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Transformer architecture

• Transformer

2

[Brown et al. “Language Models are Few-

Shot Learners”, NeurIPS2020]

[Alammar: How GPT3 Works - Visualizations and Animations, 

https://jalammar.github.io/how-gpt3-works-visualizations-

animations/]

LLM (e.g., GPT3/GPT4)

[Vaswani et al.: Attention is All you Need. NIPS2017]
[Dosovitskiy et al.: An Image is Worth 16x16 Words: 

Transformers for Image Recognition at Scale. 

arXiv:2010.11929. ICLR2021]

Vision tasks (e.g., ViT)



LLM 3

Why does it work so well?

[OpenAI, ChatGPT 4o]



In-context learning 4

Pretrained Large Language Models (LLMs) have significant 

ability of In-Context Learning (ICL) [Brown et al., 2020].

Question ChatGPT



In-context learning 5

Question ChatGPT

Pretrained Large Language Models (LLMs) have significant 

ability of In-Context Learning (ICL) [Brown et al., 2020].



Fine tuning method 6

Traditional “fine tuning” approach

(e.g., RLHF)



In-Context learning 7

Pretraining Test task
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ICL is performed without updating model parameters unlike the 
traditional “fine-tuning” regime in the test task. 
→ Meta-learning

During pretraining, several tasks 

are observed to train the model.

→ Task generalization.

Question: 

What mechanism allows 

a Transformer to perform ICL?



Presentation overview 8

Feature learning with one step GD

• Single index model

• Information exponent

• Advantage of pre-training

Minimax optimality
• Nonparametric analysis

• Approximation error analysis

• [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are 

Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024

• [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: 

Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).

• [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: 

Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

Global optimality of 

nonlinear feature learning

• Mean field limit

• Strict saddle

Statistics Optimization

Statistics/Optimization



Nonparametric analysis
of in-context learning

9

[Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context 

Learners. NeurIPS2024]

Approximation theory/

Statistical analysis

Juno Kim



Mathematical formulation of 
in-context learning

10

Pretraining (𝑻 tasks)：

⋯
× 𝑇 

➢ We observe pretraining 

task data 𝑇 times.

➢ Each task has 𝑛 data.

Test task (In-context learning)：

⋯

Predict

• The true functions 𝐹𝑡
∘ are different across different tasks.

• 𝐹𝑡
∘ is generated randomly for each task.

Model:

𝑡 = 1,… , 𝑇: Task index

(Implicit) Bayes estimation

➢ Learn prior at pretraining

➢ Perform posterior inference at 

the test task



Linear combination of features 11

where 𝛽𝑡 ∼ (0, Σ) and 𝑓∘ 𝑥 ∈ ℝ∞. 

Suppose that the true function admits a basis function decomposition:

• B-Spline (Besov)

• Fourier (Sobolev, 𝛾-smooth)

Tensor product B-spline:

𝛾-smooth function class for 𝑑 = ∞ [Okumoto&Suzuki,ICLR2022], [Takakura&Suzuki, ICML2024]



Feature map and linear coeff

• Pretraining: Learning feature map [𝑓∘]
➢Fourier basis, B-Spline

➢Independent of context (𝑡)

➢Obtain the most “efficient” basis to represent data
→ Internal layers

12

⋯

𝑌1 𝑌2 𝑌𝑛

𝑥1 𝑥2 𝑥𝑛

𝑓∘
𝛽𝑡• In-context learning: Estimating 

coefficient [𝛽𝑡]
➢Dependent on context (𝑡)

➢Estimate the context 𝛽𝑡 from the instruction
(Attention)
→ Attention layer

✓ Guo et al. 2023 and von Oswald et al. 2023 observed that real Transformers extract 

nonlinear features at lower layers and perform linear regression deeper layers.
→ It is not like performing gradient descent at every layer as in Bai et al. 2023. 

• Good representation

• Distribution of 𝜷𝒕



Transformer model 13

[Ahn et al.: Linear attention is (maybe) all you need (to understand 

transformer optimization). arXiv:2310.01082]
B-2. Linear attention model

Predict

QueryKey
Value

⋯

𝑌1 𝑌2 𝑌𝑛

𝑥1 𝑥2 𝑥𝑛

FNN

Attention

𝑦1,𝑡

𝜙(𝑥1,𝑡)

𝑦𝑖,𝑡

𝜙(𝑥𝑖,𝑡)

𝑦𝑛,𝑡

𝜙(𝑥𝑛,𝑡)

?

𝜙(𝑥qr,𝑡)
⋯ ⋯ Query

Key

Value

Prompt Attention

B-1. Soft-max attention model

We approximate the infinite dimensional nonlinear feature map 𝑓∘ by DNN: 

Deep neural network (nonlinear feature map)

※ In practice, each token should be a couple (𝜙 𝑥 , 𝑦). But, for this theoretical research, we simplify the 𝑄,𝐾, 𝑉 to a specific form

Today’s

interest

Γ

(𝑓∘ ≃ 𝜙)

A. Nonlinear feature map (FNN)

𝜙

Γ



In-Context Learning (ICL) risk 14

The expected ICL risk: 

(where 𝐹𝛽
∘(𝑥) = 𝛽⊤𝑓∘(𝑥))

Empirical ICL risk : 

→ Minimize with respect to 𝝓 (feature map) and 𝚪 (attention param).

(Linear) attention can implement linear regression:

≃ Γ (prior information)

𝛽⊤

[Gang et al. 2022; Akyurek et al. 2023; Zhang et al. 2023; Ahn et al. 2023; Mahankali et al., 2023; Wu et al. 2024]

Question：

- Can we obtain “optimal” expected risk? 

- What is the benefit of ICL?

Carefully chosen Γ yields (nearly) Bayes optimal estimator.



Empirical risk minimizer 15

Empirical risk minimizer: 

⋯

𝑌1 𝑌2 𝑌𝑛

𝑥1 𝑥2 𝑥𝑛

𝜙

Γ



Predictive error bound 16

Empirical risk minimizer: 

Thm. (ICL risk bound; Kim, Nakamaki, TS, NeurIPS2024)

1.

2.

Feature approximation error

Pretraining generalization to estimate basis functions

3.

In-context generalization gap

(Complexity of function  space)

(Approx. error of each basis)

(Bases are bounded)

4.    𝑓𝑗
∘

𝑗=1

∞
are “near” orthonormal

Assumption

(informal)

(Bases are almost 

orthogonal to each other)

Covering number of DNN



Examples 17

• Example (B-spline basis; 𝑓𝑗
∘ is B-spline→Besov/Sobolev space):

Bias-variance 

trade-off

Estimator 1: 

• Example (Holder class basis; 𝑓𝑗
∘ ∈ 𝐻𝛼′(ℝ𝑑)):

Estimator 2 (Γ is restricted to a diagonal matrix): 

(neglecting polylog(𝑛))

If there is no-pretraining, the minimax lower bound is 

Minimax optimal w.r.t. 𝒏 (if 𝑻 is large)

Pretraining improves the error by estimating the bases in the pretraining phase

With many pretraining data, 

the pretrained model can 

outperform direct estimator.

Small 𝑻: memorization

Large 𝑻: generalization



Mini-max lower bound 18

መ𝑓: depending on the pretraining data 𝑥𝑡,𝑖 , 𝑦𝑡,𝑖 𝑡=1,𝑖=1

𝑇,𝑛
and new task data 𝑥𝑇+1,𝑖 , 𝑦𝑇+1,𝑖 𝑖=1

𝑛
.

Minimax risk: 

Information theoretic lower bound: 

Prop. (ICL risk lower bound)

where

: the basis function 𝒇∘

: coefficient 𝜷𝑻

Complexity to estimate(log-covering number)

We consider 𝑓∘ as a random variable “uniformly” distributed on a model: 



Concrete example 19

(log-covering number)

where

• Basis functions in Holder space ( 𝑓𝑗
∘ ∈ 𝐻𝛼′(ℝ𝑑)):

When 𝑻 is large, 

pretraining can give 

better generalization 

for test instruction 

than learning from 

scratch

No pretraining (𝑇 = 1): 

Optimal rate when the basis is known. Complexity to estimate the basis

Suppose that Τ𝛼′ 𝑑 < 𝑠, then

Pretraining setting (𝑇 ≫ 1): 

≪



Task diversity matters 20

[Raventós, Paul, Chen, Ganguli: Pretraining task diversity and the emergence of 

non-Bayesian in-context learning for regression. 2023 ]

If # of pretraining 

tasks is enough, ICL  

coincides with optimal 

ridge regression.
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Feature learning with one step GD

• Single index model

• Information exponent

• Advantage of pre-training

Minimax optimality
• Nonparametric analysis

• Approximation error analysis

• [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are 

Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024

• [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: 

Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).

• [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: 

Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

Global optimality of 

nonlinear feature learning

• Mean field limit

• Strict saddle

Statistics Optimization

Statistics/Optimization



Global optimality of GD
for in-context learning

22

[Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex 

Mean-field Dynamics on the Attention Landscape. ICML2024, oral presentation

(arXiv:2402.01258)]

So far, we have considered approximation theory. 

From now on, we discuss optimization theory.

Juno Kim



Mathematical formulation of 
in-context learning

23

Pretraining (𝑻 tasks)：

⋯
× 𝑇 

➢ We observe pretraining 

task data 𝑇 times.

➢ Each task has 𝑛 data.

Test task (In-context learning)：

⋯

Predict

• The true functions 𝐹𝑡 are different across different tasks.

• 𝐹𝑡
∘ is generated randomly for each task.

Model:

𝑡 = 1,… , 𝑇: Task index



Model: Nonlinear feature 24

Linear model with nonlinear features:

• Mean field neural network (Barron class):

[Ahn et al.: Linear attention is (maybe) all you need (to understand 

transformer optimization). arXiv:2310.01082]

We want to estimate the nonlinear feature 𝑓∘ by pretraining. 

• Linear attention:

PredictQueryKeyValue

where 𝑣𝑡 ∼ 𝑁(0, 𝐼) and 𝑓∘ 𝑥 ∈ ℝ𝑘. 

⋯

𝑌1 𝑌2 𝑌𝑛

𝑥1 𝑥2 𝑥𝑛

MFNN

(ℎ𝜇)

Linear Attention

𝑦1,𝑡

ℎ𝜇(𝑥1,𝑡)

𝑦𝑖,𝑡

ℎ𝜇(𝑥𝑖,𝑡)

𝑦𝑛,𝑡

ℎ𝜇(𝑥𝑛,𝑡)

?

ℎ𝜇(𝑥qr,𝑡)
⋯ ⋯ Query

Key

Value

Prompt Linear attention



Why mean field? 25

As a function of 𝜃 As a function of 𝜇

(Linear w.r.t. 𝜇)(Non-linear w.r.t. 𝜃𝑚 𝑚=1
𝑀 )

• Mean field Langevin dynamics: [Nitanda,Wu,Suzuki, 2022; Chizat, 2022]

→ Linear convergence with a log-Sobolev inequality for optimizing 2-layer NN. 



In-Context Learning (ICL) risk 26

There have been many work on optimization guarantee on 

ICL for linear model: Zhang et al., (2023), Mahankali et al. 

(2023), Guo et al. (2023) to name a few.

Bu, this is a nonlinear feature learning. 

The expected ICL risk: 

Question：Can we optimize 𝜇, Γ by a gradient descent? 

（Infinite-dimensional non-convex problem）

(note that 𝑦𝑖,𝑡 = 𝑣𝑡
⊤𝑓∘(𝑥𝑖,𝑡))

Empirical ICL risk : 

→ Minimize with respect to 𝜇, Γ.

(Large sample limit: 𝑛 → ∞ and 𝑇 → ∞)



Two time-scale dynamics 27

Assumption (realizability of the true feature)

There exists 𝜇∘ such that 𝑓∘ = ℎ𝜇∘ and Σ𝜇∘,𝜇∘ ∝ 𝐼𝑘.

Feature covariance

Two time-scale dynamics (𝚪 is optimized first): 

•

Wasserstein gradient flow to minimize 𝓛: 



Strict saddle 28

Theorem 1 (Strict saddle property of the loss landscape)

(1-1)

(1-2)

(2)

There exists a descent direction or negative curvature. 

• There is no spurious local minima.

• All critical points are saddle and have negative curvature.

Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapalli et al. 2016; Li et al., 

2019].



There exists a descent direction or negative curvature. 
Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapalli et al. 2016; Li et al., 

2019].

Strict saddle 29

Theorem 1 (Strict saddle property of the loss landscape)

For an orthogonal matrix 𝐑 ∈ O(𝑘), define 𝑹#𝜇 as the push-forward 

of 𝜇 along the rotation 𝐑: 𝑎, 𝑤 ↦ 𝐑𝑎,𝑤 , i. e. , ℎ𝐑#𝜇 = 𝐑ℎ𝜇.

If 𝜇 ∈ 𝒫 is not the global minimum, then one of the followings holds: 

(1)

(2)

(1-1) There exists 𝐑 ∈ conv(O(𝑘)) such that 

Otherwise,  

(1-2) Furthermore, if 0 < ℒ 𝜇 < 𝑟∘/2, then 

(1-1)

(1-2)

(2)



Behavior around the critical point 30

Let the “Hessian” at 𝜇 be 

Lemma 

The Wasserstein GF 𝜇𝑡 around a critical point 𝜇+ can be written as 

id + 𝜖𝑣𝑡 #𝜇
+ where the velocity field 𝑣𝑡 follows 

Negative curvature direction exponentially 

grows up! 

𝜇𝑡 moves away from the critical point. 

(c.f., Otto calculus)

Theorem (Informal) 

The solution is not captured by any critical point almost surely.
(The solution converges to the global optimal solution almost surely) 



Decay speed of objective 31

Suppose that 
d𝜇∘

d𝜇𝑡 ∞
≤ 𝑅 (which could be ensured by using birth-death 

process).  

Theorem (GF moves toward a descent direction (1)) 

Theorem (Accelerated convergence phase (2)) 

Once ℒ 𝜇𝑡 ≤
𝑟∘

2
− 𝜖 is satisfied, 

Theorem (Negative curvature around a saddle point (3)) 

Escape from the critical point exponentially fast. 



Numerical experiment 32

We compare 3 models with 𝑑 = 20, 𝑘 = 5, and 500 neurons with sigmoid act. 

All models are pre-trained using SGD on 10K prompts of 1K token pairs. 

1. attention: jointly optimizes ℒ(𝜇, Γ). 
2. static: directly minimizes ℒ(𝜇). 
3. modified: static model implementing birth-death & GP

→ verify global convergence as well as improvement for misaligned model 

(𝑘true = 7) and nonlinear test tasks 𝑔 𝑥 = max
𝑗≤𝑘

ℎ𝜇∘ 𝑥 𝑗 or 𝑔 𝑥 = ℎ𝜇∘ 𝑥
2
.
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Feature learning with one step GD

• Single index model

• Information exponent

• Advantage of pre-training

Minimax optimality
• Nonparametric analysis

• Approximation error analysis

• [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are 

Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024

• [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: 

Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).

• [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: 

Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

Global optimality of 

nonlinear feature learning

• Mean field limit

• Strict saddle

Statistics Optimization

Statistics/Optimization



Nonlinear feature learning
with optimization guarantee

34

[Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. 

NeurIPS2024] 

Denny Wu
(NYU/Flatiron 

Institute)

Kazusato Oko
(The University of 

Tokyo/RIKEN-AIP)

Yujin Song
(The University 

of Tokyo)



Mathematical formulation of 
in-context learning

35

Pretraining (𝑻 tasks)：

⋯
× 𝑇 

➢ We observe pretraining 

task data 𝑇 times.

➢ Each task has 𝑛 data.

Test task (In-context learning)：

⋯

Predict

Model:

𝑡 = 1,… , 𝑇: Task index



Teacher model 36

Gaussian single index model:

We want to estimate the subspace 𝒮 and the 

basis functions He𝑖 in the pretraining stage.

where the link 𝜎∗
𝑡 and the direction 𝛽𝑡 are generated randomly:

𝜷𝒕

where 𝑐𝑖
𝑡 is randomly generated from a distribution satisfying  

is distributed uniformly on a unit sphere in an 𝑟 < 𝑑 

dimensional linear subspace 𝒮:

where

⇒ Information exponent = 𝒌. 𝒮

The feature has a low dimensional structure. 

𝝈∗
𝒕



• FNN layer                             :

(Linear) Attention 37

[Ahn et al.: Linear attention is (maybe) all you need (to 

understand transformer optimization). arXiv:2310.01082]• Linear attention model: 

PredictQueryKeyValue

𝑦1,𝑡

𝑓𝑊,𝑏(𝑥1,𝑡)

𝑦𝑖,𝑡

𝑓𝑊,𝑏(𝑥𝑖,𝑡)

𝑦𝑛,𝑡

𝑓𝑊,𝑏(𝑥𝑛,𝑡)

?

𝑓𝑊,𝑏(𝑥qr)
⋯ ⋯ Query

Key

Value

Prompt Linear attention

(𝜎: ReLU)

(linear regression)

𝑦𝑛+1

𝑥1
𝑦1

FNN

Attention

𝑥2
𝑦2

𝑥𝑛+1
∗



Connection to soft-max attention 38

𝑦𝑛+1

𝑥1
𝑦1

FNN

Attention

𝑥2
𝑦2

𝑥𝑛+1
∗

Consider the following special setting:

Then, 

By ignoring the normalization constant 𝐶𝑛+1 and the nonlinear term exp, 

we obtain the linear attention in the previous slide. 



In-Context Learning (ICL) risk 39

The expected ICL risk: 

• Can we estimate 𝑊,𝑏, Γ by gradient descent? （Non-convex problem）

• How large is the sample complexity?                   

(note that 𝑦𝑖,𝑡 = 𝑓∗
𝑡 𝑥𝑖,𝑡 + 𝜖𝑖,𝑡)

Empirical ICL risk : 

→ Minimize with respect to 𝑊, 𝑏, Γ.

(Large sample limit: 𝑛 → ∞ and 𝑇 → ∞)

Question：



Optimization algorithm 40

•Stage 1: One-step gradient descent.

•Stage 2: Optimization of 𝚪.

Initialize 𝒘𝑗
(0)

∼ Unif 𝕊𝑑−1 , 𝑏𝑗 = 0, Γ𝑗,𝑗
0
= Unif {±1}  (diagonal).

Randomly re-initialize 𝑏𝑗 ∼ Unif −1,1 .

Optimize Γ based on the feature 𝑾 obtained at Stage 1:

Optimize 𝑾 by a one-step gradient descent:

➢ Analogous to one-step GD for 2-layer NN [Damian et al. 22; Ba et al. 22].

➢ Since the true link function has IE = 2, we can recover the subspace 𝒮 by 

one-step GD with large step size. 

Find the subspace 𝒮

Train the attention to 

extract the coefficient 𝛽𝑡. 



Stage 2 41

Then, Γ performs the ridge regression:

where

If we can obtain nice basis functions 𝑓𝑾(𝟏),𝒃 at Stage 1, 

the target function can be well estimated in the test task.



Main result 42

Theorem (ICL risk bound)

Let 𝑛∗ be the number of examples in test task. If the one-step GD is 

performed with 

𝑇1 = Θ(𝑑𝑘+1) and 𝑛 = ෩Ω(𝑑𝑘), 
then the trained Transformer achieves the following test loss:   

Approximation error

𝑚: width of NN, 𝑇1: number of tasks in Stage 1 (learning𝑊), 𝑇2: number of tasks in Stage 2 

(learning Γ), 𝑛: number of examples in pretraining-task.

Error to 

estimate Γ
Error to estimate 

in the test task

• To estimate 𝑊, it requires 𝑇1𝑛 = Θ(𝑑2𝑘+1) datapoints while Damian et al. (2022) 

required only Θ(𝑑2) data points because we need enough task diversity.

➢ But, ICL does not update their parameters based on the in-context examples. 

• Without pretraining (non-ICL setting), 𝑛∗ = Ω(𝑑𝑝) for kernel method and 𝑛∗ =
Ω(𝑑𝑘/2) for CSQ algorithm are required. But, in ICL, 𝑛∗ can be independent of 

𝑑 (𝑛∗ = poly (𝑟)).  



Main result 43

Theorem (ICL risk bound)

Let 𝑛∗ be the number of examples in test task. If the one-step GD is 

performed with 

𝑇1 = Θ(𝑑𝑘+1) and 𝑛 = ෩Ω(𝑑𝑘), 
then the trained Transformer achieves the following test loss:   

Approximation error

𝑚: width of NN, 𝑇1: number of tasks in Stage 1 (learning𝑊), 𝑇2: number of tasks in Stage 2 

(learning Γ), 𝑛: number of examples in pretraining-task.

Error to 

estimate Γ
Error to estimate 

in the test task

• To estimate 𝑊, it requires 𝑇1𝑛 = Θ(𝑑2𝑘+1) datapoints while Damian et al. (2022) 

required only Θ(𝑑2) data points because we need enough task diversity.

➢ But, ICL does not update their parameters based on the in-context examples. 

• Without pretraining (non-ICL setting), 𝑛∗ = Ω(𝑑𝑝) for kernel method and 𝑛∗ =
Ω(𝑑𝑘/2) for CSQ algorithm are required. But, in ICL, 𝑛∗ can be independent of 

𝑑 (𝑛∗ = poly (𝑟)).  

w/o pretraining w/ pretraining

Method Kernel NN (CSQ or SQ) ICL

Sample 

complexity
𝑑𝑃 𝑑𝑘/2 (or 𝑑) 𝑟2𝑃

Pretraining --- --- 𝑇1 = 𝑑𝑘+1, 𝑛 = 𝑑𝑘

If we observe many data during pretraining, 

ICL with Transformer can generalize well in test tasks.



Proof overview 44

𝒮

• The one-step GD update (with regularization) projects the initial vector 

𝑤𝑗
(0)

 to the subspace 𝒮.

𝑤𝑗
(0)

• If we have many neurons, 𝑤𝑗
1

𝑗=1

𝑚
 spans the subspace 𝒮 (1st -stage).

• If we have sufficiently large number of neuros 𝜎(𝑤𝑗
1 ⊤

𝑤 + 𝑏𝑗)
𝑗=1

𝑚
, the 

model can well approximate the target polynomial 𝜎∗(⟨𝛽𝑡 , 𝑥⟩) by linear 

combination of the ReLU-neurons (2nd-stage + test prompt).

• Learning 𝑊：Subspace 𝒮 is obtained.

• Learning Γ：Attention to obtain the 

coefficients on basises.  



Numerical experiment 45

Fixing d, changing r Fixing r, changing d

GPT2 model with 12-layers (∼22M parameters)

Only 𝑟 affects the result, 𝑑 does not.



Summary

• Learning theory of in-context learning

46

➢Pretraining: Obtaining nonlinear feature [𝑓∘]

➢ In-context instruction: Learning coefficient [𝛽𝑡]

• Nonparametric regression theory
➢Minimax optimality

➢Task diversity matters. 

• Optimization theory 
➢Feature learning by mean-field neural network

➢Estimating single-index model by gradient descent

→ Feature learning helps to improve the sample complexity 
of in-context learning.
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