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Models are 
getting smart

[Kiela et al. 2023]

https://contextual.ai/plotting-progress-in-ai/
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Model behavior is 
becoming increasingly 
difficult to evaluate

Training, evals, monitoring …
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Looks right 
to me!

This multiplies numbers by 2
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????????
This is 100% safe and secure
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Core challenge:
Humans will be too 
weak to evaluate 
superhuman 
models
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How do we study 
this today?
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For a task T:

1. Weak
a. Finetune weak pretrained model on T w/ gold labels
b. Weak labels = predictions on held-out data

2. Weak-to-strong
a. Finetune strong pretrained model on T w/ weak labels

3. Strong
a. Finetune strong pretrained model on T w/ gold labels
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Experimental Procedure Today
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Performance Gap Recovered (PGR)
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Performance Gap Recovered (PGR)Goal: Recover PGR ~1
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Disanalogies
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1. Superhuman reward model

→ train models to behave safely
→ elicit strong capabilities

1. Superhuman safety classifier 

→ catch unsafe behavior at test time

Applications
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Results



C
onfidential

C
onfidential

BoolQ, CosmosQA, DREAM, 
ETHICS [Justice, Deontology, 
Virtue, Utilitarianism], FLAN 

ANLI R2, GLUE CoLA, GLUE 
SST-2, HellaSwag, MCTACO, 
OpenBookQA, PAWS, QuAIL, 
PIQA, QuaRTz, SciQ, Social 

IQa, SuperGlue [MultiRC, 
WIC], Twitter Sentiment
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Tasks

RMs Vision

Binary classification

NLP Chess 

Generative Multiclass



C
onfidential

C
onfidential

BoolQ, CosmosQA, DREAM, 
ETHICS [Justice, Deontology, 
Virtue, Utilitarianism], FLAN 

ANLI R2, GLUE CoLA, GLUE 
SST-2, HellaSwag, MCTACO, 
OpenBookQA, PAWS, QuAIL, 
PIQA, QuaRTz, SciQ, Social 

IQa, SuperGlue [MultiRC, 
WIC], Twitter Sentiment
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Tasks

RMs Vision

Binary classification

NLP Chess 

Generative Multiclass

We use pretrained GPT-4-base models.
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Finetuning results: how to read the plots

GT labels
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Finetuning results: how to read the plots

GPT-4
GT labels

GPT-2
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Finetuning results: how to read the plots

GPT-2→GPT-2

GT labels

GPT-2

GPT-4

GPT-2→GPT-4
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Finetuning results: how to read the plots

GPT-2

GPT-4

GPT-2→GPT-2
GPT-2→GPT-4

GPT-2.5→…

GPT-3→…
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Finetuning results: how to read the plots

GPT-2

GPT-4

GPT-2→GPT-2
GPT-2→GPT-4
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Finetuning results: how to read the plots

25% PGR

GPT-2

GPT-4

GPT-2→GPT-2
GPT-2→GPT-4
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Finetuning results

Almost Universally: 
0 < PGR < 1

Improves with 
student size

Becomes worse with 
student size

Uniformly low 
PGR

🥲🙂 😭
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Bootstrapping

Instead of GPT-2→GPT-4 do GPT-2→GPT-3→GPT-3.5→GPT-4

Helps on chess, small improvement on NLP, none on RMs.
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Confidence loss

Weak supervisor 
predictions
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Idea: add a regularization towards the strong model’s own predictions:

28

Confidence loss

Strong student 
predictions

Weak supervisor 
predictions

● α grows from 0 to 0.5 during first 20% of training
●         is hard labels from the strong model adjusted to be class-balanced
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Idea: add a regularization towards the strong model’s own predictions:

29

Confidence loss

Strong student 
predictions

Weak supervisor 
predictions

⇔
● Reinforces confidence in strong model’s predictions
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Confidence loss

Major improvements in NLP, up to 80% PGR
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Confidence loss
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Confidence loss



C
onfidential

C
onfidential

33

Confidence loss

Doesn’t help on RMs.
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Understanding
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Weak supervisor imitation

● Intuitively, strong models should imitate weak model mistakes
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Weak supervisor imitation

● Intuitively, strong models should imitate weak model mistakes
● We see it in practice

overfitting
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Weak supervisor imitation

● Intuitively, strong models should imitate weak model mistakes
● We see it in practice
● Early-stopping can help significantly

overfitting
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Imitation: student-supervisor agreement

● % of test inputs where student and supervisor make the same prediction
● Agreement > weak accuracy
● Confidence loss reduces agreement
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Imitation: student-supervisor agreement

● % of test inputs where student and supervisor make the same prediction
● Agreement > weak accuracy
● Confidence loss reduces agreement
● Inverse scaling!
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Salience: few-shot baseline

● For large models, 5-shot is competitive with finetuning
● Eliciting what these models know can be straightforward

`
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Salience: few-shot baseline

● Few-shot prompting with weak labels ⇒ qualitatively similar to FT
● Aux confidence loss >> few-shot
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Salience: generative finetuning

● Make the target concept more salient by generative finetuning
● Significantly improves PGR in RMs
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Salience: generative finetuning

● Make the target concept more salient by generative finetuning
● Significantly improves PGR in RMs
● Generative FT + cheating ES ⇒ 30-40% PGR
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Discussion
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45

● Single forward pass classification
● Most model knowledge today intuitively 

comes from observing similar knowledge on 
the internet; future models may be different

● Future models may be better at imitating 
people, which could make “imitating humans” 
a more likely failure mode in the future

Limitations
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Future Work
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Disanalogies

Toward better methods

47

The desired generalization satisfies properties:

● Doesn’t just imitate weak supervision
● “Natural” or “salient” to the model
● Satisfies many consistency properties

Controlling how models generalize
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Disanalogies

Toward better metrics
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Can we tell if a model is generalizing OOD in the 
wrong way even without (reliable) labels?

How do we trust the results?
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Disanalogies

Ideally build a science of generalization
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● Why are RM results worse?
● What makes a capability easy/hard to elicit?
● How important are errors in the weak labels?
● …

Lots more basic science to do
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Conclusion
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● Weak supervisors can elicit 
capabilities beyond their own

● …but still can’t elicit everything 
stronger models know

● Many open questions
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Summary


