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Can we build models that are robust 
to shortcuts?
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Visual cues 
signifying 
pneumonia

Training data

Want:

Have: Data with some correlation 
between 𝑉𝑉,𝑌𝑌

Such that:    is accurate and robust
to the shortcut, i.e., has the same 
performance across all 𝑉𝑉,𝑌𝑌 correlations
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Causal (green) path: robust

Non-causal (red) path: encodes 
shortcut
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Population-level robustness to the shortcut

Ideal distribution  no 
correlation between 𝑉𝑉,𝑌𝑌

Proposition (informal): Under 
the ideal distribution, with a 
very large dataset, the optimal 
model is robust to shortcuts. 

Setup Population analysis Finite sample analysis Training objective Empirical results 41



Finite sample analysis (under the ideal distribution)

Setup Population analysis Finite sample analysis Training objective Empirical results 42



Proposition (informal): Models that conform to the causal DAG 
are more efficient than “the usual models” in finite samples. 

Finite sample analysis (under the ideal distribution)

Setup Population analysis Finite sample analysis Training objective Empirical results 43



Proposition (informal): Models that conform to the causal DAG 
are more efficient than “the usual models” in finite samples. 

Finite sample analysis (under the ideal distribution)

Setup Population analysis Finite sample analysis Training objective Empirical results 44

Usual models



Proposition (informal): Models that conform to the causal DAG 
are more efficient than “the usual models” in finite samples. 

Finite sample analysis (under the ideal distribution)

Setup Population analysis Finite sample analysis Training objective Empirical results 45

Usual models Models conforming to the DAG



Proposition (informal): Models that conform to the causal DAG 
are more efficient than “the usual models” in finite samples. 

Finite sample analysis (under the ideal distribution)

Setup Population analysis Finite sample analysis Training objective Empirical results 46

= Models that do not encode correlations 
between 𝑌𝑌,𝑉𝑉

Usual models Models conforming to the DAG



Proposition (informal): Models that conform to the causal DAG 
are more efficient than “the usual models” in finite samples. 

Finite sample analysis (under the ideal distribution)

Setup Population analysis Finite sample analysis Training objective Empirical results 47

= Models that do not encode correlations 
between 𝑌𝑌,𝑉𝑉

Predictions for women Predictions for men

Usual models Models conforming to the DAG



Proposition (informal): Models that conform to the causal DAG 
are more efficient than “the usual models” in finite samples. 

Finite sample analysis (under the ideal distribution)

Setup Population analysis Finite sample analysis Training objective Empirical results 48

= Models that do not encode correlations 
between 𝑌𝑌,𝑉𝑉

In practice: 

Predictions for women Predictions for men

Usual models Models conforming to the DAG
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 Smaller Rademacher complexity
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Sampling from non-ideal distributions

Proposition (informal): Reweighting with 𝑢𝑢𝑖𝑖 
recovers the independences in the ideal 
distribution

Makes Y, V “look” 
independent
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Training objective 

Weighted prediction loss

Weighted penalty on predictions 
encoding information about 𝑉𝑉
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Causal perspective gave us: 

1. Weights to map the training data to a distribution where invariance 
is achievable 

2. Invariance penalty to encourage the model to encode desirable    
independencies
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Empirical results: water birds data 

• Data: Semi-simulated
• Task: Predict type of bird

• Main label = type of bird (water/land) 
• Auxiliary label  = type of background 

(water/land) 
• Setup: Fixed training (source) data
• Evaluation: On multiple test sets with 

different correlations

Wah et al, Computation & Neural Systems Technical Report 2010
Zhou et al, IEEE PAMI 2017
Sagawa et al, ICLR 2020
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Experiment results
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Irvin et al, AAAI 2019
Jabbour et al, ML4H 2020

Empirical results: Predicting Pneumonia
• Data: CheXpert, down-sample women with pneumonia at 

training time. 

• Task: Predict the onset of pneumonia (main label), while 
making sure that sex (auxiliary label) is not a shortcut. 
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What about unknown shortcuts? 

• Have: Large number of 
auxiliary labels

• Unknown: Which ones are 
relevant shortcuts? 

• Objective: Models robust to 
multiple shortcuts

• Upshot: An additional 
causal discovery step

Zheng & Makar, NeurIPS 2022
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A class of DAGs
High dim. auxiliary labels

Extension to a class of DAGs
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Extension to a class of DAGs

X-ray
pixels

Auxiliary labels
(sex,…)

Target label
(pneumonia)

Parent of 𝑌𝑌
(flu)

E.g., Parents of 𝑌𝑌

A class of DAGs
High dim. auxiliary labels
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(sex,…)

Target label
(pneumonia)

Correlates of
(SES indicators)

E.g., Parents of 𝑌𝑌
Correlates of aa

A class of DAGs
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• ..but the accuracy of the penalty and stability of weights 
become unstable as the dimension of        increases
Want robustness penalty to be defined with respect to a small set 
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• Predict type of bird (water/land) 
• 12 auxiliary labels, only 2 sufficient: 

• Background 
• Camera quality

Water bird on water 
background

Water bird on land 
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Water bird on land 
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camera

• At training time, most water birds are 
on water background taken with a 
good quality camera

• Test on varying distributions
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Water birds experiment results

By identifying the sufficient shortcuts, our approach leads to more 
reliable models
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Q: 50 yo man with type I DM who 
presented to the ED complaining of 
acute back pain. He had apparently 
been drinking, was agitated and 
belligerent. 
Should he be given an opioid?
A: No

Challenge: Removing shortcuts through fine-tuning LLMs 
requires prohibitively large data + compute
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1615 to ____”

“Belligerent intoxicated 
patient presented to the 
ED. Patient race is ___”

Goal: identify shortcut-encoding circuits
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Setup
• LLM,         : a computational graph

• Nodes: attention heads, MLPs, input tokens and 
output logits

• Edges: connections between nodes
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