# Weak-to-Strong Generalization

Pavel Izmailov



# Weak-to-Strong Generalization







Pavel Izmailov



Jan Hendrik

Kirchner



Bowen Baker



Yining Chen



Adrien Ecoffet Manas Joglekar







Leo Gao



Leopold Aschenbrenner



Ilya Sutskever



Jeff Wu

# Models are getting smart



#### [Kiela et al. 2023]

# Model behavior is becoming increasingly difficult to evaluate

Training, evals, monitoring ...











| Ô | 1 | Ō | 1 | Ō      | Ō | Ō | Ô      | 1 | Ō | 1 | Ō | Ō      | 1 | Ō | Ō      | Ō  | Ō | 1 | Ô | Ō | 1 | Ō | 1 | 0  |
|---|---|---|---|--------|---|---|--------|---|---|---|---|--------|---|---|--------|----|---|---|---|---|---|---|---|----|
| ĭ | ò | 1 | 1 | ŏ      | 1 | ŏ | ŏ      | ò | 1 | Ö | 1 | ŏ      | Ö | ĭ | ŏ      | 1  | ŏ | 1 | ŏ | ĭ | ò | 1 | 1 | ŏ  |
| 1 | Ō | Ō | Ō | 1      | Ō | 1 | Ō      | Ō | 1 | 1 | Ō | Ō      | 0 | 1 | Ō      | Ō  | Ō | 1 | Õ | 1 | Ō | Ō | 0 | 1  |
| 1 | 0 | 0 | 1 | 1      | 0 | 1 | 0      | 1 | 0 | 0 | 0 | 0      | 1 | 0 | 1      | 0  | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1  |
| 0 | 1 | 0 | 1 | 0      | 1 | 0 | 0      | 1 | 1 | 0 | 1 | 0      | 0 | 1 | 0      | 0  | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0  |
| 1 | 0 | 1 | 0 | 0      | 0 | 1 | 0      | 1 | 0 | 0 | 1 | 0      | 0 | 1 | 0      | 0  | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0  |
| 0 | 1 | 1 | 0 | 0      | 1 | 0 | 0      | 1 | 0 | 0 | 1 | 0      | 1 | 0 | 1      | 0  | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0  |
| 1 | 0 | 0 | 1 | 1      | 1 | 0 | 1      | 0 | 1 | 0 | 1 | 0      | 0 | 0 | 0      | 1  | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1  |
| 0 | 1 | 0 | 0 | 1      | 0 | 0 | 1      | 0 | 1 | 0 | 0 | 0      | 1 | 0 | 0      | 1  | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1  |
| 0 | 1 | 0 | 1 | 0      | 0 | 0 | 0      | 1 | 0 | 1 | 0 | 0      | 1 | 0 | Õ      | 0  | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0  |
| 1 | 0 | 1 | 1 | 0      | 1 | 0 | Q      | 0 | 1 | 0 | 1 | 0      | 0 | 1 | 0      | 1  | 0 | 1 | Q | 1 | Q | 1 | 1 | 9  |
| 1 | 0 | 0 | 0 | 1      | Q | 1 | Q      | 0 | 1 | 1 | 0 | 0      | 0 | 1 | 0      | 0  | Q | 1 | 0 | 1 | Q | 0 | 0 | 1  |
| 1 | 9 | 0 | H |        | 9 | 1 | Q      |   | 2 | 0 | 2 | U<br>N | 1 | 2 | 1      | v  | Q | 1 | Q | 1 | 2 | õ | Ļ |    |
| 4 | 1 | 2 |   | U<br>A | 1 | 2 | U<br>A |   | 1 | 2 |   | U<br>A | 0 |   | U<br>A | 20 | 2 | 2 | 0 | 2 |   | 4 |   | Y  |
| - | 4 | 1 | ž | 2      | 4 |   | 2      | - | 2 | 2 | H | 2      | 4 | - | 4      | 2  |   | 2 | 4 | - | 4 |   | V | Y  |
| 4 | ~ | ~ | 4 | 1      | - | 2 | 4      |   | 4 | 2 | H | Š      | - | 2 | ~      | 4  |   | 2 | 4 | 4 |   | - | 4 | Ч  |
| - | 1 | ň |   | ł      |   | X | -      | 2 | 4 | ň |   | ň      | 1 | 2 | Š      | ł  | 2 | 4 | ž | 4 | 1 | X |   | ł  |
| ň | 1 | ň | ĭ | ^      | ň | ň | 2      | 1 | 2 | ĭ | ň | ň      | 1 | ň | ň      |    | ň | 1 | ň | ň | 1 | ň | ĭ | ~  |
| 1 | 0 | 1 | 1 | ŏ      | ĭ | ŏ | ŏ      | 0 | 1 | 0 | 1 | ŏ      | 0 | 1 | ŏ      | 1  | ŏ | 1 | ŏ | 1 | ò | ĭ | 1 | ŏ  |
| 1 | ŏ | ò | ò | ĭ      | ò | ĭ | ŏ      | ŏ | 1 | ĭ | ò | ŏ      | ŏ | 1 | ŏ      | ò  | ŏ | 1 | ŏ | 1 | ŏ | ò | ò | ĭ  |
| 1 | ŏ | ŏ | 1 | 1      | ŏ | 1 | ŏ      | 1 | Ö | Ō | ŏ | ŏ      | 1 | Ō | 1      | ŏ  | ŏ | 1 | ŏ | 1 | ŏ | ŏ | 1 | 1  |
| Ō | 1 | Ō | 1 | Ō      | 1 | Ō | Ō      | 1 | 1 | Ō | 1 | Ō      | Ō | 1 | Ō      | Ō  | Õ | Ō | Õ | Ō | 1 | õ | 1 | Ō  |
| 1 | Ō | 1 | Ō | 0      | Ō | 1 | Ō      | 1 | Ō | Ō | 1 | Ō      | Ō | 1 | 0      | 0  | 1 | Ō | Ō | 1 | Ō | 1 | Ō | Ō  |
| 0 | 1 | 1 | 0 | 0      | 1 | 0 | 0      | 1 | 0 | 0 | 1 | 0      | 1 | 0 | 1      | 0  | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0  |
| 1 | 0 | 0 | 1 | 1      | 1 | 0 | 1      | 0 | 1 | 0 | 1 | 0      | 0 | 0 | 0      | 1  | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1  |
| 0 | 1 | 0 | 0 | 1      | 0 | 0 | 1      | 0 | 1 | 0 | 0 | 0      | 1 | 0 | 0      | 1  | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1  |
| 0 | 1 | 0 | 1 | 0      | 0 | 0 | 0      | 1 | 0 | 1 | 0 | 0      | 1 | 0 | 0      | 0  | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0  |
| 1 | 0 | 1 | 1 | 0      | 1 | 0 | 0      | 0 | 1 | 0 | 1 | 0      | 0 | 1 | 0      | 1  | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0  |
| 1 | 0 | 0 | 0 | 1      | 0 | 1 | 0      | 0 | 1 | 1 | 0 | 0      | 0 | 1 | 0      | 0  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | ĺ. |
| 1 | 0 | 0 | 1 | 1      | 0 | 1 | 0      | 1 | 0 | 0 | 0 | 0      | 1 | 0 | 1      | 0  | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1  |
| 0 | 1 | 0 | 1 | 0      | 1 | 0 | 0      | 1 | 1 | 0 | 1 | 0      | 0 | 1 | 0      | 0  | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0  |
| 1 | 0 | 1 | 0 | 0      | 0 | 1 | 0      | 1 | 0 | 0 |   | 0      | 9 | 1 | 0      | Q  |   | 0 | 0 | 1 | 0 |   | Q | 0  |
| 0 |   |   | 9 | 0      |   | Q | 0      | 1 | 0 | 0 |   | U<br>0 |   | 0 |        | 9  |   | 0 |   | 0 | 1 |   | 0 | 4  |
|   | 1 |   |   | 1      |   | Š | 1      | 0 |   | 0 |   | U<br>A | 1 | 0 | U<br>A |    | 0 | 1 | 0 |   | 1 | 2 |   |    |
| U | 1 | υ | U |        | υ | U |        | υ |   | U | υ | U      |   | U | U      |    | U |   | U | U |   | U | U |    |



**Core challenge:** Humans will be too weak to evaluate superhuman models

# How do we study this today?

#### **Traditional ML**



Supervisor Student

#### **Traditional ML**

#### Superalignment



Supervisor S

Student

Supervisor Student

#### **Traditional ML**

#### Superalignment



Supervisor S

Student

Supervisor Student

#### **Our Analogy**

#### Human level



#### Supervisor

Student

## **Experimental Procedure Today**

For a task **T**:

#### 1. Weak

a. Finetune weak pretrained model on **T** w/ **gold** labels b. Weak labels = predictions on held-out data

#### 2. Weak-to-strong

a. Finetune strong pretrained model on **T** w/ weak labels

#### 3. Strong

a. Finetune strong pretrained model on **T** w/ **gold** labels

#### Performance Gap Recovered (PGR)



# Goal: Recover PGR ~1

## **Applications**

1. Superhuman reward model

 $\rightarrow$  train models to behave safely  $\rightarrow$  elicit strong capabilities

1. Superhuman safety classifier

 $\rightarrow$  catch unsafe behavior at test time

## Results

#### **Tasks**



#### **Binary classification**







#### **Multiclass**

#### **Tasks**



#### **Binary classification**



We use pretrained GPT-4-base models.



#### **Multiclass**















## **Finetuning results**

#### Almost Universally: 0 < PGR < 1



## **Bootstrapping**



Instead of GPT-2 $\rightarrow$ GPT-4 do GPT-2 $\rightarrow$ GPT-3 $\rightarrow$ GPT-3,5 $\rightarrow$ GPT-4

Helps on chess, small improvement on NLP, none on RMs.

# 0.1 weak model compute (fraction of GPT4) 10-7

 $L(f) = \mathbf{CE}(f(x), f_w(x))$ 

# Weak supervisor predictions

$$L(f) = \operatorname{CE}(f(x), f_w(x))$$

## **Idea:** add a regularization towards the strong model's own predictions: $L_{\text{conf}}(f) = \text{CE}(f(x), (1 - \alpha) \cdot f_w(x))$

- a grows from 0 to 0.5 during first 20% of training
- $\hat{f}_t(x)$  is hard labels from the strong model adjusted to be class-balanced

#### leak supervisor predictions

$$f(x) + \alpha \cdot \hat{f}_t(x))$$

Strong student predictions

$$L(f) = \operatorname{CE}(f(x), f_w(x))$$

# **Idea:** add a regularization towards the strong model's own predictions: $L_{\text{conf}}(f) = \text{CE}(f(x), (1 - \alpha) \cdot f_w(x))$

 $\mathbf{1}$ 

 $L_{\text{conf}}(f) = (1 - \alpha) \cdot \text{CE}(f(x), f_w(x)) + \alpha \cdot \text{CE}(f(x), \hat{f}_t(x))$ 

Reinforces confidence in strong model's predictions

#### Veak supervisor predictions

$$f(x) + \alpha \cdot \hat{f}_t(x))$$

Strong student predictions



Major improvements in NLP, up to 80% PGR







Doesn't help on RMs.

# Understanding

#### Weak supervisor imitation



• Intuitively, strong models should imitate weak model mistakes

### Weak supervisor imitation



- Intuitively, strong models should imitate weak model mistakes
- We see it in practice

## Weak supervisor imitation



- Intuitively, strong models should imitate weak model mistakes
- We see it in practice
- Early-stopping can help significantly

#### **Imitation: student-supervisor agreement**



- % of test inputs where student and supervisor make the same prediction
- Agreement > weak accuracy
- Confidence loss reduces agreement

## **Imitation: student-supervisor agreement**



- % of test inputs where student and supervisor make the same prediction
- Agreement > weak accuracy
- Confidence loss reduces agreement
- Inverse scaling!

#### Salience: few-shot baseline



- For large models, 5-shot is competitive with finetuning
- Eliciting what these models know can be straightforward

#### ining orward

#### **Salience: few-shot baseline**



- Few-shot prompting with weak labels  $\Rightarrow$  qualitatively similar to FT
- Aux confidence loss >> few-shot

### Salience: generative finetuning



- Make the target concept more salient by generative finetuning
- Significantly improves PGR in RMs

## Salience: generative finetuning



- Make the target concept more salient by generative finetuning
- Significantly improves PGR in RMs
- Generative FT + cheating ES  $\Rightarrow$  30-40% PGR

## Discussion

## Limitations

- Single forward pass classification
- Most model knowledge today intuitively comes from observing similar knowledge on the internet; future models may be different
- Future models may be better at imitating people, which could make "imitating humans" a more likely failure mode in the future

# Future Work

## Controlling how models generalize

The desired generalization satisfies properties:

- Doesn't just imitate weak supervision
- "Natural" or "salient" to the model
- Satisfies many consistency properties

### How do we trust the results?

Can we tell if a model is generalizing OOD in the wrong way even without (reliable) labels?

## Lots more basic science to do

- Why are RM results worse?
- What makes a capability easy/hard to elicit?
- How important are errors in the weak labels?

# Conclusion

## **Summary**

- Weak supervisors can elicit capabilities beyond their own
- ...but still can't elicit everything stronger models know
- Many open questions



#### Superalignment

Supervisor

Student