Convex Analysis at Infinity An Introduction to Astral Space

> Miro Dudík Rob Schapire Matus Telgarsky

further reading at: aka.ms/astral

Convex functions

Convex functions

- minimizing convex functions is basis for many methods in machine learning and statistics (and other fields)
	- e.g.: maximum likelihood, maximum entropy, linear regression, logistic regression, boosting, SVM's, ...

Convex functions

- e.g.: maximum likelihood, maximum entropy, linear regression, logistic regression, boosting, SVM's, ...
- convex functions are really nice!
	- local minimum must be global minimum
	- if gradient $= 0$ then must be global minimum
	- usually easier to find and analyze minimization algorithms
	- beautiful properties

- problem: some convex functions have no finite minimizer
	- function then must be minimized by sequence heading "to infinity"

- problem: some convex functions have no finite minimizer
	- function then must be minimized by sequence heading "to infinity"
	- certainly includes cases of practical interest
	- analyzing convergence often requires carefully tailored techniques

- problem: some convex functions have no finite minimizer
	- function then must be minimized by sequence heading "to infinity"
	- certainly includes cases of practical interest
	- analyzing convergence often requires carefully tailored techniques
- this talk: develop theory for studying such minimizers at infinity

Example: exponential function

• e.g.:
$$
f(x) = e^x
$$

Example: exponential function

- e.g.: $f(x) = e^x$
- no finite point $x \in \mathbb{R}$ where minimum attained
- instead, minimized by any sequence (x_t) with $x_t \to -\infty$
- wish could say: "minimized at $-\infty$ "

Example: exponential function

- no finite point $x \in \mathbb{R}$ where minimum attained
- instead, minimized by any sequence (x_t) with $x_t \to -\infty$
- wish could say: "minimized at $-\infty$ "
- can do by:
	- extending $\mathbb R$ to include $\pm \infty$:

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$

- no finite point $x \in \mathbb{R}$ where minimum attained
- instead, minimized by any sequence (x_t) with $x_t \to -\infty$
- wish could say: "minimized at $-\infty$ "
- can do by:
	- extending $\mathbb R$ to include $\pm \infty$:

$$
\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}=[-\infty,+\infty]
$$

• extending f to $\overline{\mathbb{R}}$ by setting: $f(-\infty) = 0$ and $f(+\infty) = +\infty$

• maybe can extend derivatives so that $f'(-\infty) = 0$

- is continuous over $\overline{\mathbb{R}}$
- attains minimum at $-\infty$
- "feels" convex
- maybe can extend derivatives so that $f'(-\infty) = 0$
- in $n = 1$ dimensions, seems clear how to
	- add "points at infinity"
	- extend functions to enlarged space, capturing minimizers at infinity

- is continuous over $\overline{\mathbb{R}}$
- attains minimum at $-\infty$
- "feels" convex
- maybe can extend derivatives so that $f'(-\infty) = 0$
- in $n = 1$ dimensions, seems clear how to
	- add "points at infinity"
	- extend functions to enlarged space, capturing minimizers at infinity
- what about in $n \geq 2$ dimensions?

• extend \mathbb{R}^n to include points at infinity

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity

Goals

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity
- trying to build up foundations so relatively easy, for instance, to prove convergence of algorithms

Goals

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity
- trying to build up foundations so relatively easy, for instance, to prove convergence of algorithms
- hope to make study of convex functions more "complete" and "regular"
	- e.g., so every convex function, when extended to new space, has a minimizer

Goals

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity
- trying to build up foundations so relatively easy, for instance, to prove convergence of algorithms
- hope to make study of convex functions more "complete" and "regular"
	- e.g., so every convex function, when extended to new space, has a minimizer
- want compatible with key notions of convex analysis

• if only working in $\mathbb{Q} =$ rationals, then no number equals length of diagonal of a unit square

• if only working in $\mathbb{Q} =$ rationals, then no number equals length of diagonal of a unit square

2

• can approach value with sequences in \mathbb{Q} : 1 $\frac{1}{1}$, $\frac{3}{2}$ $\frac{3}{2}$, $\frac{7}{5}$ $\frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \ldots \rightarrow$ √ 2 $1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ... \rightarrow$ √

• if only working in $\mathbb{Q} =$ rationals, then no number equals length of diagonal of a unit square

√ 2

• can approach value with sequences in \mathbb{Q} : 1 $\frac{1}{1}$, $\frac{3}{2}$ $\frac{3}{2}$, $\frac{7}{5}$ $\frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \ldots \rightarrow$ √ 2 $1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ... \rightarrow$

• so don't "need" reals (can just work over sequences of rationals)

• if only working in $\mathbb{Q} =$ rationals, then no number equals length of diagonal of a unit square

• can approach value with sequences in \mathbb{Q} : 1 $\frac{1}{1}$, $\frac{3}{2}$ $\frac{3}{2}$, $\frac{7}{5}$ $\frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \ldots \rightarrow$ √ 2

 $1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ... \rightarrow$ √ 2

- so don't "need" reals (can just work over sequences of rationals)
- far preferable to extend $\mathbb Q$ to $\mathbb R$
	- much more complete, regular, well-structured

Analogy (cont.)

- in same way, can continue to use sequences to study minimizers of convex functions
	- might be much nicer to study minimizers at infinity as mathematical objects in their own right
	- can hope larger space would be more complete, regular, and revealing of structure

This work

- introduce astral space, extension of \mathbb{R}^n with points at infinity
- extend functions on \mathbb{R}^n to astral space
- study key properties and topics extended to astral space, especially from convex analysis

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

Notation

- $n =$ dimension
- scalars (in \mathbb{R}): x, y, \ldots
- vectors (in \mathbb{R}^n): x, u, v, \ldots
	- as tuple: $\mathbf{x} = (x_1, \ldots, x_n)$

Notation

- $n =$ dimension
- scalars (in \mathbb{R}): x, y, \ldots
- vectors (in \mathbb{R}^n): x, u, v, \ldots
	- as tuple: $\mathbf{x} = (x_1, \ldots, x_n)$
- all sequences indexed by $t = 1, 2, \ldots$
- limits and convergence always as $t \to +\infty$
- (x_t) is sequence x_1, x_2, \ldots

Outline

• what can minimizers at infinity look like?

- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

Minimizers at infinity

- given convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- if no finite minimizer, can only be minimized by sequence (x_t) to infinity
- what can such "minimizers at infinity" look like?

Minimizers at infinity

- given convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- if no finite minimizer, can only be minimized by sequence (x_t) to infinity
- what can such "minimizers at infinity" look like?
- in $n = 1$ dimensions, can only converge to $\pm \infty$

Minimizers at infinity

- given convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- if no finite minimizer, can only be minimized by sequence (x_t) to infinity
- what can such "minimizers at infinity" look like?
- in $n = 1$ dimensions, can only converge to $\pm \infty$
- in $n > 2$ dimensions, many possibilities
	- for example...

• in
$$
\mathbb{R}^2
$$
, say

$$
f(x) = f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2
$$

Example: Diagonal valley

• in
$$
\mathbb{R}^2
$$
, say

$$
f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2
$$

\n
$$
\downarrow
$$

\n
$$
x_1 \to +\infty
$$

\n
$$
\downarrow
$$

\n
$$
x_2 - x_1 \to 0
$$

• to minimize, must follow "diagonal valley" • e.g., set $x_1 = x_2 = t$ and let $t \rightarrow +\infty$

• i.e., $x_t = (t, t)$: $f(x_t) = f(t, t) = e^{-t} \to 0$

Example: Diagonal valley

• in
$$
\mathbb{R}^2
$$
, say

$$
f(\mathbf{x}) = f(x_1, x_2) = \underbrace{e^{-x_1}}_{x_1 \to +\infty} + \underbrace{(x_2 - x_1)^2}_{x_2 - x_1 \to 0}
$$

• to minimize, must follow "diagonal valley"

• e.g., set $x_1 = x_2 = t$ and let $t \to +\infty$

• i.e.,
$$
x_t = (t, t)
$$
: $f(x_t) = f(t, t) = e^{-t} \to 0$

• matters how sequence goes to infinity!

Example: Diagonal valley

• in
$$
\mathbb{R}^2
$$
, say

Example: Diagonal valley

$$
f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2
$$

\n
$$
\downarrow
$$

\n
$$
x_1 \to +\infty
$$

\n
$$
\downarrow
$$

\n
$$
x_2 - x_1 \to 0
$$

• to minimize, must follow "diagonal valley"

• e.g., set $x_1 = x_2 = t$ and let $t \rightarrow +\infty$

• i.e.,
$$
x_t = (t, t)
$$
: $f(x_t) = f(t, t) = e^{-t} \to 0$

- matters how sequence goes to infinity!
	- direction matters

• in
$$
\mathbb{R}^2
$$
, say

Example: Diagonal valley

$$
f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2
$$

\n
$$
\downarrow
$$

\n
$$
x_1 \to +\infty
$$

\n
$$
\downarrow
$$

\n
$$
x_2 - x_1 \to 0
$$

• to minimize, must follow "diagonal valley"

• e.g., set $x_1 = x_2 = t$ and let $t \rightarrow +\infty$

• i.e.,
$$
x_t = (t, t)
$$
: $f(x_t) = f(t, t) = e^{-t} \to 0$

- matters how sequence goes to infinity!
	- direction matters
	- offset also matters

• can every convex function be minimized along a ray?

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$$
f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2+}
$$

• to minimize, need:

• $x_1 \rightarrow +\infty$

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$$
f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x}
$$

- to minimize, need:
	- $x_1 \rightarrow +\infty$
	- $x_2 \rightarrow +\infty$ much faster than x_1 so that $-x_2 + x_1^2/2 \rightarrow -\infty$

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$$
f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2 +}
$$

- to minimize, need:
	- $x_1 \rightarrow +\infty$
	- $x_2 \rightarrow +\infty$ much faster than x_1 so that $-x_2 + x_1^2/2 \rightarrow -\infty$
	- e.g. $x_t = (t, t^2)$

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$$
f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2 +}
$$

- to minimize, need:
	- $x_1 \rightarrow +\infty$
	- $x_2 \rightarrow +\infty$ much faster than x_1 so that $-x_2 + x_1^2/2 \rightarrow -\infty$
	- e.g. $x_t = (t, t^2)$
- no minimizing sequence along straight ray

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$$
\begin{array}{ll}\n\text{convex function be} \\
\text{along a ray? no!} \\
\text{let} \\
f(x) = f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2} \\
\end{array}
$$

- to minimize, need:
	- $x_1 \rightarrow +\infty$
	- $x_2 \rightarrow +\infty$ much faster than x_1

so that
$$
-x_2 + x_1^2/2 \rightarrow -\infty
$$

- e.g. $x_t = (t, t^2)$
- no minimizing sequence along straight ray
- how to construct space capturing such minimizers at infinity?

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

• sequences to infinity don't converge because nothing to converge to

- sequences to infinity don't converge because nothing to converge to
- \bullet idea: add "new" points to \mathbb{R}^n that can be limits of such sequences

Basic idea

- sequences to infinity don't converge because nothing to converge to
- \bullet idea: add "new" points to \mathbb{R}^n that can be limits of such sequences
- key questions:
	- which sequences should have limits?
	- when should two sequences have same limit?

Basic idea

- sequences to infinity don't converge because nothing to converge to
- \bullet idea: add "new" points to \mathbb{R}^n that can be limits of such sequences
- key questions:
	- which sequences should have limits?
	- when should two sequences have same limit?
- once answered, can construct space:
	- add "new" points to be limits of each group of sequences that should all have same limit

• any sequence following ray to infinity should have a limit e.g., $x_t = (2t, t) = t$ **v** where $v = (2, 1)$

• any sequence following ray to infinity should have a limit e.g., $x_t = (2t, t) = t$ **v** where $v = (2, 1)$

- any sequence following ray to infinity should have a limit e.g., $x_t = (2t, t) = t$ **v** where $v = (2, 1)$
- what sequences should have same limit?

- any sequence following ray to infinity should have a limit e.g., $x_t = (2t, t) = t$ **v** where $v = (2, 1)$
- what sequences should have same limit?
	- e.g., if change rate converging to infinity

- say shift sequence by fixed offset
- $x_t = (2t, t) = t$ **v** where $v = (2, 1)$ $x'_t = (2t - 1, t + 2) = t\mathbf{v} + \mathbf{w}$ where $\mathbf{w} = (-1, 2)$

- say shift sequence by fixed offset
- $x_t = (2t, t) = t$ **v** where $v = (2, 1)$ $x'_t = (2t - 1, t + 2) = t\mathbf{v} + \mathbf{w}$ where $\mathbf{w} = (-1, 2)$
- should two sequences have same limit?

- say shift sequence by fixed offset
- $x_t = (2t, t) = t$ **v** where $v = (2, 1)$ $x'_t = (2t - 1, t + 2) = t\mathbf{v} + \mathbf{w}$ where $\mathbf{w} = (-1, 2)$
- should two sequences have same limit?
- we believe no because:
	- offset matters for minimization
	- in applications, often care about such offsets, not just overall direction of minimization

A basic principle

• how to capture these intuitions?

A basic principle

- how to capture these intuitions?
- basic principle: focus on limits in every direction $\mathbf{u} \in \mathbb{R}^n$ i.e., along one-dimensional projections of the sequence

A basic principle

- how to capture these intuitions?
- basic principle: focus on limits in every direction $\mathbf{u} \in \mathbb{R}^n$ i.e., along one-dimensional projections of the sequence
	- for example...

• as before: $x_t = (2t, t) = t$ **v** where **v** = $(2, 1)$ $x'_t = (2t - 1, t + 2) = t\mathbf{v} + \mathbf{w}$ where $\mathbf{w} = (-1, 2)$

• so: in some direction, sequences have different limits

• therefore: require (x_t) and (x'_t) to have different limits

• which sequences (x_t) should have limits?

- which sequences (x_t) should have limits?
	- exactly those that converge in all directions
	- meaning: $\lim(x_t \cdot u)$ exists for all $u \in \mathbb{R}^n$

Our approach

- which sequences (x_t) should have limits?
	- exactly those that converge in all directions
	- meaning: $\lim(x_t \cdot u)$ exists for all $u \in \mathbb{R}^n$

• when should two sequences (x_t) and (x'_t) have same limit?

Our approach

- which sequences (x_t) should have limits?
	- exactly those that converge in all directions
	- meaning: $\lim(x_t \cdot u)$ exists for all $u \in \mathbb{R}^n$
- when should two sequences (x_t) and (x'_t) have same limit?
	- exactly when they are all-directions equivalent, i.e., have same limit in every direction
	- meaning: $\lim(x_t \cdot u) = \lim(x'_t \cdot u)$ for all $u \in \mathbb{R}^n$

Our approach

- which sequences (x_t) should have limits?
	- exactly those that converge in all directions
	- meaning: $\lim(x_t \cdot u)$ exists for all $u \in \mathbb{R}^n$
- when should two sequences (x_t) and (x'_t) have same limit?
	- exactly when they are all-directions equivalent, i.e., have same limit in every direction

• meaning: $\lim(x_t \cdot u) = \lim(x'_t \cdot u)$ for all $u \in \mathbb{R}^n$

• note that limits can be in $\overline{\mathbb{R}}$

• when expand \mathbb{R}^n according to these criteria, get

 $\overline{\mathbb{R}^n}$ = astral space

• when expand \mathbb{R}^n according to these criteria, get

 $\overline{\mathbb{R}^n}$ = astral space

• in $n = 1$ dimensions, only add $\pm \infty$ so $\overline{\mathbb{R}^1}$ same as $\overline{\mathbb{R}}$
- astral space is compact
	- very powerful property
		- (e.g. to prove convergence of iterative algorithms)

• astral space is compact

- very powerful property
	- (e.g. to prove convergence of iterative algorithms)
- every linear function can be extended continuously

- astral space is compact
	- very powerful property
		- (e.g. to prove convergence of iterative algorithms)
- every linear function can be extended continuously
	- implies "anything linear" likely to behave "nicely" in astral space
		- especially relevant to convex analysis
		- means can generalize: linear maps, hyperplanes, halfspaces, convex sets and functions, conjugates, differential theory

- astral space is compact
	- very powerful property
		- (e.g. to prove convergence of iterative algorithms)
- every linear function can be extended continuously
	- implies "anything linear" likely to behave "nicely" in astral space
		- especially relevant to convex analysis
		- means can generalize: linear maps, hyperplanes, halfspaces, convex sets and functions, conjugates, differential theory
- astral space is not a vector space, nor a metric space

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

• simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t\mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$

- simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t\mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$
- converges in all directions

- simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t\mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$
- converges in all directions
- therefore, has limit in $\overline{\mathbb{R}^n}$ called astron ωv :

 $\omega \mathbf{v} = \lim t \mathbf{v}$

- simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t\mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$
- converges in all directions
- therefore, has limit in $\overline{\mathbb{R}^n}$ called astron ωv :

 $\omega \mathbf{v} = \lim t \mathbf{v}$

• turn out to be building blocks for all astral points

• say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$

- say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$
- intuitively:
	- converges to infinity most strongly in direction of v_1
	- secondary convergence to infinity in direction of ν_2
	- finite shift or offset by **q**

- say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$
- intuitively:
	- converges to infinity most strongly in direction of v_1
	- secondary convergence to infinity in direction of v_2
	- finite shift or offset by q
- converges in all directions, so has astral limit \bar{x}

- say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$
- intuitively:
	- converges to infinity most strongly in direction of v_1
	- secondary convergence to infinity in direction of ν_2
	- finite shift or offset by **q**
- converges in all directions, so has astral limit \bar{x}
- turns out, can write in form:

$$
\overline{\mathbf{x}} = \underbrace{\omega \mathbf{v}_1 + \omega \mathbf{v}_2}_{\text{astrons}} + \mathbf{q}
$$

- operation $+$ is leftward addition:
	- similar to vector addition but not commutative
	- gives kind of "dominance" to term on left

Representing astral points

• in general: every astral point \bar{x} can be written in form

$$
\overline{x} = \underbrace{\omega v_1 + \cdots + \omega v_k}_{\text{astrons}} + \underbrace{q}_{\text{finite}_{\text{part}}}
$$

for some orthonormal $\mathbf{v}_1,\ldots,\mathbf{v}_k \in \mathbb{R}^n$ and some $\boldsymbol{q} \in \mathbb{R}^n$ orthogonal to the $\boldsymbol{\mathsf{v}}_i$'s

Representing astral points

• in general: every astral point \bar{x} can be written in form

$$
\overline{x} = \underbrace{\omega v_1 + \cdots + \omega v_k}_{\text{astrons}} + \underbrace{q}_{\text{finite}}_{\text{part}}
$$

for some orthonormal $\mathbf{v}_1,\ldots,\mathbf{v}_k \in \mathbb{R}^n$ and some $\boldsymbol{q} \in \mathbb{R}^n$ orthogonal to the $\boldsymbol{\mathsf{v}}_i$'s

- astral rank $= k$ (number of astrons in \bar{x} 's representation)
	- astral rank $= 0 \Rightarrow \overline{x} \in \mathbb{R}^n$
	- astral rank $= 1 \Rightarrow \bar{x}$ is limit of sequence along ray

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

Extending a function to astral space

- given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to extend to astral space:

 $\bar{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$

Extending a function to astral space

- given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to extend to astral space:

 $\bar{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$

• how to define?

Example: exponential function

• say
$$
f(x) = e^x
$$
 for $x \in \mathbb{R}$

Example: exponential function

• say $f(x) = e^x$ for $x \in \mathbb{R}$

- want to define \bar{f} = extension of f to $\bar{\mathbb{R}} = \overline{\mathbb{R}^1}$.
	- $\bar{f}(-\infty) = 0$ because: if $x_t \to -\infty$ then $f(x_t) \to 0$
	- $\bar{f}(+\infty) = +\infty$ because: if $x_t \to +\infty$ then $f(x_t) \to +\infty$

Example: exponential function

• say $f(x) = e^x$ for $x \in \mathbb{R}$

- want to define \bar{f} = extension of f to $\bar{\mathbb{R}} = \overline{\mathbb{R}^1}$.
	- $\bar{f}(-\infty) = 0$ because: if $x_t \to -\infty$ then $f(x_t) \to 0$

• $\bar{f}(+\infty) = +\infty$ because: if $x_t \to +\infty$ then $f(x_t) \to +\infty$

• only way to extend to $\overline{\mathbb{R}}$ continuously

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension $\overline{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given \bar{x} , how to define $\bar{f}(\bar{x})$?

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension $\overline{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given \bar{x} , how to define $\bar{f}(\bar{x})$?
- say $\lim f(x_t)$ exists and is the same for every sequence $x_t \rightarrow \overline{x}$

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension $\bar{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given \bar{x} , how to define $\bar{f}(\bar{x})$?
- say $\lim_{t \to \infty} f(x_t)$ exists and is the same for every sequence $x_t \rightarrow \overline{x}$

• then only reasonable to set: $f(\overline{x}) = \lim f(x_t)$ for any (and every) sequence $x_t \to \overline{x}$

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension \overline{f} : $\overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given \bar{x} , how to define $\bar{f}(\bar{x})$?
- say $\lim_{t \to \infty} f(x_t)$ exists and is the same for every sequence $x_t \rightarrow \overline{x}$

• then only reasonable to set: $\bar{f}(\overline{x}) = \lim f(x_t)$ for any (and every) sequence $x_t \to \overline{x}$

• if holds for all $\overline{x} \in \overline{\mathbb{R}^n}$ then \overline{f} is (unique) continuous extension of f to $\overline{\mathbb{R}^n}$

• say
$$
f(x) = x \cdot u
$$
 for some $u \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 - x_2$]

- say $f(x) = x \cdot u$ for some $u \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 x_2$]
- if $x_t \rightarrow \overline{x}$ then

$$
\lim f(\mathbf{x}_t) = \lim (\mathbf{x}_t \cdot \mathbf{u})
$$

exists and same for every sequence converging to \bar{x} [by construction!]

• say $f(x) = x \cdot u$ for some $u \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 - x_2$] \bullet if \bullet \overline{v} +k

$$
\text{If } \mathbf{x}_t \to \mathbf{x} \text{ then}
$$

$$
\lim f(\mathbf{x}_t) = \lim (\mathbf{x}_t \cdot \mathbf{u})
$$

exists and same for every sequence converging to \bar{x} [by construction!]

• therefore, f has continuous extension \bar{f}

• say $f(x) = x \cdot u$ for some $u \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 - x_2$] • if $x_t \rightarrow \overline{x}$ then

$$
\lim f(\mathbf{x}_t) = \lim (\mathbf{x}_t \cdot \mathbf{u})
$$

exists and same for every sequence converging to \bar{x} [by construction!]

- therefore, f has continuous extension \bar{f}
- so: every linear function can be continuously extended to \mathbb{R}^n

Example: Diagonal valley

$$
f(x_1,x_2) = e^{-x_1} + (x_2 - x_1)^2
$$

$$
f(x_1,x_2) = e^{-x_1} + (x_2 - x_1)^2
$$

• can show extends continuously to $\overline{\mathbb{R}^2}$

$$
f(x_1,x_2) = e^{-x_1} + (x_2 - x_1)^2
$$

- can show extends continuously to $\overline{\mathbb{R}^2}$
- saw f minimized by $x_t = tv$ where $v = (1, 1)$

Example: Diagonal valley

$$
f(x_1,x_2)=e^{-x_1}+(x_2-x_1)^2
$$

- can show extends continuously to \mathbb{R}^2
- saw f minimized by $x_t = tv$ where $v = (1, 1)$
- converges to astron ω **v**
- \bar{f} minimized at $\bar{x} = \omega v$

Example: Diagonal valley

$$
f(x_1,x_2)=e^{-x_1}+(x_2-x_1)^2
$$

- can show extends continuously to \mathbb{R}^2
- saw f minimized by $x_t = tv$ where $v = (1, 1)$
- converges to astron ω **v**
- \bar{f} minimized at $\bar{x} = \omega v$
- since continuous, f also minimized by any sequence $\mathbf{x}'_t \to \omega \mathbf{v}$

Extending functions in general

• f might not have continuous extension

Extending functions in general

• f might not have continuous extension

• continuous case:

 $\bar{f}(\bar{x}) =$ $\lim f(\mathbf{x}_t)$ over all sequences $\mathbf{x}_t \to \overline{\mathbf{x}}$
Extending functions in general

- f might not have continuous extension
- general case: $\bar{f}(\bar{x}) =$ minimum of lim $f(x_t)$ over all sequences $x_t \to \bar{x}$

Extending functions in general

- f might not have continuous extension
- general case: $\bar{f}(\bar{x}) =$ minimum of lim $f(x_t)$ over all sequences $x_t \to \bar{x}$
- properties:
	- \bar{f} must attain minimizer in $\bar{\mathbb{R}}^n$ [since compact]

Extending functions in general

- f might not have continuous extension
- general case: $\bar{f}(\bar{x}) =$ minimum of lim $f(x_t)$ over all sequences $x_t \to \bar{x}$
- properties:
	- \bar{f} must attain minimizer in $\overline{\mathbb{R}^n}$ [since compact]
	- \overline{x} minimizes \overline{f} iff

there exists sequence $x_t \to \overline{x}$ minimizing f

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

 $x_t = (t, t^2) = t^2 e_2 + t e_1$

where $e_1 = (1, 0)$ and $e_2 = (0, 1)$

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

$$
\mathbf{x}_t = (t, t^2) = t^2 \mathbf{e}_2 + t \mathbf{e}_1 \ \rightarrow \ \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1
$$

where $e_1 = (1, 0)$ and $e_2 = (0, 1)$

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

$$
\mathbf{x}_t = (t, t^2) = t^2 \mathbf{e}_2 + t \mathbf{e}_1 \ \rightarrow \ \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1
$$

where $e_1 = (1, 0)$ and $e_2 = (0, 1)$

- \overline{f} minimized by \overline{x}
	- \overline{x} has astral rank 2
	- can show no other minimizers

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

$$
\mathbf{x}_t = (t, t^2) = t^2 \mathbf{e}_2 + t \mathbf{e}_1 \ \rightarrow \ \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1
$$

where $e_1 = (1, 0)$ and $e_2 = (0, 1)$

- \overline{f} minimized by \overline{x}
	- \overline{x} has astral rank 2
	- can show no other minimizers
- \bar{f} not continuous at \bar{x} : e.g.:

 $\pmb{x}^{\prime}_{t} = (t, \frac{1}{2}$ $(\frac{1}{2}t^2) = \frac{1}{2}t^2$ **e**₂ + **te**₁ $\rightarrow \bar{x}$ but $f(\mathbf{x}'_t) \to 1 \neq \bar{f}(\overline{\mathbf{x}})$

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

• in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then x minimizes f

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then x minimizes f
- say (x_t) sequence with $\nabla f(x_t) \rightarrow 0$
	- must $f(\mathbf{x}_t) \rightarrow \inf f$?

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then x minimizes f
- say (x_t) sequence with $\nabla f(x_t) \to 0$
	- must $f(\mathbf{x}_t) \rightarrow \inf f$? no!

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then x minimizes f
- say (x_t) sequence with $\nabla f(x_t) \rightarrow 0$
	- must $f(\mathbf{x}_t) \rightarrow \inf f$? no!
- e.g., in \mathbb{R}^2 , let

$$
f(x_1, x_2) = \begin{cases} x_1^2/x_2 & \text{if } x_2 > |x_1| \\ 2|x_1| - x_2 & \text{else} \end{cases}
$$

• f is convex, continuous, finite, nonnegative, continuously differentiable everywhere of interest • let $x_t = (t^2, t^3)$

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then x minimizes f
- say (x_t) sequence with $\nabla f(x_t) \rightarrow 0$
	- must $f(\mathbf{x}_t) \rightarrow \inf f$? no!
- e.g., in \mathbb{R}^2 , let

$$
f(x_1, x_2) = \begin{cases} x_1^2/x_2 & \text{if } x_2 > |x_1| \\ 2|x_1| - x_2 & \text{else} \end{cases}
$$

- f is convex, continuous, finite, nonnegative, continuously differentiable everywhere of interest
- let $x_t = (t^2, t^3)$
- then $\nabla f(\mathbf{x}_t) = (\frac{2}{t}, -\frac{1}{t^2})$ $\frac{1}{t^2}) \rightarrow 0$
- however, $f(\mathbf{x}_t) = t \rightarrow +\infty$

• in this case:

- $x_t = t^3 e_2 + t^2 e_1 \rightarrow \overline{x} = \omega e_2 + \omega e_1$
- \overline{f} not continuous at \overline{x}

• in this case:

- $x_t = t^3 e_2 + t^2 e_1 \rightarrow \overline{x} = \omega e_2 + \omega e_1$
- \overline{f} not continuous at \overline{x}
- not coincidence!
- when assume continuity, must get convergence to minimum

• in this case:

- $x_t = t^3 e_2 + t^2 e_1 \rightarrow \overline{x} = \omega e_2 + \omega e_1$
- \overline{f} not continuous at \overline{x}
- not coincidence!
- when assume continuity, must get convergence to minimum
- general theorem: if:
	- $\nabla f(\mathbf{x}_t) \rightarrow 0$

• $x_t \to \overline{x}$ and \overline{f} continuous at \overline{x} (with $\overline{f}(\overline{x}) < +\infty$) then: $f(\mathbf{x}_t) \rightarrow \inf f$

• in this case:

- $x_t = t^3 e_2 + t^2 e_1 \rightarrow \overline{x} = \omega e_2 + \omega e_1$
- \overline{f} not continuous at \overline{x}
- not coincidence!
- when assume continuity, must get convergence to minimum
- general theorem: if:
	- $\nabla f(\mathbf{x}_t) \rightarrow 0$

• $x_t \to \overline{x}$ and \overline{f} continuous at \overline{x} (with $\overline{f}(\overline{x}) < +\infty$) then: $f(\mathbf{x}_t) \rightarrow \inf f$

• reveals structure and regularity not otherwise apparent

Convergence and astral continuity (cont.)

- can use to prove convergence of standard iterative methods applied to various ML/statistical settings
	- e.g.: gradient descent, coordinate descent, steepest descent
	- e.g.: logistic regression, boosting, maximum likelihood (which all have continuous extensions)

Convergence and astral continuity (cont.)

- can use to prove convergence of standard iterative methods applied to various ML/statistical settings
	- e.g.: gradient descent, coordinate descent, steepest descent
	- e.g.: logistic regression, boosting, maximum likelihood (which all have continuous extensions)
- don't require finite minimizer
- algorithms operate in \mathbb{R}^n , but use astral methods in proofs
	- rely on astral continuity properties (without which results do not hold, in general)

• can only speculate!

- can only speculate!
- in ML, usually minimize empirical risk function based on random examples
- sometimes, maybe, some (astral?) property of minimizer can imply generalization

- can only speculate!
- in ML, usually minimize empirical risk function based on random examples
- sometimes, maybe, some (astral?) property of minimizer can imply generalization
- e.g. AdaBoost minimizes exponential loss
	- finds solution with large-margin property, implying generalization
	- really an astral property of minimizer at infinity (namely, of first astron in representation)

Summary

• tried to give a taste of astral space:

- its construction
- structure of astral points
- how to extend convex functions

Summary

- tried to give a taste of astral space:
	- its construction
	- structure of astral points
	- how to extend convex functions
- aim: expand foundations of convex analysis to encompass points at infinity
	- e.g. to enable easier, more general proofs of convergence

Summary

- tried to give a taste of astral space:
	- its construction
	- structure of astral points
	- how to extend convex functions
- aim: expand foundations of convex analysis to encompass points at infinity
	- e.g. to enable easier, more general proofs of convergence
- far more not covered
	- details at: aka.ms/astral [or [arxiv.org/abs/2205.03260\]](https://arxiv.org/abs/2205.03260) (will eventually be published as a book)