Convex Analysis at Infinity

An Introduction to Astral Space

Miro Dudík Rob Schapire Matus Telgarsky

further reading at: aka.ms/astral

Convex functions

Convex functions

- minimizing convex functions is basis for many methods in machine learning and statistics (and other fields)
 - e.g.: maximum likelihood, maximum entropy, linear regression, logistic regression, boosting, SVM's, ...

Convex functions

- minimizing convex functions is basis for many methods in machine learning and statistics (and other fields)
 - e.g.: maximum likelihood, maximum entropy, linear regression, logistic regression, boosting, SVM's, ...
- convex functions are really nice!
 - local minimum must be global minimum
 - if gradient = 0 then must be global minimum
 - usually easier to find and analyze minimization algorithms
 - beautiful properties

- problem: some convex functions have no finite minimizer
 - function then must be minimized by sequence heading "to infinity"

- problem: some convex functions have no finite minimizer
 - function then must be minimized by sequence heading "to infinity"
 - certainly includes cases of practical interest
 - analyzing convergence often requires carefully tailored techniques

- problem: some convex functions have no finite minimizer
 - function then must be minimized by sequence heading "to infinity"
 - certainly includes cases of practical interest
 - analyzing convergence often requires carefully tailored techniques
- this talk: develop theory for studying such minimizers at infinity

Example: exponential function

• e.g.:
$$f(x) = e^x$$

Example: exponential function

- e.g.: $f(x) = e^x$
- no finite point $x \in \mathbb{R}$ where minimum attained
- instead, minimized by any sequence (x_t) with $x_t \rightarrow -\infty$
- wish could say: "minimized at $-\infty$ "

Example: exponential function

- no finite point $x \in \mathbb{R}$ where minimum attained
- instead, minimized by any sequence (x_t) with $x_t \rightarrow -\infty$
- wish could say: "minimized at $-\infty$ "
- can do by:
 - extending ℝ to include ±∞:

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$

- no finite point $x \in \mathbb{R}$ where minimum attained
- instead, minimized by any sequence (x_t) with $x_t \rightarrow -\infty$
- wish could say: "minimized at $-\infty$ "
- can do by:
 - extending $\mathbb R$ to include $\pm\infty$:

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$$

• extending f to $\overline{\mathbb{R}}$ by setting: $f(-\infty) = 0$ and $f(+\infty) = +\infty$

• maybe can extend derivatives so that $f'(-\infty) = 0$

- is continuous over $\overline{\mathbb{R}}$
- attains minimum at $-\infty$
- "feels" convex
- maybe can extend derivatives so that $f'(-\infty) = 0$
- in n = 1 dimensions, seems clear how to
 - add "points at infinity"
 - extend functions to enlarged space, capturing minimizers at infinity

- is continuous over $\overline{\mathbb{R}}$
- attains minimum at $-\infty$
- "feels" convex
- maybe can extend derivatives so that $f'(-\infty) = 0$
- in n = 1 dimensions, seems clear how to
 - add "points at infinity"
 - extend functions to enlarged space, capturing minimizers at infinity
- what about in n ≥ 2 dimensions?

• extend \mathbb{R}^n to include points at infinity

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity

Goals

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity
- trying to build up foundations so relatively easy, for instance, to prove convergence of algorithms

Goals

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity
- trying to build up foundations so relatively easy, for instance, to prove convergence of algorithms
- hope to make study of convex functions more "complete" and "regular"
 - e.g., so every convex function, when extended to new space, has a minimizer

Goals

- extend \mathbb{R}^n to include points at infinity
- aim to reveal structure of how convex functions behave at infinity
- trying to build up foundations so relatively easy, for instance, to prove convergence of algorithms
- hope to make study of convex functions more "complete" and "regular"
 - e.g., so every convex function, when extended to new space, has a minimizer
- want compatible with key notions of convex analysis

<u>Analogy</u>

 if only working in Q = rationals, then no number equals length of diagonal of a unit square

<u>Analogy</u>

 if only working in Q = rationals, then no number equals length of diagonal of a unit square

• can approach value with sequences in \mathbb{Q} : $\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \ldots \rightarrow \sqrt{2}$ 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, $\ldots \rightarrow \sqrt{2}$

Analogy

 if only working in Q = rationals, then no number equals length of diagonal of a unit square

• can approach value with sequences in Q:

 $\frac{1}{1}, \ \frac{3}{2}, \ \frac{7}{5}, \ \frac{17}{12}, \ \frac{41}{29}, \ \frac{99}{70}, \ \frac{239}{169}, \ \dots \to \sqrt{2}$

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, $\ldots \to \sqrt{2}$

 so don't "need" reals (can just work over sequences of rationals)

Analogy

 if only working in Q = rationals, then no number equals length of diagonal of a unit square

• can approach value with sequences in \mathbb{Q} :

 $\frac{1}{1}, \ \frac{3}{2}, \ \frac{7}{5}, \ \frac{17}{12}, \ \frac{41}{29}, \ \frac{99}{70}, \ \frac{239}{169}, \ \ldots \to \sqrt{2}$

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, $\ldots \to \sqrt{2}$

- so don't "need" reals (can just work over sequences of rationals)
- far preferable to extend \mathbb{Q} to \mathbb{R}
 - much more complete, regular, well-structured

Analogy (cont.)

- in same way, can continue to use sequences to study minimizers of convex functions
 - might be much nicer to study minimizers at infinity as mathematical objects in their own right
 - can hope larger space would be more complete, regular, and revealing of structure

This work

- introduce astral space, extension of \mathbb{R}^n with points at infinity
- extend functions on \mathbb{R}^n to astral space
- study key properties and topics extended to astral space, especially from convex analysis

<u>Outline</u>

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

Notation

- *n* = dimension
- scalars (in \mathbb{R}): x, y, \ldots
- vectors (in \mathbb{R}^n): $\mathbf{x}, \mathbf{u}, \mathbf{v}, \dots$
 - as tuple: $x = (x_1, ..., x_n)$

Notation

- *n* = dimension
- scalars (in \mathbb{R}): x, y, \ldots
- vectors (in ℝⁿ): **x**, **u**, **v**, ...
 - as tuple: $x = (x_1, ..., x_n)$
- all sequences indexed by $t = 1, 2, \dots$
- limits and convergence always as $t \to +\infty$
- (\mathbf{x}_t) is sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$

Outline

• what can minimizers at infinity look like?

- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

Minimizers at infinity

- given convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- if no finite minimizer, can only be minimized by sequence (x_t) to infinity
- what can such "minimizers at infinity" look like?

Minimizers at infinity

- given convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- if no finite minimizer, can only be minimized by sequence (x_t) to infinity
- what can such "minimizers at infinity" look like?
- in n=1 dimensions, can only converge to $\pm\infty$

Minimizers at infinity

- given convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- if no finite minimizer, can only be minimized by sequence (x_t) to infinity
- what can such "minimizers at infinity" look like?
- in n=1 dimensions, can only converge to $\pm\infty$
- in $n \ge 2$ dimensions, many possibilities
 - for example...

• in
$$\mathbb{R}^2$$
, say

$$f(\mathbf{x}) = f(x_1, x_2) = \underbrace{e^{-x_1}}_{+ \underbrace{(x_2 - x_1)^2}}$$

Example: Diagonal valley

• in
$$\mathbb{R}^2$$
, say

$$f(\mathbf{x}) = f(x_1, x_2) = \underbrace{e^{-x_1}}_{\substack{\Downarrow\\ x_1 \to +\infty}} + \underbrace{(x_2 - x_1)^2}_{\substack{\Downarrow\\ x_2 - x_1 \to 0}}$$

• to minimize, must follow "diagonal valley"

• e.g., set
$$x_1 = x_2 = t$$
 and let $t \to +\infty$

• i.e., $\mathbf{x}_t = (t, t)$: $f(\mathbf{x}_t) = f(t, t) = e^{-t} \to 0$

Example: Diagonal valley

• in
$$\mathbb{R}^2$$
, say

$$f(\mathbf{x}) = f(x_1, x_2) = \underbrace{e^{-x_1}}_{x_1 \to +\infty} + \underbrace{(x_2 - x_1)^2}_{\underset{x_2 - x_1 \to 0}{\Downarrow}}$$

• to minimize, must follow "diagonal valley"

• e.g., set $x_1 = x_2 = t$ and let $t \to +\infty$

• i.e.,
$$\mathbf{x}_t = (t, t)$$
: $f(\mathbf{x}_t) = f(t, t) = e^{-t} \to 0$

• matters how sequence goes to infinity!

Example: Diagonal valley

• in
$$\mathbb{R}^2$$
, say

Example: Diagonal valley

$$f(\mathbf{x}) = f(x_1, x_2) = \underbrace{e^{-x_1}}_{x_1 \to +\infty} + \underbrace{(x_2 - x_1)^2}_{\underset{x_2 - x_1 \to 0}{\Downarrow}}$$

• to minimize, must follow "diagonal valley"

• e.g., set $x_1 = x_2 = t$ and let $t \to +\infty$

• i.e.,
$$\mathbf{x}_t = (t, t)$$
: $f(\mathbf{x}_t) = f(t, t) = e^{-t} \to 0$

- matters how sequence goes to infinity!
 - direction matters

• in
$$\mathbb{R}^2$$
, say

Example: Diagonal valley

$$f(\mathbf{x}) = f(x_1, x_2) = \underbrace{e^{-x_1}}_{x_1 \to +\infty} + \underbrace{(x_2 - x_1)^2}_{\underset{x_2 - x_1 \to 0}{\Downarrow}}$$

- to minimize, must follow "diagonal valley"
 - e.g., set $x_1 = x_2 = t$ and let $t \to +\infty$
 - i.e., $\mathbf{x}_t = (t, t)$: $f(\mathbf{x}_t) = f(t, t) = e^{-t} \to 0$
- matters how sequence goes to infinity!
 - direction matters
 - offset also matters

• can every convex function be minimized along a ray?

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$

• to minimize, need:

• $x_1 \rightarrow +\infty$

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$$f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2+x_1}$$

- to minimize, need:
 - $x_1 \to +\infty$
 - $x_2 \rightarrow +\infty$ much faster than x_1 so that $-x_2 + x_1^2/2 \rightarrow -\infty$

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

$$f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2+x_2}$$

- to minimize, need:
 - $x_1 \rightarrow +\infty$
 - $x_2 \rightarrow +\infty$ much faster than x_1 so that $-x_2 + x_1^2/2 \rightarrow -\infty$
 - e.g. $x_t = (t, t^2)$

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

along a ray? no!
, let
$$f(\mathbf{x}) = f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$$

- to minimize, need:
 - $x_1 \rightarrow +\infty$
 - $x_2 \rightarrow +\infty$ much faster than x_1 so that $-x_2 + x_1^2/2 \rightarrow -\infty$
 - e.g. $x_t = (t, t^2)$
- no minimizing sequence along straight ray

- can every convex function be minimized along a ray? no!
- e.g., in \mathbb{R}^2 , let

- to minimize, need:
 - $x_1 \rightarrow +\infty$
 - $x_2 \rightarrow +\infty$ much faster than x_1 so that $-x_2 + x_1^2/2 \rightarrow -\infty$
 - e.g. $x_t = (t, t^2)$
- no minimizing sequence along straight ray
- how to construct space capturing such minimizers at infinity?

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

• sequences to infinity don't converge because nothing to converge to

- sequences to infinity don't converge because nothing to converge to
- idea: add "new" points to \mathbb{R}^n that can be limits of such sequences

Basic idea

- sequences to infinity don't converge because nothing to converge to
- idea: add "new" points to \mathbb{R}^n that can be limits of such sequences
- key questions:
 - which sequences should have limits?
 - when should two sequences have same limit?

Basic idea

- sequences to infinity don't converge because nothing to converge to
- idea: add "new" points to ℝⁿ that can be limits of such sequences
- key questions:
 - which sequences should have limits?
 - when should two sequences have same limit?
- once answered, can construct space:
 - add "new" points to be limits of each group of sequences that should all have same limit

• any sequence following ray to infinity should have a limit e.g., $\mathbf{x}_t = (2t, t) = t\mathbf{v}$ where $\mathbf{v} = (2, 1)$

• any sequence following ray to infinity should have a limit e.g., $\mathbf{x}_t = (2t, t) = t\mathbf{v}$ where $\mathbf{v} = (2, 1)$

- any sequence following ray to infinity should have a limit e.g., $\mathbf{x}_t = (2t, t) = t\mathbf{v}$ where $\mathbf{v} = (2, 1)$
- what sequences should have same limit?

- any sequence following ray to infinity should have a limit e.g., $\mathbf{x}_t = (2t, t) = t\mathbf{v}$ where $\mathbf{v} = (2, 1)$
- what sequences should have same limit?
 - e.g., if change rate converging to infinity

- say shift sequence by fixed offset
- $x_t = (2t, t) = tv$ where v = (2, 1) $x'_t = (2t - 1, t + 2) = tv + w$ where w = (-1, 2)

- say shift sequence by fixed offset
- $\mathbf{x}_t = (2t, t) = t\mathbf{v}$ where $\mathbf{v} = (2, 1)$ $\mathbf{x}'_t = (2t - 1, t + 2) = t\mathbf{v} + \mathbf{w}$ where $\mathbf{w} = (-1, 2)$
- should two sequences have same limit?

- say shift sequence by fixed offset
- $\mathbf{x}_t = (2t, t) = t\mathbf{v}$ where $\mathbf{v} = (2, 1)$ $\mathbf{x}'_t = (2t - 1, t + 2) = t\mathbf{v} + \mathbf{w}$ where $\mathbf{w} = (-1, 2)$
- should two sequences have same limit?
- we believe no because:
 - offset matters for minimization
 - in applications, often care about such offsets, not just overall direction of minimization

A basic principle

• how to capture these intuitions?

A basic principle

- how to capture these intuitions?
- basic principle: focus on limits in every direction *u* ∈ ℝⁿ i.e., along one-dimensional projections of the sequence

A basic principle

- how to capture these intuitions?
- basic principle: focus on limits in every direction *u* ∈ ℝⁿ
 i.e., along one-dimensional projections of the sequence
 - for example...

• as before: $x_t = (2t, t) = tv$ where v = (2, 1) $x'_t = (2t - 1, t + 2) = tv + w$ where w = (-1, 2)

Example: parallel sequences u • as before: $x_t = (2t, t) = tv$ where v = (2, 1) $x'_{t} = (2t - 1, t + 2) = tv + w$ where w = (-1, 2)• e.g. u = (1, 0) $\mathbf{x}_t \cdot \mathbf{u} = 2t \rightarrow +\infty$ $\mathbf{x}'_t \cdot \mathbf{u} = 2t - 1 \rightarrow +\infty$ • e.g. u = (-1, 2) $\mathbf{x}_t \cdot \mathbf{u} = 0 \rightarrow 0$ $\mathbf{x}'_t \cdot \mathbf{u} = 5 \rightarrow 5$

• so: in some direction, sequences have different limits

• therefore: require (\mathbf{x}_t) and (\mathbf{x}'_t) to have different limits

• which sequences (x_t) should have limits?

- which sequences (x_t) should have limits?
 - exactly those that converge in all directions
 - meaning: $\lim(\mathbf{x}_t \cdot \mathbf{u})$ exists for all $\mathbf{u} \in \mathbb{R}^n$

Our approach

- which sequences (*x*_t) should have limits?
 - exactly those that converge in all directions
 - meaning: $\lim(\mathbf{x}_t \cdot \mathbf{u})$ exists for all $\mathbf{u} \in \mathbb{R}^n$

• when should two sequences (\mathbf{x}_t) and (\mathbf{x}'_t) have same limit?

Our approach

- which sequences (*x*_t) should have limits?
 - exactly those that converge in all directions
 - meaning: $\lim(\mathbf{x}_t \cdot \mathbf{u})$ exists for all $\mathbf{u} \in \mathbb{R}^n$
- when should two sequences (\mathbf{x}_t) and (\mathbf{x}'_t) have same limit?
 - exactly when they are all-directions equivalent, i.e., have same limit in every direction
 - meaning: $\lim(\mathbf{x}_t \cdot \mathbf{u}) = \lim(\mathbf{x}'_t \cdot \mathbf{u})$ for all $\mathbf{u} \in \mathbb{R}^n$

Our approach

- which sequences (*x*_t) should have limits?
 - exactly those that converge in all directions
 - meaning: $\lim(\mathbf{x}_t \cdot \mathbf{u})$ exists for all $\mathbf{u} \in \mathbb{R}^n$
- when should two sequences (\mathbf{x}_t) and (\mathbf{x}'_t) have same limit?
 - exactly when they are all-directions equivalent, i.e., have same limit in every direction

• meaning: $\lim(\mathbf{x}_t \cdot \mathbf{u}) = \lim(\mathbf{x}'_t \cdot \mathbf{u})$ for all $\mathbf{u} \in \mathbb{R}^n$

• note that limits can be in $\overline{\mathbb{R}}$

• when expand \mathbb{R}^n according to these criteria, get

 $\overline{\mathbb{R}^n}$ = astral space

• when expand \mathbb{R}^n according to these criteria, get

 $\overline{\mathbb{R}^n}$ = astral space

• in n = 1 dimensions, only add $\pm \infty$ so $\overline{\mathbb{R}^1}$ same as $\overline{\mathbb{R}}$

- astral space is compact
 - very powerful property
 - (e.g. to prove convergence of iterative algorithms)

• astral space is compact

- very powerful property
 - (e.g. to prove convergence of iterative algorithms)
- every linear function can be extended continuously

- astral space is compact
 - very powerful property
 - (e.g. to prove convergence of iterative algorithms)
- every linear function can be extended continuously
 - implies "anything linear" likely to behave "nicely" in astral space
 - especially relevant to convex analysis
 - means can generalize: linear maps, hyperplanes, halfspaces, convex sets and functions, conjugates, differential theory

- astral space is compact
 - very powerful property
 - (e.g. to prove convergence of iterative algorithms)
- every linear function can be extended continuously
 - implies "anything linear" likely to behave "nicely" in astral space
 - especially relevant to convex analysis
 - means can generalize: linear maps, hyperplanes, halfspaces, convex sets and functions, conjugates, differential theory
- astral space is not a vector space, nor a metric space

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

• simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$

- simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$
- converges in all directions

- simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$
- converges in all directions
- therefore, has limit in \mathbb{R}^n called astron $\omega \mathbf{v}$:

 $\omega \mathbf{v} = \lim t \mathbf{v}$

- simplest sequence to infinity is along ray from origin: $\mathbf{x}_t = t \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^n$
- converges in all directions
- therefore, has limit in \mathbb{R}^n called astron $\omega \mathbf{v}$:

 $\omega \mathbf{v} = \lim t \mathbf{v}$

• turn out to be building blocks for all astral points

• say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$

- say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$
- intuitively:
 - converges to infinity most strongly in direction of v_1
 - secondary convergence to infinity in direction of v_2
 - finite shift or offset by **q**

- say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$
- intuitively:
 - converges to infinity most strongly in direction of v_1
 - secondary convergence to infinity in direction of v_2
 - finite shift or offset by q
- converges in all directions, so has astral limit \overline{x}

- say $\mathbf{x}_t = t^2 \mathbf{v}_1 + t \mathbf{v}_2 + \mathbf{q}$ for some $\mathbf{v}_1, \mathbf{v}_2, \mathbf{q} \in \mathbb{R}^n$
- intuitively:
 - converges to infinity most strongly in direction of v_1
 - secondary convergence to infinity in direction of v₂
 - finite shift or offset by q
- converges in all directions, so has astral limit \overline{x}
- turns out, can write in form:

$$\overline{\boldsymbol{x}} = \underbrace{\boldsymbol{\omega} \, \boldsymbol{v}_1 + \boldsymbol{\omega} \, \boldsymbol{v}_2}_{\text{astrons}} + \boldsymbol{q}$$

- operation ++ is leftward addition:
 - similar to vector addition but not commutative
 - gives kind of "dominance" to term on left

Representing astral points

• in general: every astral point \overline{x} can be written in form

$$\overline{\mathbf{x}} = \underbrace{\omega \mathbf{v}_1 + \dots + \omega \mathbf{v}_k}_{\text{astrons}} + \underbrace{\mathbf{q}}_{\text{finite}}$$

for some orthonormal $v_1, \ldots, v_k \in \mathbb{R}^n$ and some $q \in \mathbb{R}^n$ orthogonal to the v_i 's

Representing astral points

• in general: every astral point $\overline{\mathbf{x}}$ can be written in form

$$\overline{\mathbf{x}} = \underbrace{\omega \mathbf{v}_1 + \dots + \omega \mathbf{v}_k}_{\text{astrons}} + \underbrace{\mathbf{q}}_{\text{finite}}$$

for some orthonormal $v_1, \ldots, v_k \in \mathbb{R}^n$ and some $q \in \mathbb{R}^n$ orthogonal to the v_i 's

- astral rank = k (number of astrons in \overline{x} 's representation)
 - astral rank = $0 \Rightarrow \overline{\mathbf{x}} \in \mathbb{R}^n$
 - astral rank = $1 \Rightarrow \overline{\mathbf{x}}$ is limit of sequence along ray

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

Extending a function to astral space

- given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to extend to astral space:

 $\bar{f}:\overline{\mathbb{R}^n}\to\overline{\mathbb{R}}$

Extending a function to astral space

- given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to extend to astral space:

 $\bar{f}:\overline{\mathbb{R}^n}\to\overline{\mathbb{R}}$

• how to define?

Example: exponential function

• say
$$f(x) = e^x$$
 for $x \in \mathbb{R}$

Example: exponential function

• say $f(x) = e^x$ for $x \in \mathbb{R}$

- want to define \overline{f} = extension of f to $\overline{\mathbb{R}} = \overline{\mathbb{R}^1}$:
 - $\overline{f}(-\infty) = 0$ because: if $x_t \to -\infty$ then $f(x_t) \to 0$
 - $\bar{f}(+\infty) = +\infty$ because: if $x_t \to +\infty$ then $f(x_t) \to +\infty$

Example: exponential function

• say $f(x) = e^x$ for $x \in \mathbb{R}$

- want to define \overline{f} = extension of f to $\overline{\mathbb{R}} = \overline{\mathbb{R}^1}$:
 - $\bar{f}(-\infty) = 0$ because: if $x_t \to -\infty$ then $f(x_t) \to 0$

• $\overline{f}(+\infty) = +\infty$ because: if $x_t \to +\infty$ then $f(x_t) \to +\infty$

• only way to extend to $\overline{\mathbb{R}}$ continuously

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension $\overline{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given $\overline{\mathbf{x}}$, how to define $\overline{f}(\overline{\mathbf{x}})$?

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension $\overline{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given $\overline{\mathbf{x}}$, how to define $\overline{f}(\overline{\mathbf{x}})$?
- say lim f(x_t) exists and is the same for every sequence x_t → x̄

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension $\overline{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given \overline{x} , how to define $\overline{f}(\overline{x})$?
- say lim f(x_t) exists and is the same for every sequence x_t → x̄

• then only reasonable to set: $\overline{f}(\overline{x}) = \lim f(x_t)$ for any (and every) sequence $x_t \to \overline{x}$

- in general, given convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- want to define its extension $\overline{f}: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$
- given \overline{x} , how to define $\overline{f}(\overline{x})$?
- say lim f(x_t) exists and is the same for every sequence x_t → x̄

• then only reasonable to set: $\overline{f}(\overline{x}) = \lim f(x_t)$ for any (and every) sequence $x_t \to \overline{x}$

• if holds for all $\overline{\mathbf{x}} \in \overline{\mathbb{R}^n}$ then

 \overline{f} is (unique) continuous extension of f to $\overline{\mathbb{R}^n}$

• say
$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{u}$$
 for some $\mathbf{u} \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 - x_2$]

- say $f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 x_2$]
- if $\mathbf{x}_t \to \overline{\mathbf{x}}$ then

$$\lim f(\boldsymbol{x}_t) = \lim (\boldsymbol{x}_t \cdot \boldsymbol{u})$$

exists and same for every sequence converging to $\overline{\mathbf{x}}$ [by construction!]

- say $f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 x_2$]
- if $\mathbf{x}_t \to \overline{\mathbf{x}}$ then

$$\lim f(\boldsymbol{x}_t) = \lim (\boldsymbol{x}_t \cdot \boldsymbol{u})$$

exists and same for every sequence converging to $\overline{\textbf{x}}$ [by construction!]

• therefore, f has continuous extension \overline{f}

- say $f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$ [e.g., $f(x_1, x_2) = 2x_1 x_2$]
- if $\mathbf{x}_t \to \overline{\mathbf{x}}$ then

$$\lim f(\boldsymbol{x}_t) = \lim (\boldsymbol{x}_t \cdot \boldsymbol{u})$$

exists and same for every sequence converging to $\overline{\mathbf{x}}$ [by construction!]

- therefore, f has continuous extension \overline{f}
- so: every linear function can be continuously extended to
 Rⁿ

Example: Diagonal valley

$$f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2$$

$$f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2$$

• can show extends continuously to $\overline{\mathbb{R}^2}$

$$f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2$$

- can show extends continuously to \mathbb{R}^2
- saw f minimized by $\mathbf{x}_t = t\mathbf{v}$ where $\mathbf{v} = (1, 1)$

Example: Diagonal valley

$$f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2$$

- can show extends continuously to \mathbb{R}^2
- saw f minimized by $\mathbf{x}_t = t\mathbf{v}$ where $\mathbf{v} = (1, 1)$
- converges to astron $\omega \mathbf{v}$
- \overline{f} minimized at $\overline{x} = \omega v$

Example: Diagonal valley

$$f(x_1, x_2) = e^{-x_1} + (x_2 - x_1)^2$$

- can show extends continuously to \mathbb{R}^2
- saw f minimized by $\mathbf{x}_t = t\mathbf{v}$ where $\mathbf{v} = (1, 1)$
- converges to astron ων
- \overline{f} minimized at $\overline{x} = \omega v$
- since continuous, f also minimized by any sequence $\mathbf{x}'_t \rightarrow \omega \mathbf{v}$

Extending functions in general

• f might not have continuous extension

Extending functions in general

• f might not have continuous extension

• continuous case: $\bar{f}(\overline{x}) = \lim f(x_t)$ over all sequences $x_t \to \overline{x}$

Extending functions in general

- f might not have continuous extension
- general case: $\overline{f}(\overline{x}) = \min \inf f(x_t)$ over all sequences $x_t \to \overline{x}$

Extending functions in general

- f might not have continuous extension
- general case: $\overline{f}(\overline{x}) = \min \operatorname{minimum} of \lim f(x_t) \text{ over all sequences } x_t \to \overline{x}$
- properties:
 - \overline{f} must attain minimizer in $\overline{\mathbb{R}^n}$ [since compact]

Extending functions in general

- f might not have continuous extension
- general case: $\overline{f}(\overline{x}) = \text{minimum of } \lim f(x_t) \text{ over all sequences } x_t \to \overline{x}$
- properties:
 - \overline{f} must attain minimizer in $\overline{\mathbb{R}^n}$ [since compact]
 - $\overline{\mathbf{x}}$ minimizes $\overline{\mathbf{f}}$ iff

there exists sequence $x_t \rightarrow \overline{x}$ minimizing f

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

 $\mathbf{x}_t = (t, t^2) = t^2 \mathbf{e}_2 + t \mathbf{e}_1$

where $\boldsymbol{e}_1=(1,0)$ and $\boldsymbol{e}_2=(0,1)$

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

$$\mathbf{x}_t = (t, t^2) = t^2 \mathbf{e}_2 + t \mathbf{e}_1 \rightarrow \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1$$

where $e_1 = (1, 0)$ and $e_2 = (0, 1)$

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

$$\mathbf{x}_t = (t, t^2) = t^2 \mathbf{e}_2 + t \mathbf{e}_1 \rightarrow \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1$$

where $\boldsymbol{e}_1=(1,0)$ and $\boldsymbol{e}_2=(0,1)$

- \overline{f} minimized by \overline{x}
 - x has astral rank 2
 - can show no other minimizers

- in \mathbb{R}^2 , recall: $f(x_1, x_2) = e^{-x_1} + e^{-x_2 + x_1^2/2}$
- minimized by sequence:

$$\mathbf{x}_t = (t, t^2) = t^2 \mathbf{e}_2 + t \mathbf{e}_1 \rightarrow \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1$$

where $\boldsymbol{e}_1=(1,0)$ and $\boldsymbol{e}_2=(0,1)$

- \overline{f} minimized by \overline{x}
 - x has astral rank 2
 - can show no other minimizers
- \overline{f} not continuous at \overline{x} : e.g.:

 $\begin{aligned} \mathbf{x}'_t &= (t, \frac{1}{2}t^2) = \frac{1}{2}t^2\mathbf{e}_2 + t\mathbf{e}_1 \rightarrow \overline{\mathbf{x}} \\ \text{but } f(\mathbf{x}'_t) \rightarrow 1 \neq \overline{f}(\overline{\mathbf{x}}) \end{aligned}$

Outline

- what can minimizers at infinity look like?
- constructing astral space
- what are astral points like?
- extending functions to astral space
- convergence of iterative algorithms

• in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then \mathbf{x} minimizes f

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then \mathbf{x} minimizes f
- say (\mathbf{x}_t) sequence with $\nabla f(\mathbf{x}_t) \to 0$
 - must $f(\mathbf{x}_t) \rightarrow \inf f$?

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then \mathbf{x} minimizes f
- say (\mathbf{x}_t) sequence with $\nabla f(\mathbf{x}_t) \to 0$
 - must $f(\mathbf{x}_t) \rightarrow \inf f$? no!

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then \mathbf{x} minimizes f
- say (\mathbf{x}_t) sequence with $\nabla f(\mathbf{x}_t) \to 0$
 - must $f(\mathbf{x}_t) \rightarrow \inf f$? no!
- e.g., in \mathbb{R}^2 , let

$$f(x_1, x_2) = \begin{cases} x_1^2/x_2 & \text{if } x_2 > |x_1| \\ 2|x_1| - x_2 & \text{else} \end{cases}$$

f is convex, continuous, finite, nonnegative, continuously differentiable everywhere of interest
 let x. - (t² t³)

• let
$$\mathbf{x}_t = (t^2, t^3)$$

- in standard convex analysis, if $\nabla f(\mathbf{x}) = 0$ then \mathbf{x} minimizes f
- say (\mathbf{x}_t) sequence with $\nabla f(\mathbf{x}_t) \to 0$
 - must $f(\mathbf{x}_t) \rightarrow \inf f$? no!
- e.g., in \mathbb{R}^2 , let

$$f(x_1, x_2) = \begin{cases} x_1^2/x_2 & \text{if } x_2 > |x_1| \\ 2|x_1| - x_2 & \text{else} \end{cases}$$

- *f* is convex, continuous, finite, nonnegative, continuously differentiable everywhere of interest
- let $x_t = (t^2, t^3)$
- then $\nabla f(\mathbf{x}_t) = \left(\frac{2}{t}, -\frac{1}{t^2}\right) \rightarrow 0$
- however, $f(\mathbf{x}_t) = t \rightarrow +\infty$

• in this case:

•
$$\mathbf{x}_t = t^3 \mathbf{e}_2 + t^2 \mathbf{e}_1 \rightarrow \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1$$

• \overline{f} not continuous at \overline{x}

• in this case:

- $\mathbf{x}_t = t^3 \mathbf{e}_2 + t^2 \mathbf{e}_1 \rightarrow \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1$
- \overline{f} not continuous at \overline{x}
- not coincidence!
- when assume continuity, must get convergence to minimum

• in this case:

- $\mathbf{x}_t = t^3 \mathbf{e}_2 + t^2 \mathbf{e}_1 \rightarrow \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1$
- \overline{f} not continuous at \overline{x}
- not coincidence!
- when assume continuity, must get convergence to minimum
- general theorem: if:
 - $\nabla f(\mathbf{x}_t) \to 0$

• $x_t \to \overline{x}$ and \overline{f} continuous at \overline{x} (with $\overline{f}(\overline{x}) < +\infty$) then: $f(x_t) \to \inf f$

in this case:

- $\mathbf{x}_t = t^3 \mathbf{e}_2 + t^2 \mathbf{e}_1 \rightarrow \overline{\mathbf{x}} = \omega \mathbf{e}_2 + \omega \mathbf{e}_1$
- \overline{f} not continuous at \overline{x}
- not coincidence!
- when assume continuity, must get convergence to minimum
- general theorem: if:
 - $\nabla f(\mathbf{x}_t) \to 0$

• $x_t \to \overline{x}$ and \overline{f} continuous at \overline{x} (with $\overline{f}(\overline{x}) < +\infty$) then: $f(x_t) \to \inf f$

reveals structure and regularity not otherwise apparent

Convergence and astral continuity (cont.)

- can use to prove convergence of standard iterative methods applied to various ML/statistical settings
 - e.g.: gradient descent, coordinate descent, steepest descent
 - e.g.: logistic regression, boosting, maximum likelihood (which all have continuous extensions)

Convergence and astral continuity (cont.)

- can use to prove convergence of standard iterative methods applied to various ML/statistical settings
 - e.g.: gradient descent, coordinate descent, steepest descent
 - e.g.: logistic regression, boosting, maximum likelihood (which all have continuous extensions)
- don't require finite minimizer
- algorithms operate in \mathbb{R}^n , but use astral methods in proofs
 - rely on astral continuity properties (without which results do not hold, in general)

• can only speculate!

- can only speculate!
- in ML, usually minimize empirical risk function based on random examples
- sometimes, maybe, some (astral?) property of minimizer can imply generalization

- can only speculate!
- in ML, usually minimize empirical risk function based on random examples
- sometimes, maybe, some (astral?) property of minimizer can imply generalization
- e.g. AdaBoost minimizes exponential loss
 - finds solution with large-margin property, implying generalization
 - really an astral property of minimizer at infinity (namely, of first astron in representation)

Summary

• tried to give a taste of astral space:

- its construction
- structure of astral points
- how to extend convex functions

Summary

- tried to give a taste of astral space:
 - its construction
 - structure of astral points
 - how to extend convex functions
- aim: expand foundations of convex analysis to encompass points at infinity
 - e.g. to enable easier, more general proofs of convergence

Summary

tried to give a taste of astral space:

- its construction
- structure of astral points
- how to extend convex functions
- aim: expand foundations of convex analysis to encompass points at infinity
 - e.g. to enable easier, more general proofs of convergence
- far more not covered
 - details at: aka.ms/astral [or arxiv.org/abs/2205.03260] (will eventually be published as a book)