b, F) — fw(lhb(ﬂjqr,t)—r (ﬁFZITl:TzFTliﬂ + AI) 1Yy
2
where Ft = [fW(l),b(xl,t)a ce 7fW(1),b(:Cn7t)]'

If we can obtain nice basis functions fww p at Stage 1,
the target function can be well estimated in the test task.




Main result

Theorem (ICL risk bound)

Let n* be the number of examples in test task. If the one-step GD is
performed with

T, = 0(d**1) and n = Q(d"),

then the trained Transformer achieves the following test loss:

P r3P/2 rAP \/1 1
L(W.b.T) < T2 N G T
(W,b,I') < ,—m+ T2+fr' n+n*

Approximation error  Error to Error to estimate
estimate T’ In the test task

m: width of NN, T;: number of tasks in Stage 1 (learning W), T,: number of tasks in Stage 2
(learning T'), n: number of examples in pretraining-task.

g

« Without pretraining (non-ICL setting), n* = Q(d?) for kernel method and n* =

Q(d*/?) for CSQ algorithm are required. But, in ICL, n* can be independent of
d (n® = poly ()).

« To estimate W, it requires Tyn = ©(d?**1) datapoints while Damian et al. (2022)
required only ©(d?) data points because we need enough task diversity.
» But, ICL does not update their parameters based on the in-context examples.




Main result #

Theorem (ICL risk bound)

Let n* be the number of examples in test task. If the one-step GD is
performed with

T, = 0(d**1) and n = Q(d"),

then the trained Transformer achieves the following test loss:

P r3P/2 rAP \/1 1
L(W.b.T) < T2 N G T
(W,b,I') < ,—m+ T2+7° n+n*

Approximation error  Error to Error to estimate
estimate T’ In the test task
m. 2
(led
Method Kernel NN (CSQ or SQ) ICL
* VSample P k/2 2P
¢ complexity d d (or d) 4
4 Pretraining --- --- T, =d“n=d"
* Uucou . ar. \LUZZ)

teples |f we observe many data during pretraining, y.
bl |CL with Transformer can generalize well in test tasks. [RNERIIES




Proof overview

* The one-step GD update (with regularization) projects the initial vector
w'® to the subspace §
j pace o.

m
* If we have many neurons, (wj ) ~spans the subspace § (15t -stage).
j=1

m

* If we have sufficiently large number of neuros (a(wj(l)Tw + bj)) Ly the
J=

model can well approximate the target polynomial o*({B;, x)) by linear
combination of the ReLU-neurons (2"d-stage + test prompt).



Numerical experiment

Fixing d, changing r

1.2] —— d=64,r=2
| —— d=64,r=4
1.0} d=64,r=8

prediction risk
o
(o)}

0.4;

0.2

00 | . I..J. - N 'T‘“ _‘_“I — I
0 50 100 150 200 250

in-context sample size n

Fixing r, changing d

ion risk
= =
( o N
———

rediction
o o
(o) (0 0]
—

—— d=16,r=8
— d=32,r=8
d=64,r=8

4
Moot 1o

50 100 150 200 250
in-context sample size n

GPT2 model with 12-layers (~22M parameters)

Only r affects the result, d does not.



SJnintla%

* Learning theory of in-context learning

-
Fy(x) = 6, f°(x)
» Pretraining: Obtaining nonlinear feature [f°]

> In-context instruction: Learning coefficient [f;]

* Nonparametric regression theory
»Minimax optimality
»Task diversity matters.

» Optimization theory
»Feature learning by mean-field neural network

»Estimating single-index model by gradient descent

— Feature learning helps to improve the sample complexity
of in-context learning.
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