Learning Theory of Transformers: Generalization and Optimization of In-Context Learning

Taiji Suzuki

The University of Tokyo / AIP-RIKEN (Deep learning theory team)

THE UNIVERSITY OF TOKYO

1

4 th/Dec/2024 Simons Institute Workshop

Transformer architecture

• Transformer

Figure 1: The Transformer - model architecture.

[Vaswani et al.: Attention is All you Need. NIPS2017]

LLM (e.g., GPT3/GPT4)

[Alammar: How GPT3 Works - Visualizations and Animations, https://jalammar.github.io/how-gpt3-works-visualizationsanimations/]

[Brown et al. "Language Models are Few-Shot Learners", NeurIPS2020]

Vision tasks (e.g., ViT)

[Dosovitskiy et al.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv:2010.11929. ICLR2021]

LLM ³

ChatGPT is an artificial intelligence (AI) language model created by OpenAI. It is designed to understand and generate human-like text based on the input it receives. Here's a detailed breakdown of what ChatGPT is and what it does:

1. Purpose

֍

- ChatGPT is primarily used for conversation and can respond to questions, provide explanations, write creatively, assist with tasks, and more.
- It serves as a tool for various applications, such as customer support, learning assistance, idea brainstorming, and general information retrieval.

2. How It Works

• Training: ChatGPT is trained using a mach plearning technique called reinforcement learning from human feedback (RLHF), which refines its ability to respond in helpful, accurate, and safe

[OpenAI, ChatGPT 4o]

Why does it work so well?

In-context learning

Pretrained Large Language Models (LLMs) have significant ability of In-Context Learning (ICL) [Brown et al., 2020].

Question ChatGPT

In-context learning **11.12 Section** 1

Pretrained Large Language Models (LLMs) have significant ability of In-Context Learning (ICL) [Brown et al., 2020].

֍

The pattern in the given pairs of words seems to be antonyms:

So, the word that fits in the '?' is "down".

Question ChatGPT

Fine tuning method 6

Traditional "fine tuning" approach

(e.g., RLHF)

In-Context learning

ICL is performed **without updating model parameters** unlike the traditional "fine-tuning" regime in the test task.

 \rightarrow Meta-learning **Pretraining Test task** night -> knight $2,5 1,1 - > 2$ left -> right strong not -> $knot$ $10,1$ $\begin{array}{|c|c|c|}\n\hline\n2,3 &\mbox{\ge 5}\n\hline\n8,13 &\mbox{\ge 21}\n\hline\n\vdots &\mbox{\ge 6}\n\hline\n10,1 &\mbox{\ge 11}\n\hline\n\end{array}\n\quad \quad\n\begin{array}{|c|c|}\n\hline\n\text{short} & \text{short} \\\hline\n\text{on} & \text{on} & \text{on} \\
\hline\n\end{array}\n\quad\n\quad\n\begin{array}{|c|c|}\n\hline\n\text{non} & \text{non} & \text{on} \\
\hline\n\end{array}\n\$ light -> bright read **Update Parameter** learning model

During pretraining, several tasks are observed to train the model. \rightarrow Task generalization.

Question:

What mechanism allows a Transformer to perform ICL?

Example

Presentation overview

Minimax optimality

- Nonparametric analysis
- Approximation error analysis

Statistics Constanting Cons

Global optimality of nonlinear feature learning

- Mean field limit
- Strict saddle

Statistics/Optimization

Feature learning with one step GD

- Single index model
- Information exponent
- Advantage of pre-training
- [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024
- [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
- [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

Approximation theory/ Statistical analysis

Nonparametric analysis of in-context learning

[Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024]

Juno Kim

Mathematical formulation of in-context learning

$$
\textbf{Model:} \quad y_{i,t} = F_t^{\circ}(x_{i,t}) + \epsilon_{i,t} \qquad (i = 1, \dots, n)
$$

 $t = 1, ..., T$: Task index

- The true functions F_t° are different across different tasks.
- F_t° is generated randomly for each task.

Pretraining (T tasks) :

$$
X_t = [x_{1,t};\ldots;x_{n,t}] \quad \begin{matrix} x_{\text{qr},t} \\ \text{...} \\ Y_t = [y_{1,t};\ldots;y_{n,t}] \quad y_{\text{qr},t} \end{matrix}
$$

- \triangleright We observe pretraining task data T times.
- \triangleright Each task has *n* data.

Test task (In-context learning):

$$
X_{T+1} = [x_{1,T+1}; \dots; x_{n,T+1}]
$$

...

$$
Y_{T+1} = [y_{1,T+1}; \dots; y_{n,T+1}]
$$

Predict (Implicit) Bayes estimation \triangleright Learn prior at pretraining ➢ Perform posterior inference at the test task

Linear combination of features 11

Suppose that the true function admits a basis function decomposition:

$$
F_t^{\circ}(x) = \beta_t^{\top} f^{\circ}(x)
$$

where $\beta_t \sim (0, \Sigma)$ and $f^{\circ}(x) \in \mathbb{R}^{\infty}$.

• Fourier (Sobolev, γ -smooth)

$$
f_j^{\circ}(x) = \prod_{k=1}^{\infty} \sqrt{2} \cos(2\pi 2^{s_{j,k}} x_k - \delta_{j,k} \pi/2) \implies F_\beta^{\circ} \in \mathcal{F}_{2,2}^{\gamma}([0,1]^\infty)
$$

 γ -smooth function class for $d = \infty$ [Okumoto&Suzuki,ICLR2022], [Takakura&Suzuki, ICML2024]

Feature map and linear coeff

$F_t^{\circ}(x) = \beta_t^{\top} f^{\circ}(x)$

• **Pretraining: Learning feature map** [∘]

➢Fourier basis, B-Spline

 \blacktriangleright Independent of context (t)

➢Obtain the most "efficient" basis to represent data \rightarrow Internal layers

• **In-context learning: Estimating** $\mathsf{coefficient}\ [\beta_t]$

 \blacktriangleright Dependent on context (t)

 \triangleright Estimate the context β_t from the instruction (Attention)

\rightarrow Attention layer

 \checkmark Guo et al. 2023 and von Oswald et al. 2023 observed that real Transformers extract nonlinear features at lower layers and perform linear regression deeper layers. \rightarrow It is not like performing gradient descent at every layer as in Bai et al. 2023.

• **Good representation**

• **Distribution of**

Transformer model 13

A. Nonlinear feature map (FNN)

We approximate the infinite dimensional nonlinear feature map f° by DNN:

 $\phi: \mathbb{R}^d \to \mathbb{R}^N$ Deep neural network (nonlinear feature map) $(f^{\circ} \simeq \phi)$

B-1. Soft-max attention model

$$
\sum_{i=1}^{n} \frac{\text{Value}}{y_{i,t}} \frac{\exp(\phi(x_{i,t})^{\top} KQ\phi(x_{\text{qr},t}))}{\sum_{i'=1}^{n} \exp(\phi(x_{i',t})^{\top} KQ\phi(x_{\text{qr},t}))} \qquad y_{\text{qr},t}
$$

[Ahn et al.: Linear attention is (maybe) all you need (to understand transformer optimization). arXiv:2310.01082] **B-2. Linear attention model**

 $\mathbb X$ In practice, each token should be a couple $(\phi(x), y)$. But, for this theoretical research, we simplify the Q, K, V to a specific form

In-Context Learning (ICL) risk ¹⁴

 $\overline{\beta}$ ⊤

(Linear) attention can implement linear regression:

$$
Y^{\top} \phi(X) (\phi(X)^{\top} \phi(X) + n\Lambda)^{-1} \phi(x_{\text{qr}}) = \frac{1}{n} \sum_{i=1}^{n} y_i \phi(x_i)^{\top} \left(\frac{\phi(X)^{\top} \phi(X)}{n} + \Lambda \right)^{-1} \phi(x_{\text{qr}})
$$

$$
\simeq \Gamma \text{ (prior information)}
$$

Carefully chosen Γ yields (nearly) Bayes optimal estimator.

[Gang et al. 2022; Akyurek et al. 2023; Zhang et al. 2023; Ahn et al. 2023; Mahankali et al., 2023; Wu et al. 2024]

Empirical ICL risk :

$$
\widehat{\mathcal{L}}(\phi,\Gamma):=\frac{1}{T}\sum_{t=1}^T\left(y_{\text{qr},t}-\frac{1}{n}\sum_{i=1}^ny_{i,t}\phi(x_{i,t})^\top\Gamma\phi(x_{\text{qr},t})\right)^2
$$

 \rightarrow Minimize with respect to ϕ (feature map) and Γ (attention param).

The expected ICL risk:

$$
\mathcal{L}(\phi, \Gamma)
$$
 Question :
 (where *I* - Can we obtain "optimal" expected risk?

Empirical risk minimizer 15

Empirical risk minimizer:

$$
\min_{\Gamma \in \mathbb{R}^{N \times N}, \phi \in \text{DNN}} \widehat{\mathcal{L}}(\phi, \Gamma) := \frac{1}{T} \sum_{t=1}^{T} \left(y_{\text{qr},t} - \frac{1}{n} \sum_{i=1}^{n} y_{i,t} \phi(x_{i,t})^{\top} \Gamma \phi(x_{\text{qr},t}) \right)^2
$$

 $\mathcal{F}_N := \{ \phi : \mathbb{R}^d \to \mathbb{R}^N \mid \phi \in \text{DNN} \}$

Predictive error bound 16

Empirical risk minimizer:

$$
(\hat{\phi}, \hat{\Gamma}) \leftarrow \mathop{\arg\min}_{\Gamma \in \mathbb{R}^{N \times N}, \phi \in \mathcal{D} \text{NN}} \hat{\mathcal{L}}(\phi, \Gamma) := \frac{1}{T} \sum_{t=1}^{T} \left(y_{\text{qr}, t} - \frac{1}{n} \sum_{i=1}^{n} y_{i, t} \phi(x_{i, t})^{\top} \Gamma \phi(x_{\text{qr}, t}) \right)^{2}
$$
\n
$$
\mathcal{F}_{N} := \left\{ \phi : \mathbb{R}^{d} \to \mathbb{R}^{N} \mid \phi \in \mathcal{D} \text{NN with prespecified hyper-param} \right\}
$$
\nAssumption\n
$$
\left\{ \begin{array}{l} 1. \quad \mathbb{E}[\beta_{t,j}^{2}] \lesssim j^{-2s-1-\epsilon} \\ 2. \quad \inf_{\phi \in \mathcal{F}_{N}} \max_{1 \leq j \leq N} \|f_{j}^{\circ} - \phi_{j}\|_{\infty} \lesssim \delta_{N} \\ 3. \quad \left\| \sum_{j=1}^{k} (f_{j}^{\circ})^{2} \right\|_{\infty} \lesssim k^{2r} \right\}
$$
\n(Bayes are bounded)
\n
$$
\left\{ \begin{array}{l} 4. \quad (f_{j}^{\circ})_{j=1}^{\infty} \text{ are "near" orthonormal} \\ 4. \quad (f_{j}^{\circ})_{j=1}^{\infty} \text{ are "near" orthonormal} \end{array} \right\}
$$
\n(Bases are almost orthogonal to each other)
\n
$$
\mathbb{E}[\mathcal{L}(\hat{\phi}, \hat{\Gamma})] \lesssim \left(N^{-2s} \right) + N^{2} \delta_{N}^{4} + N^{2r+1} \delta_{N}^{2} \qquad \text{Feature approximation error} + \left(\frac{N}{n} \right) + \frac{N^{2r}}{n} \log(N) + \frac{N^{4r}}{n^{2}} \log^{2}(N) \qquad \text{In-context generalization gap} + \frac{1}{T} \left(N^{2} \log(\epsilon^{-1}) + \log(N(\frac{\epsilon}{\sqrt{N}}, \mathcal{F}_{N}, || \cdot ||_{\infty})) \right) + \epsilon \qquad \text{Pertraining generalization to estimate basis functions}
$$

Examples 17

• Example (B-spline basis; f_j° is B-spline→Besov/Sobolev space):

• Example (Holder class basis; $f_j^\circ \in H^{\alpha'}({\mathbb R}^d)$):

Estimator 2 (Γ is restricted to a diagonal matrix):

$$
\mathbb{E}[\mathcal{L}(\hat{\phi}, \hat{\Gamma})] \lesssim N^{-2s} + \frac{N \log(N)}{n} + \frac{N^{1 + \frac{d}{\alpha'}(1+s)} \log(N)}{T}
$$

$$
\implies \boxed{\mathbb{E}[\mathcal{L}(\hat{\phi}, \hat{\Gamma})] \lesssim n^{-\frac{2s}{2s+1}} + n^{\frac{1 + \frac{d}{\alpha'}(1+s)}{2s+1}} T^{-1}}
$$

If there is no-pretraining, the minimax lower bound is

$$
\mathbb{E}[\mathcal{L}(\hat{\phi}, \hat{\Gamma})] \gtrsim \max\{n^{-\frac{2s}{2s+1}}, n^{-\frac{2\alpha'}{2\alpha'+d}}\}
$$

With many pretraining data, the pretrained model can outperform direct estimator.

Large : generalization

Pretraining improves the error by estimating the bases in the pretraining phase

Mini-max lower bound 18

$$
\mathcal{L}(\hat{f}) := \mathbb{E}_{\beta, x_{\text{qr}}}\left|\left(F_{\beta}^{\circ}(x_{\text{qr}}) - \hat{f}(x_{\text{qr}})\right)^2\right|
$$

 \hat{f} : depending on the pretraining data $\left(x_{t,i}, y_{t,i}\right)_{t=1,i=1}^{T,n}$ $_{t=1,i=1}^{T,n}$ and new task data $\left(x_{T+1,i},y_{T+1,i}\right)_{i=1}^{n}$ $\begin{array}{c} n \\ \vdots \\ n \end{array}$

Minimax risk:
$$
\inf_{\hat{f}} \sup_{f^\circ \in \mathcal{F}^\circ} \mathbb{E}[\mathcal{L}(\hat{f})]
$$

Information theoretic lower bound:

We consider f° as a random variable "uniformly" distributed on a model:

$$
\inf_{\hat{f}} \sup_{f^{\circ} \in \mathcal{F}^{\circ}} \mathbb{E}[\mathcal{L}(\hat{f})] \gtrsim \delta^2 \left(1 - \frac{I(D_{1:T+1}||(f^{\circ}, \beta_{T+1})) + \log(2)}{\log(\mathcal{N}(\delta, \{F^{\circ}_{\beta}\}))}\right)
$$

Concrete example 19

Optimal rate when the basis is known. Complexity to estimate the basis
\n
$$
\inf_{\hat{f}} \sup_{f^{\circ} \in \mathcal{F}^{\circ}} \mathbb{E}[\mathcal{L}(\hat{f})] \gtrsim n^{-\frac{2s}{2s+1}} + \frac{V(\epsilon_{1,n}, \mathcal{F}^{\circ})}{nT}
$$
\nwhere $\epsilon_{1,n}^2 \simeq \frac{V(\epsilon_{1,n}, \mathcal{F}^{\circ})}{nT}$
\n**Basis functions in Holder space** $(f_j^{\circ} \in H^{\alpha'}(\mathbb{R}^d))$: $\frac{V(\epsilon_{1,n}, \mathcal{F}^{\circ})}{nT} \simeq \frac{\epsilon_{1,n}^{-d/\alpha'}}{nT}$

$$
\inf_{\hat{f}} \sup_{f^{\circ} \in \mathcal{F}^{\circ}} \mathbb{E}[\mathcal{L}(\hat{f})] \gtrsim n^{-\frac{2s}{2s+1}} + (nT)^{-\frac{2\alpha'}{2\alpha' + d}}
$$

Suppose that $\alpha'/d < s$, then

Pretraining setting ($T \gg 1$):

No pretraining $(T = 1)$:

$$
n^{-\frac{2\alpha'}{2\alpha'+d}} \quad \stackrel{\mathsf{E}}{\underbrace{\times}} \\ n^{-\frac{2s}{2s+1}} \quad \stackrel{\mathsf{E}}{\underbrace{}}
$$

When T is large, pretraining can give better generalization for test instruction than learning from scratch

Task diversity matters 20

[Raventós, Paul, Chen, Ganguli: Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression. 2023]

Presentation overview 21

Minimax optimality

- Nonparametric analysis
- Approximation error analysis

Statistics Constanting Cons

Global optimality of nonlinear feature learning

- Mean field limit
- Strict saddle

Statistics/Optimization

Feature learning with one step GD

- Single index model
- Information exponent
- Advantage of pre-training
- [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024
- [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
- [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

So far, we have considered approximation theory. From now on, we discuss optimization theory.

Global optimality of GD for in-context learning

[Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. **ICML2024, oral presentation** (arXiv:2402.01258)]

Juno Kim

Mathematical formulation of in-context learning

$$
\text{Model:} \quad y_{i,t} = F_t^{\circ}(x_{i,t}) + \epsilon_{i,t} \qquad (i = 1, \dots, n)
$$

 $t = 1, ..., T$: Task index

- The true functions F_t are different across different tasks.
- F_t° is generated randomly for each task.

Pretraining (T tasks) :

$$
X_t = [x_{1,t}; \ldots; x_{n,t}]
$$

\n
$$
Y_t = [y_{1,t}; \ldots; y_{n,t}]
$$

\n
$$
y_{\text{qr},t}
$$

\n
$$
y_{\text{qr},t}
$$

- \triangleright We observe pretraining task data T times.
- \triangleright Each task has *n* data.

Predict

Test task (In-context learning):

$$
X_{T+1} = [x_{1,T+1}; \dots; x_{n,T+1}] \begin{bmatrix} x_{\text{qr},T+1} \\ x_{\text{qr},T+1} \end{bmatrix} y_{\text{qr},T+1}
$$

$$
Y_{T+1} = [y_{1,T+1}; \dots; y_{n,T+1}]
$$

Model: Nonlinear feature 24

Linear model with nonlinear features:

$$
F_t^{\circ}(x) = v_t^{\top} f^{\circ}(x) \quad \text{where } v_t \sim N(0, I) \text{ and } f^{\circ}(x) \in \mathbb{R}^k.
$$

We want to estimate the nonlinear feature f° by pretraining.

• **Mean field neural network (Barron class):**

Why mean field? 25

• Mean field Langevin dynamics: [Nitanda,Wu,Suzuki, 2022; Chizat, 2022] \rightarrow Linear convergence with a log-Sobolev inequality for optimizing 2-layer NN.

 $\mathcal{L}(\mu_t) - \mathcal{L}^* \leq \exp(-\lambda \alpha t)(\mathcal{L}(\mu_0) - \mathcal{L}^*)$

In-Context Learning (ICL) risk ²⁶

Empirical ICL risk :

$$
\widehat{\mathcal{L}}(\mu,\Gamma):=\frac{1}{T}\sum_{t=1}^T\left(y_{\text{qr},t}-\frac{1}{n}\sum_{i=1}^ny_{i,t}h_\mu(x_{i,t})^\top\Gamma h_\mu(x_{\text{qr},t})\right)^2
$$

 \rightarrow Minimize with respect to μ , Γ.

The expected ICL risk: (Large sample limit: $n \to \infty$ and $T \to \infty$)

$$
\mathcal{L}(\mu, \Gamma) := \mathbb{E}_{x_{\text{qr}}}\left| \left\| f^{\circ}(x_{\text{qr}}) - \mathbb{E}_x[f^{\circ}(x)h_{\mu}(x)^{\top}]\Gamma h_{\mu}(x_{\text{qr}}) \right\|^2 \right|
$$

(note that $y_{i,t} = v_t^{\mathsf{T}} f^{\circ}(x_{i,t})$)

Question : Can we optimize μ , Γ by a gradient descent? (Infinite-dimensional non-convex problem)

There have been many work on optimization guarantee on ICL for **linear model**: Zhang et al., (2023), Mahankali et al. (2023), Guo et al. (2023) to name a few. Bu, this is a **nonlinear feature learning**.

Two time-scale dynamics 27

Feature covariance
$$
\Sigma_{\mu,\nu} := \mathbb{E}_X[h_\mu(X)h_\nu^\top(X)]
$$

Assumption (realizability of the true feature)

There exists μ° such that $f^{\circ} = h_{\mu^{\circ}}$ and $\Sigma_{\mu^{\circ},\mu^{\circ}} \propto I_k$.

Two time-scale dynamics (Γ is optimized first):

$$
\mathcal{L}(\mu) := \min_{\Gamma} \mathcal{L}(\mu, \Gamma) = \min_{\Gamma} \mathbb{E}_{x_{\text{qr}}} \left[\left\| f^{\circ}(x_{\text{qr}}) - \mathbb{E}_{x} [f^{\circ}(x) h_{\mu}(x)^{\top}] \Gamma h_{\mu}(x_{\text{qr}}) \right\|^{2} \right]
$$

= $\mathbb{E}_{x_{\text{qr}}} \left[\left\| f^{\circ}(x_{\text{qr}}) - \Sigma_{\mu^{\circ},\mu} \Sigma_{\mu,\mu}^{-1} h_{\mu}(x_{\text{qr}}) \right\|^{2} \right]$

• μ is the minimizer iff $h_{\mu} = Rh_{\mu}$ for an invertible matrix R

Wasserstein gradient flow to minimize \mathcal{L} **:**

•
$$
\partial_t \mu_t = \nabla \cdot \left(\mu_t \nabla \frac{\delta \mathcal{L}(\mu_t)}{\delta \mu} \right)
$$

\n• $\frac{d\theta_t}{dt} = -\nabla \frac{\delta \mathcal{L}(\mu_t)}{\delta \mu}(\theta_t) \quad (\mu_t = \text{Law}(\theta_t))$

 $h_\mu(x):=\int h_\theta(x)\mathrm{d}\mu(\theta)$

Strict saddle **28**

- There is no spurious local minima.
- All critical points are saddle and have negative curvature.

Theorem 1 (**Strict saddle** property of the loss landscape)

There exists a **descent direction** or **negative curvature**. Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapalli et al. 2016; Li et al., 2019].

Strict saddle **29**

For an orthogonal matrix $\mathbf{R} \in O(k)$, define $\mathbf{R} \neq \mu$ as the push-forward of μ along the rotation \mathbf{R} : $(a, w) \mapsto (\mathbf{R}a, w)$, i. e., $h_{\mathbf{R}^{\#}}u = \mathbf{R}h_u$.

Theorem 1 (**Strict saddle** property of the loss landscape)

If $\mu \in \mathcal{P}$ is not the global minimum, then one of the followings holds: **(1)** (1-1) There exists $R \in \text{conv}(O(k))$ such that $\left. \frac{\mathrm{d}}{\mathrm{d}s}\mathcal{L}(\bar{\mu}_s) \right|_{s=0} < 0$ where $\bar{\mu}_s = (1-s)\mu + s\mathbf{R}\mu^\circ$. (1-2) Furthermore, if $0 < L(\mu) < r^{\circ}/2$, then $\frac{\mathrm{d}}{\mathrm{d}s}\mathcal{L}(\bar{\mu}_s)\Big|_{s=0} \leq -\frac{4}{\|\sigma\|^2}\mathcal{L}(\mu)\left(\frac{r_0}{2}-\mathcal{L}(\mu)\right)$ (2)Otherwise, **(2)** $\mathcal{L}(\mu) > \frac{r_0}{2}$ and $\frac{d^2 \mathcal{L}(\bar{\mu}_s)}{ds^2}\Big|_{s=0} \leq -\frac{4}{k\|\sigma\|^2} \mathcal{L}(\mu)^2$. $(1-1)$

There exists a **descent direction** or **negative curvature**. Analogous to matrix completion [Ge et al., 2016, 2017; Bhojanapal 2019].

 $(1-2)$

Behavior around the critical point ³⁰

Let the "Hessian" at μ be

$$
H_{\mu}(\theta,\theta'):=\nabla_{\theta}\nabla_{\theta'}\frac{\delta^2 \mathcal{L}(\mu)}{\delta \mu^2}(\theta,\theta')
$$

Lemma

The Wasserstein GF μ_t around a critical point μ^+ can be written as $\int \mathrm{d} \theta + \epsilon v_t$)# μ^+ where the velocity field v_t follows

$$
\partial_t v_t(\theta) = -\int H_{\mu^+}(\theta,\theta')v_t(\theta')d\mu^+(\theta') + O(\epsilon)
$$

(c.f., Otto calculus)

Negative curvature direction exponentially grows up!

 μ_t moves away from the critical point.

Theorem (Informal)

The solution is not captured by any critical point *almost surely*. (The solution converges to the global optimal solution almost surely)

Decay speed of objective 31

Suppose that $\left\| \frac{d\mu^{\circ}}{d\mu^{\circ}} \right\|$ $d\mu_t \parallel_{\infty}$ $\leq R$ (which could be ensured by using birth-death process).

Theorem (GF moves toward a descent direction (1))

$$
\frac{\mathrm{d}}{\mathrm{d}s}\mathcal{L}(\bar{\mu}_s)\Big|_{s=0} < -\delta \quad \Rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{L}(\mu_t) \leq -R^{-1}\delta^2.
$$

Theorem (Accelerated convergence phase (2))

Once
$$
\mathcal{L}(\mu_t) \le \frac{r^{\circ}}{2} - \epsilon
$$
 is satisfied,

$$
\mathcal{L}(\mu_{t+T}) \le O\left(\frac{Rk^2}{T}\right)
$$

Theorem (Negative curvature around a saddle point (3))

$$
\frac{\mathrm{d}^2 \mathcal{L}(\bar{\mu}_s)}{\mathrm{d}s^2} \le -\Lambda \Rightarrow \min\text{-eigen-value}(H_{\mu_t}) \le -\Lambda/R
$$

Escape from the critical point exponentially fast.

Numerical experiment 32

We compare 3 models with $d = 20$, $k = 5$, and 500 neurons with sigmoid act. All models are pre-trained using SGD on 10K prompts of 1K token pairs.

- **1. attention**: jointly optimizes $\mathcal{L}(\mu, \Gamma)$.
- **2. static**: directly minimizes $\mathcal{L}(\mu)$.
- **3. modified**: static model implementing birth-death & GP

 \rightarrow verify global convergence as well as improvement for misaligned model $(k_{true} = 7)$ and nonlinear test tasks $g(x) = \max_{i \leq k}$ j≤k $h_{\mu^{\circ}}(x)_j$ or $g(x) = ||h_{\mu^{\circ}}(x)||$ 2 .

Presentation overview

Minimax optimality

- Nonparametric analysis
- Approximation error analysis

Statistics Optimization

Global optimality of nonlinear feature learning

- Mean field limit
- Strict saddle

Statistics/Optimization

Feature learning with one step GD

- Single index model
- Information exponent
- Advantage of pre-training
- [Minimax optimality and approximation error bound] Kim, Nakamaki, Suzuki: Transformers are Minimax Optimal Nonparametric In-Context Learners. NeurIPS2024
- [Optimization in mean field limit] Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape. ICML2024 (arXiv:2402.01258).
- [Identifying low dimensional subspace with information exponent k] Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024.

Nonlinear feature learning with optimization guarantee

[Oko, Song, Suzuki, Wu: Transformer efficiently learns low-dimensional functions in context. NeurIPS2024]

Kazusato Oko (The University of Tokyo/RIKEN-AIP)

Yujin Song (The University of Tokyo)

Denny Wu (NYU/Flatiron Institute)

Mathematical formulation of in-context learning

Model:
$$
y_{i,t} = f_*^t(x_{i,t}) + \epsilon_{i,t} \qquad (i = 1, \ldots, n)
$$

$$
t = 1, \ldots, T: \text{Task index}
$$

Pretraining (T tasks):

$$
X_t = [x_{1,t}; \ldots; x_{n,t}] \qquad \begin{array}{|l|}\hline x_{\mathrm{qr},t} \\ \hline \ldots \\ \hline Y_t = [y_{1,t}; \ldots; y_{n,t}] \qquad y_{\mathrm{qr},t}\hline \end{array}
$$

- \triangleright We observe pretraining task data T times.
- \triangleright Each task has *n* data.

Test task (In-context learning): Predict $y_{\mathrm{qr},T+1}$ $X_{T+1} = [x_{1,T+1}; \ldots; x_{n,T+1}] | x_{\mathrm{qr},T+1}$ … $Y_{T+1} = [y_{1,T+1}; \ldots; y_{n,T+1}]$

Teacher model

Gaussian single index model:

$$
f_*^t(x) = \sigma_*^t(\langle x, \beta_t \rangle)
$$

where the link σ_*^t and the direction β_t are generated randomly:

 β_t β_t is distributed uniformly on a unit sphere in an $r < d$ dimensional linear subspace S :

 $\beta_t \sim \text{Unif}(\text{Unit}(\mathcal{S}))$ where $\dim(\mathcal{S}) = r \ll d$

$$
\sigma_*^t \quad \sigma_*^t(z) = \sum_{i=k}^P c_i^t \text{He}_i(z)
$$
\nwhere c_i^t is randomly generated from a distribution satisfying\n
$$
\mathbb{E}[c_2^t] \neq 0, \sum_{i=2}^P (c_i^t)^2 = \Theta(1) \text{ (a.s.), } (c_2^t, \dots, c_P^t) \neq (0, \dots, 0) \text{ (a.s.)}
$$

\Rightarrow **Information exponent =** κ **.**

The feature has a low dimensional structure.

We want to estimate the subspace S and the basis functions He_i in the pretraining stage.

(Linear) Attention 37

• **FNN layer** $(f_W : \mathbb{R}^d \to \mathbb{R}^m)$:

$$
f_{\mathbf{W},\mathbf{b}}(x) = \begin{pmatrix} \sigma(\mathbf{w}_1^\top x + b_1) \\ \sigma(\mathbf{w}_2^\top x + b_2) \\ \vdots \\ \sigma(\mathbf{w}_m^\top x + b_m) \end{pmatrix} =: \sigma(\mathbf{W}x + \mathbf{b})
$$

$$
(\sigma: \text{ReLU})
$$

[Ahn et al.: Linear attention is (maybe) all you need (to • Linear attention model: [Ahn et al.: Linear attention is (maybe) all you need (to all strand transformer optimization). arXiv:2310.01082]

 y_{n+1}

 x_{n+1} ∗

 x_1

 x_2

OOC

 y_2

FNN

Attention

 y_1

Connection to soft-max attention ³⁸

$$
E = \begin{pmatrix} \sigma(\mathbf{w}_1^{\top} x_1 + b_1) & \dots & \sigma(\mathbf{w}_1^{\top} x_n + b_1) & \sigma(\mathbf{w}_1^{\top} x_{n+1} + b_1) \\ \vdots & \ddots & \vdots & \vdots \\ \sigma(\mathbf{w}_m^{\top} x_1 + b_m) & \dots & \sigma(\mathbf{w}_m^{\top} x_n + b_m) & \sigma(\mathbf{w}_m^{\top} x_{n+1} + b_m) \\ y_1 & \dots & y_n & 0 \end{pmatrix}
$$
Attention
\n
$$
f_{\text{Att}}(X, Y) = W_V E \cdot \text{softmax}\left(\frac{(W_K E)^{\top} W^Q E}{\lambda}\right)
$$
\n
$$
= \frac{1}{C_{n+1}} \sum_{j=1}^n (W_V E_{:,j}) \exp\left(\frac{(W_K E_{:,j})^{\top} (W_Q E_{:,n+1})}{\lambda}\right)
$$

Consider the following special setting:

$$
W_V = \begin{bmatrix} 0_{1 \times m} & 1 \end{bmatrix} \qquad W_K^\top W_Q = \begin{pmatrix} \Gamma & * \\ 0_{1 \times m} & * \end{pmatrix}
$$

Then,

$$
f_{\text{Att}}(X, Y) = \frac{1}{\mathcal{C}_{n+1}} \sum_{j=1}^{n} y_j \exp (f_{\mathbf{W}, \mathbf{b}}(x_j)^\top \Gamma f_{\mathbf{W}, \mathbf{b}}(x_{n+1}))
$$

By ignoring the normalization constant C_{n+1} and the nonlinear term exp, we obtain the linear attention in the previous slide.

In-Context Learning (ICL) risk ³⁹

Empirical ICL risk :

$$
\widehat{\mathcal{L}}(\mathbf{W}, \mathbf{b}, \Gamma) := \frac{1}{T} \sum_{t=1}^T \left(y_{\text{qr},t} - \frac{1}{n} \sum_{i=1}^n y_{i,t} f_{\mathbf{W},\mathbf{b}}(x_{i,t})^\top \Gamma f_{\mathbf{W},\mathbf{b}}(x_{\text{qr},t) \right)^2
$$

 \rightarrow Minimize with respect to W, b, Γ.

The expected ICL risk: (Large sample limit: $n \to \infty$ and $T \to \infty$)

$$
\mathcal{L}(\mathbf{W}, \mathbf{b}, \Gamma) := \mathbb{E}_{x_{\text{qr}}, f_*} \left[\left(f_* (x_{\text{qr}}) - \mathbb{E}_x [f_* (x) f_{\mathbf{W}, \mathbf{b}} (x)^\top] \Gamma f_{\mathbf{W}, \mathbf{b}} (x_{\text{qr}}) \right)^2 \right]
$$
\n(note that $y_{i,t} = f_*^t (x_{i,t}) + \epsilon_{i,t}$)

Question:

- Can we estimate W , b , Γ by gradient descent? (Non-convex problem)
- How large is the sample complexity?

Optimization algorithm 40

Initialize $w_j^{(0)} \sim \text{Unif}(\mathbb{S}^{d-1})$, $b_j = 0$, $\Gamma_{j,j}^{(0)} = \text{Unif}(\{\pm 1\})$ (diagonal).

•**Stage 1: One-step gradient descent.**

Optimize by a **one-step gradient descent**:

Find the subspace S

$$
\mathbf{w}_{j}^{(1)} \leftarrow \mathbf{w}_{j}^{(0)} - \eta \left[\nabla_{\mathbf{w}_{j}} \frac{1}{T_{1}} \sum_{t=1}^{T_{1}} \left(y_{\text{qr},t} - f(X_{t}, Y_{t}, x_{\text{qr},t}; \mathbf{W}^{(0)}, \mathbf{b} = 0, \Gamma^{(0)}) \right)^{2} + \lambda \mathbf{w}_{j}^{(0)} \right]
$$

- ➢ Analogous to one-step GD for 2-layer NN [Damian et al. 22; Ba et al. 22].
- \triangleright Since the true link function has IE = 2, we can recover the subspace S by one-step GD with large step size.

•**Stage 2: Optimization of .**

Randomly re-initialize $b_i \sim \text{Unif}([-1,1])$. Optimize Γ based on the feature W obtained at Stage 1:

$$
\widehat{\Gamma} \leftarrow \arg \min_{\Gamma} \left\{ \frac{1}{T_2} \sum_{t=T_1+1}^{T_1+T_2} \left(y_{\text{qr},t} - f(X_t, Y_t, x_{\text{qr},t}; \mathbf{W}^{(1)}, \mathbf{b}, \Gamma) \right)^2 + \lambda \|\Gamma\|_F^2 \right\}
$$
\n
$$
\frac{1}{n} \sum_{i=1}^n y_{i,t} f_{\mathbf{W},\mathbf{b}}(x_{i,t})^\top \Gamma f_{\mathbf{W},\mathbf{b}}(x_{\text{qr}})
$$
\nTrain the attention to extract the coefficient β_t

Stage 2 41

$$
\widehat{\Gamma} \leftarrow \arg \min_{\Gamma} \left\{ \frac{1}{T_2} \sum_{t=T_1+1}^{T_1+T_2} \left(y_{\text{qr},t} - f(X_t, Y_t, x_{\text{qr},t}; \mathbf{W}^{(1)}, \mathbf{b}, \Gamma) \right)^2 + \lambda \|\Gamma\|_F^2 \right\}
$$
\n
$$
f_t(X_t, Y_t, x_{\text{qr},t}; \mathbf{W}, \mathbf{b}, \Gamma) = \frac{1}{n} \sum_{i=1}^n y_{i,t} f_{\mathbf{W},\mathbf{b}}(x_{i,t})^\top \Gamma f_{\mathbf{W},\mathbf{b}}(x_{\text{qr},t})
$$

Then, Γ performs the ridge regression:

$$
f_t(X_t, Y_t, x_{\text{qr},t}; \mathbf{W}^{(1)}, \mathbf{b}, \hat{\Gamma}) = f_{\mathbf{W}^{(1)},\mathbf{b}}(x_{\text{qr},t})^\top \left(\frac{1}{nT_2} F_{T_1:T_2}^\top F_{T_1:T_2} + \lambda I\right)^{-1} F_t Y_t
$$

where
$$
F_t = [f_{\mathbf{W}^{(1)},\mathbf{b}}(x_{1,t}),\ldots,f_{\mathbf{W}^{(1)},\mathbf{b}}(x_{n,t})].
$$

If we can obtain *nice basis functions* $f_{\bm{W^{(1)},\bm{b}}}$ at Stage 1, the target function can be well estimated in the test task.

Main result **Advised Analytics** 42

Theorem (ICL risk bound)

Let n^* be the number of examples in test task. If the one-step GD is performed with

 $T_1 = \Theta(d^{k+1})$ and $n = \widetilde{\Omega}(d^k)$,

then the trained Transformer achieves the following test loss:

m: width of NN, T_1 : number of tasks in Stage 1 (learning W), T_2 : number of tasks in Stage 2 (learning Γ), n : number of examples in pretraining-task.

- Without pretraining (non-ICL setting), $n^* = \Omega(d^p)$ for kernel method and $n^* =$ $\Omega(d^{k/2})$ for CSQ algorithm are required. But, in ICL, n^* can be independent of $d (n^* = \text{poly}(r)).$
- To estimate W, it requires $T_1 n = \Theta(d^{2k+1})$ datapoints while Damian et al. (2022) required only $\Theta(d^2)$ data points because we need enough task diversity.
	- ➢ But, ICL does not update their parameters based on the in-context examples.

Main result **Advised Advisory** 43

Theorem (ICL risk bound)

Let n^* be the number of examples in test task. If the one-step GD is performed with

Proof overview 44

• The one-step GD update (with regularization) projects the initial vector $w_j^{(0)}$ to the subspace ${\cal S}.$

• Learning W : Subspace δ is obtained. • Learning Γ: Attention to obtain the coefficients on basises.

- If we have many neurons, $\left(w_{j}^{\left(1\right) }$ $j=1$ \boldsymbol{m} spans the subspace S (1st -stage).
- If we have sufficiently large number of neuros $\left(\sigma(w^{(1)\top}_j w + b_j)\right)$ $j=1$ \overline{m} , the model can well approximate the target polynomial $\sigma^*(\langle \beta_t, x \rangle)$ by linear **combination of the ReLU-neurons (2nd-stage + test prompt)**.

Numerical experiment 45

GPT2 model with 12-layers (∼22M parameters) Only r affects the result, d does not.

Summary

• Learning theory of in-context learning $F_t^{\circ}(x) = \beta_t^{\top} f^{\circ}(x)$

➢**Pretraining:** Obtaining nonlinear feature [∘]

 \triangleright **In-context instruction:** Learning coefficient [β_t]

- Nonparametric regression theory ➢Minimax optimality ➢Task diversity matters.
- Optimization theory

➢Feature learning by mean-field neural network

➢Estimating single-index model by gradient descent

 \rightarrow Feature learning helps to improve the sample complexity of in-context learning.