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• minimizing convex functions is
basis for many methods in
machine learning and statistics
(and other fields)
• e.g.: maximum likelihood, maximum entropy, linear

regression, logistic regression, boosting, SVM’s, ...

• convex functions are really nice!
• local minimum must be global minimum
• if gradient = 0 then must be global minimum
• usually easier to find and analyze minimization algorithms
• beautiful properties
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Finite minimizersFinite minimizersFinite minimizersFinite minimizersFinite minimizers

• common to assume function
actually attains minimum
at a finite point

• problem: some convex functions have no finite minimizer
• function then must be minimized by sequence

heading “to infinity”
• certainly includes cases of practical interest
• analyzing convergence often requires carefully tailored

techniques

• this talk: develop theory for studying such
minimizers at infinity
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Example: exponential functionExample: exponential functionExample: exponential functionExample: exponential functionExample: exponential function

• e.g.: f (x) = ex

• no finite point x ∈ R where minimum attained

• instead, minimized by any sequence (xt) with xt → −∞
• wish could say: “minimized at −∞”

• can do by:
• extending R to include ±∞:

R = R ∪ {−∞,+∞} = [−∞,+∞]

• extending f to R by setting:
f (−∞) = 0 and f (+∞) = +∞
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+∞−∞

+∞

• extended f :
• is continuous over R
• attains minimum at −∞
• “feels” convex
• maybe can extend derivatives so that f ′(−∞) = 0

• in n = 1 dimensions, seems clear how to
• add “points at infinity”
• extend functions to enlarged space,

capturing minimizers at infinity

• what about in n ≥ 2 dimensions?
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GoalsGoalsGoalsGoalsGoals

• extend Rn to include points at infinity

• aim to reveal structure of how convex functions behave
at infinity

• trying to build up foundations so relatively easy, for instance,
to prove convergence of algorithms

• hope to make study of convex functions more
“complete” and “regular”
• e.g., so every convex function, when extended to new

space, has a minimizer

• want compatible with key notions of convex analysis
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• so don’t “need” reals
(can just work over sequences of rationals)

• far preferable to extend Q to R
• much more complete, regular, well-structured
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Analogy (cont.)Analogy (cont.)Analogy (cont.)Analogy (cont.)Analogy (cont.)

• in same way, can continue to use sequences to study
minimizers of convex functions
• might be much nicer to study minimizers at infinity as

mathematical objects in their own right
• can hope larger space would be more complete, regular,

and revealing of structure



This workThis workThis workThis workThis work

• introduce astral space, extension of Rn with points at infinity

• extend functions on Rn to astral space

• study key properties and topics extended to astral space,
especially from convex analysis
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• what can minimizers at infinity look like?

• constructing astral space

• what are astral points like?

• extending functions to astral space

• convergence of iterative algorithms
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• n = dimension

• scalars (in R): x , y , . . .

• vectors (in Rn): x ,u, v , . . .
• as tuple: x = (x1, . . . , xn)

• all sequences indexed by t = 1, 2, . . .

• limits and convergence always as t → +∞
• (xt) is sequence x1, x2, . . .
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Minimizers at infinityMinimizers at infinityMinimizers at infinityMinimizers at infinityMinimizers at infinity

• given convex function f : Rn → R
• if no finite minimizer, can only be minimized by sequence (xt)

to infinity

• what can such “minimizers at infinity” look like?

• in n = 1 dimensions, can only converge to ±∞
• in n ≥ 2 dimensions, many possibilities

• for example...
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Example: Diagonal valleyExample: Diagonal valleyExample: Diagonal valleyExample: Diagonal valleyExample: Diagonal valley

• in R2, say

f (x) = f (x1, x2) = e−x1︸︷︷︸

⇓
x1→+∞

+ (x2 − x1)2︸ ︷︷ ︸

⇓
x2−x1→0

• to minimize, must follow “diagonal valley”
• e.g., set x1 = x2 = t and let t → +∞
• i.e., xt = (t, t): f (xt) = f (t, t) = e−t → 0

• matters how sequence goes to infinity!

• direction matters
• offset also matters
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Example: Two-speed exponentialExample: Two-speed exponentialExample: Two-speed exponentialExample: Two-speed exponentialExample: Two-speed exponential

• can every convex function be
minimized along a ray?

no!
• e.g., in R2, let

f (x) = f (x1, x2) = e−x1 + e−x2+x21/2

• to minimize, need:
• x1 → +∞
• x2 → +∞ much faster than x1

so that −x2 + x21/2→ −∞
• e.g. xt = (t, t2)

• no minimizing sequence along straight ray
• how to construct space capturing such minimizers at infinity?
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Basic ideaBasic ideaBasic ideaBasic ideaBasic idea

• sequences to infinity don’t converge because
nothing to converge to

• idea: add “new” points to Rn that can be limits of such
sequences

• key questions:
• which sequences should have limits?
• when should two sequences have same limit?

• once answered, can construct space:
• add “new” points to be limits of each group of sequences

that should all have same limit
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• any sequence following ray to infinity should have a limit
e.g., xt = (2t, t) = tv where v = (2, 1)

• what sequences should have same limit?
• e.g., if change rate converging to infinity
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⋆

• say shift sequence by fixed offset

• xt = (2t, t) = tv where v = (2, 1)
x ′t = (2t − 1, t + 2) = tv + w where w = (−1, 2)

• should two sequences have same limit?

• we believe no because:
• offset matters for minimization
• in applications, often care about such offsets,

not just overall direction of minimization
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• basic principle: focus on limits in every direction u ∈ Rn

i.e., along one-dimensional projections of the sequence
• for example...
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Example: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequences

• as before:
xt = (2t, t) = tv where v = (2, 1)
x ′t = (2t − 1, t + 2) = tv + w where w = (−1, 2)

• e.g. u = (1, 0)
xt · u = 2t → +∞
x ′t · u = 2t − 1→ +∞
• e.g. u = (−1, 2)

xt · u = 0→ 0
x ′t · u = 5→ 5
• so: in some direction, sequences have different limits
• therefore: require (xt) and (x ′t) to have different limits



Example: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequences

u

• as before:
xt = (2t, t) = tv where v = (2, 1)
x ′t = (2t − 1, t + 2) = tv + w where w = (−1, 2)
• e.g. u = (1, 0)

xt · u = 2t → +∞

x ′t · u = 2t − 1→ +∞
• e.g. u = (−1, 2)

xt · u = 0→ 0
x ′t · u = 5→ 5
• so: in some direction, sequences have different limits
• therefore: require (xt) and (x ′t) to have different limits



Example: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequences

u

• as before:
xt = (2t, t) = tv where v = (2, 1)
x ′t = (2t − 1, t + 2) = tv + w where w = (−1, 2)
• e.g. u = (1, 0)

xt · u = 2t → +∞
x ′t · u = 2t − 1→ +∞

• e.g. u = (−1, 2)
xt · u = 0→ 0
x ′t · u = 5→ 5
• so: in some direction, sequences have different limits
• therefore: require (xt) and (x ′t) to have different limits



Example: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequences

u

• as before:
xt = (2t, t) = tv where v = (2, 1)
x ′t = (2t − 1, t + 2) = tv + w where w = (−1, 2)
• e.g. u = (1, 0)

xt · u = 2t → +∞
x ′t · u = 2t − 1→ +∞
• e.g. u = (−1, 2)

xt · u = 0→ 0
x ′t · u = 5→ 5

• so: in some direction, sequences have different limits
• therefore: require (xt) and (x ′t) to have different limits



Example: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequences

u

• as before:
xt = (2t, t) = tv where v = (2, 1)
x ′t = (2t − 1, t + 2) = tv + w where w = (−1, 2)
• e.g. u = (1, 0)

xt · u = 2t → +∞
x ′t · u = 2t − 1→ +∞
• e.g. u = (−1, 2)

xt · u = 0→ 0
x ′t · u = 5→ 5
• so: in some direction, sequences have different limits

• therefore: require (xt) and (x ′t) to have different limits



Example: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequencesExample: parallel sequences
⋆

⋆

• as before:
xt = (2t, t) = tv where v = (2, 1)
x ′t = (2t − 1, t + 2) = tv + w where w = (−1, 2)
• e.g. u = (1, 0)

xt · u = 2t → +∞
x ′t · u = 2t − 1→ +∞
• e.g. u = (−1, 2)

xt · u = 0→ 0
x ′t · u = 5→ 5
• so: in some direction, sequences have different limits
• therefore: require (xt) and (x ′t) to have different limits



Our approachOur approachOur approachOur approachOur approach

• which sequences (xt) should have limits?

• exactly those that converge in all directions
• meaning: lim(xt · u) exists for all u ∈ Rn

• when should two sequences (xt) and (x ′t) have same limit?
• exactly when they are all-directions equivalent,

i.e., have same limit in every direction
• meaning: lim(xt · u) = lim(x ′t · u) for all u ∈ Rn

• note that limits can be in R



Our approachOur approachOur approachOur approachOur approach

• which sequences (xt) should have limits?
• exactly those that converge in all directions
• meaning: lim(xt · u) exists for all u ∈ Rn

• when should two sequences (xt) and (x ′t) have same limit?
• exactly when they are all-directions equivalent,

i.e., have same limit in every direction
• meaning: lim(xt · u) = lim(x ′t · u) for all u ∈ Rn

• note that limits can be in R



Our approachOur approachOur approachOur approachOur approach

• which sequences (xt) should have limits?
• exactly those that converge in all directions
• meaning: lim(xt · u) exists for all u ∈ Rn

• when should two sequences (xt) and (x ′t) have same limit?

• exactly when they are all-directions equivalent,
i.e., have same limit in every direction
• meaning: lim(xt · u) = lim(x ′t · u) for all u ∈ Rn

• note that limits can be in R



Our approachOur approachOur approachOur approachOur approach

• which sequences (xt) should have limits?
• exactly those that converge in all directions
• meaning: lim(xt · u) exists for all u ∈ Rn

• when should two sequences (xt) and (x ′t) have same limit?
• exactly when they are all-directions equivalent,

i.e., have same limit in every direction
• meaning: lim(xt · u) = lim(x ′t · u) for all u ∈ Rn

• note that limits can be in R



Our approachOur approachOur approachOur approachOur approach

• which sequences (xt) should have limits?
• exactly those that converge in all directions
• meaning: lim(xt · u) exists for all u ∈ Rn

• when should two sequences (xt) and (x ′t) have same limit?
• exactly when they are all-directions equivalent,

i.e., have same limit in every direction
• meaning: lim(xt · u) = lim(x ′t · u) for all u ∈ Rn

• note that limits can be in R



Astral spaceAstral spaceAstral spaceAstral spaceAstral space

• when expand Rn according to these criteria, get

Rn = astral space

• in n = 1 dimensions, only add ±∞ so R1 same as R



Astral spaceAstral spaceAstral spaceAstral spaceAstral space

• when expand Rn according to these criteria, get

Rn = astral space

• in n = 1 dimensions, only add ±∞ so R1 same as R



Some topological propertiesSome topological propertiesSome topological propertiesSome topological propertiesSome topological properties

• astral space is compact
• very powerful property

(e.g. to prove convergence of iterative algorithms)

• every linear function can be extended continuously
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astral space

• especially relevant to convex analysis
• means can generalize: linear maps, hyperplanes,

halfspaces, convex sets and functions, conjugates,
differential theory

• astral space is not a vector space, nor a metric space
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• constructing astral space
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• extending functions to astral space

• convergence of iterative algorithms
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• simplest sequence to infinity is along ray from origin:
xt = tv for some v ∈ Rn

• converges in all directions

• therefore, has limit in Rn called astron ωv :

ωv = lim tv

• turn out to be building blocks for all astral points
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v1q

• say xt = t2v1 + tv2 + q for some v1, v2,q ∈ Rn

• intuitively:
• converges to infinity most strongly in direction of v1
• secondary convergence to infinity in direction of v2
• finite shift or offset by q

• converges in all directions, so has astral limit x
• turns out, can write in form:

x = ωv1 •+ ωv2︸ ︷︷ ︸
astrons

•+q

• operation •+ is leftward addition:
• similar to vector addition but not commutative
• gives kind of “dominance” to term on left
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• say f (x) = ex for x ∈ R

• want to define f = extension of f to R = R1:
• f (−∞) = 0 because: if xt → −∞ then f (xt)→ 0
• f (+∞) = +∞ because: if xt → +∞ then f (xt)→ +∞

• only way to extend to R continuously
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• say lim f (xt) exists and is the same
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f (x) = lim f (xt) for any (and every) sequence xt → x

• if holds for all x ∈ Rn then
f is (unique) continuous extension of f to Rn
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• say f (x) = x · u for some u ∈ Rn [e.g., f (x1, x2) = 2x1 − x2]

• if xt → x then
lim f (xt) = lim(xt · u)

exists and same for every sequence converging to x
[by construction!]

• therefore, f has continuous extension f

• so: every linear function can be continuously extended to Rn
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• in R2, recall

f (x1, x2) = e−x1 + (x2 − x1)2

• can show extends continuously to R2

• saw f minimized by xt = tv where v = (1, 1)

• converges to astron ωv
• f minimized at x = ωv
• since continuous, f also minimized by any sequence x ′t → ωv
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• properties:

• f must attain minimizer in Rn [since compact]
• x minimizes f iff

there exists sequence xt → x minimizing f
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• in R2, recall:
f (x1, x2) = e−x1 + e−x2+x21/2

• minimized by sequence:

xt = (t, t2) = t2e2 + te1
where e1 = (1, 0) and e2 = (0, 1)

• f minimized by x
• x has astral rank 2
• can show no other minimizers

• f not continuous at x : e.g.:

x ′t = (t, 12 t
2) = 1

2 t
2e2 + te1 → x

but f (x ′t)→ 1 6= f (x)
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• in standard convex analysis, if ∇f (x) = 0 then x minimizes f

• say (xt) sequence with ∇f (xt)→ 0
• must f (xt)→ inf f ? no!

• e.g., in R2, let

f (x1, x2) =

{
x21/x2 if x2 > |x1|

2|x1| − x2 else

• f is convex, continuous, finite, nonnegative,
continuously differentiable everywhere of interest
• let xt = (t2, t3)
• then ∇f (xt) = (2t ,−

1
t2

)→ 0
• however, f (xt) = t → +∞
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2|x1| − x2 else

• f is convex, continuous, finite, nonnegative,
continuously differentiable everywhere of interest
• let xt = (t2, t3)

• then ∇f (xt) = (2t ,−
1
t2

)→ 0
• however, f (xt) = t → +∞



Convergence of gradient-based methodsConvergence of gradient-based methodsConvergence of gradient-based methodsConvergence of gradient-based methodsConvergence of gradient-based methods

• in standard convex analysis, if ∇f (x) = 0 then x minimizes f

• say (xt) sequence with ∇f (xt)→ 0
• must f (xt)→ inf f ? no!

• e.g., in R2, let

f (x1, x2) =

{
x21/x2 if x2 > |x1|

2|x1| − x2 else

• f is convex, continuous, finite, nonnegative,
continuously differentiable everywhere of interest
• let xt = (t2, t3)
• then ∇f (xt) = (2t ,−

1
t2

)→ 0
• however, f (xt) = t → +∞



Convergence and astral continuityConvergence and astral continuityConvergence and astral continuityConvergence and astral continuityConvergence and astral continuity

• in this case:
• xt = t3e2 + t2e1 → x = ωe2 •+ ωe1
• f not continuous at x

• not coincidence!

• when assume continuity, must get convergence to minimum

• general theorem: if:
• ∇f (xt)→ 0
• xt → x and f continuous at x (with f (x) < +∞)

then: f (xt)→ inf f

• reveals structure and regularity not otherwise apparent
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• can use to prove convergence of standard iterative methods
applied to various ML/statistical settings
• e.g.: gradient descent, coordinate descent, steepest

descent
• e.g.: logistic regression, boosting, maximum likelihood

(which all have continuous extensions)

• don’t require finite minimizer

• algorithms operate in Rn, but use astral methods in proofs
• rely on astral continuity properties

(without which results do not hold, in general)
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• can only speculate!

• in ML, usually minimize empirical risk function based on
random examples

• sometimes, maybe, some (astral?) property of minimizer can
imply generalization

• e.g. AdaBoost minimizes exponential loss
• finds solution with large-margin property,

implying generalization
• really an astral property of minimizer at infinity

(namely, of first astron in representation)
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SummarySummarySummarySummarySummary

• tried to give a taste of astral space:
• its construction
• structure of astral points
• how to extend convex functions

• aim: expand foundations of convex analysis to encompass
points at infinity
• e.g. to enable easier, more general proofs of convergence

• far more not covered
• details at: aka.ms/astral [or arxiv.org/abs/2205.03260]

(will eventually be published as a book)

https://aka.ms/astral
https://arxiv.org/abs/2205.03260
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