How machine learning is influencing protein engineering

Jennifer Listgarten

Talk outline

- 1. Intro: protein engineering + ML
- 2. ML-based design challenges
- 3. Conditioning for design

Talk outline

- 1. Intro: protein engineering + ML
- 2. ML-based design challenges
- 3. Conditioning for design

Protein engineering: therapeutics, environment, *etc*.

delivery (AAV)

gene editing (CRISPR/Cas9)

antibiotics & biofuel production (PKS)

plastic recycling (PETase) $CO₂$ biosequestration (RuBisCO)

Fundamental difficulty: design space is nearly infinite

- Also highly rugged design space \Rightarrow size scales as \sim 20^L
- Discrete search space (no gradients)

I л

Successes in navigating this complex space

1. Nature: via evolution *over millions of years*.

MSKGEELFTGVVPILV ELDGDVNGHKFSVSG EGEGDATYGKLTLKFIC TTGKLPVPWPTLVTTF SYGVQCFSRYPDHMK QHDFFKSAMPEGYVQ ERTIFFKDDGNYKTRA **EVKFEGDTLVRIELKGI** DFKEDGNILGHKLEYN YNSHNVYIMADKQKN GIKVNFKIRHNIEDGSV QLADYQQNTPIGDGPV LLPDNHYLSTQSALSK DPNEKRDHMVLLEFVT AAGITHGMDELYK

green fluorescent protein folding itself

Successes in navigating this complex space

1. Nature: via evolution *over millions of years*. 2. Various protein engineering strategies.

Protein engineering strategies emerging

- i. Computation ("data free"): physics-based energy functions (*e.g.,* Rosetta) to model protein structure, and protein binding. ~*1997-2023'ish* (almost R.I.P.) [2024 Nobel Prize]
- ii. Wetlab: **directed evolution** to iteratively directly design property of interest. ~*1993-present* [2018 Nobel Prize]
- iii. Machine learning (augmented): generative models; function prediction; structure prediction, etc. ~*2018(?)-present*

Did AlphaFold2/3 "solve" protein engineering?

NEWS 22 July 2021

DeepMind's AI predicts structures for a vast trove of proteins

AlphaFold neural network produced a 'totally transformative' database of more than 350,000 structures from *Homo sapiens* and 20 model organisms.

Ewen Callaway

sequence→ *structure*

- No: don't typically know which protein structures we need.
- If did, would need: *structure*→*sequence*. (decent ML solutions exist).
- Bottleneck challenge: predict which proteinsji have the function we desire—often extrapolatively.
- AlphaFold2 *was* a breakthrough, and is already useful.

A suite of ML protein engineering problems

A suite of ML protein engineering problems

- 1. Representation learning*: un(self)supervised learning on* largescale databases (millions of natural proteins, with *e.g.*, Transformers), or families.
	- This is (approx.) *density estimation,* p_{θ} (sequence) through a bottleneck.

Processes whole sequence

[Bepler *et al*., *Cell Systems* 2021]

2. (Conditional) generative models for sequences.

This is (conditional) density estimation, p_{θ} (sequence $|C|$, (*e.g.*) auto-regressive Transformer, Potts/VAE).

- a) structure-conditioned, aka "inverse folding"
- b) "control tag" conditioned, **AEALERMFLSFPTTKTYFPHFDLSHGS** protein family

3. (Conditional) generative models for structure.

- This is (conditional) density estimation, p_{θ} (backbone $|F|$, (*e.g*. "Diffusion" models latest trend).
- Only as good as function prediction, $p(F|backbone)$.
- Paired with inverse-folding to get sequence.

4. ML to estimate function from sequence and/or function:

- $e.g., p_{\theta}(F|sequence).$
- Few or no labelled data.
- *Leverage evolutionary information**, or large unsupervised models on panproteomic database.

**key part of AlphaFold2/3*

5. Structure prediction: filling the gaps left by AlphaFold2

- Orphan proteins (with *no/few homologs*).
- Protein-protein/DNA/RNA/small molecule binding.
- Protein dynamics and conformational distributions.

Unpacking some of the hype in AI+Science

Correspondence | Published: 25 January 2024

The perpetual motion machine of AI-generated data and the distraction of ChatGPT as a 'scientist'

<u>Jennifer Listgarten</u>[⊠]

<u>Nature Biotechnology</u> (2024) | Cite this article

Talk outline

- 1. Intro: protein engineering + ML
- 2. ML-based design challenges
- 3. Conditioning for design

Analogy: can we trust "banana" design?

catalytic efficiency

Naïve design yields abstract art ("pathology-finding").

catalytic efficiency

- *non-folding protein* 1. Brookes *et al ICLM* 2019 (CbAS)
	- 2. Fannjiang *et al NeurIPS* 2020 (autofocus)

1. A natural tension between leveraging the trained model for extrapolation, vs knowing that the model is not trustworthy in many areas of protein space (related to causality) [1,2].

- 1. Brookes *et al* ICLM 2019 (CbAS)
- 2. Fannjiang *et al* NeurIPS 2020 (autofocus)

- 1. A natural tension between leveraging the trained model for extrapolation, vs knowing that the model is not trustworthy in many areas of protein space (related to causality) [1,2].
- 2. Also related to estimation of *epistemic* uncertainty (whereas we typically think mostly of *aleotoric*) uncertainty [3, 4].

- 1. Brookes *et al* ICLM 2019 (CbAS)
- 2. Fannjiang *et al* NeurIPS 2020 (autofocus)
- 3. Nisinoff *et al* ACS Synth Bio 2023 (fv-BNN)
- 4. Fannjiang *et al* PNAS 2023(conformal)

- 1. A natural tension between leveraging the trained model for extrapolation, vs knowing that the model is not trustworthy in many areas of protein space (related to causality) [1,2].
- 2. Also related to estimation of *epistemic* uncertainty (whereas we typically think mostly of *aleotoric*) uncertainty [3,4].
- 3. Suitable protein inductive biases when using neural networks [3,5,6,7].

- 1. Brookes *et al* ICLM 2019 (CbAS)
- 2. Fannjiang *et al* NeurIPS 2020 (autofocus)
- 3. Nisinoff *et al* ACS Synth Bio 2023 (fv-BNN)
- 4. Fannjiang *et al* PNAS 2023(conformal)
- 5. Aghazadeh *et al* Nat. Comm. 2021
- 6. Brookes *et al* PNAS 2022
- 7. Hsu *et al* Nat. Biotech. 2022

- 1. A natural tension between leveraging the trained model for extrapolation, vs knowing that the model is not trustworthy in many areas of p
- 2. Also related **Is Novelty Predictable?** typically the **Clara Fanniiang and Jennifer Listgarten**
- 3. Suitable p
 2023 [3,5,6,7].
- Design of distributions instead of individual sequences [1,2,8].

- 1. Brookes *et al* ICLM 2019 (CbAS)
- 2. Fannjiang *et al* NeurIPS 2020 (autofocus)
- 3. Nisinoff *et al* ACS Synth Bio 2023 (fv-BNN)
- 4. Fannjiang *et al* PNAS 2023(conformal)
- 5. Aghazadeh *et al* Nat. Comm. 2021
- 6. Brookes *et al* PNAS 2022
- 7. Hsu *et al* Nat. Biotech. 2022
- 8. Zhu, Brookes *et al* Science Advances 2024

Conditioning by Adaptive Sampling for Robust Design

 E
Distribution Algorithms (FDAs) Intimately related to Estimation of Distribution Algorithms (EDAs)

- Modern day "evolutionary" algorithms where $\frac{m}{x}$ "mutations", etc. replaced by generative model [Baluja & Caruana '95]
- v CEM–rare event estimation [Rubinstein '99, '97]
- CMA-ES [Hansen *et al. '*03]
- \checkmark . Can be written as Expectation-Maximization \checkmark [Brookes *et al.* 2019]
- \mathcal{L} Also more superficially to RL.

Brookes, Park & Listgarten *ICML* 2019

David Brookes

Conditioning by Adaptive Sampling for Robust Design

EM-like algorithm emerges

Two technical challenges:

- 1. θ is in the expectation distribution.
- 2. MC estimates for rare events.

$$
\arg\max_{\theta} \log \mathbb{E}_{p(\mathbf{x}|\theta)} [P(S|\mathbf{x})],
$$
\n
$$
\leq \arg\max_{\theta} \mathbb{E}_{p(\mathbf{x}|\theta^{(t)})} [P(S|\mathbf{x}) \log p(\mathbf{x}|\theta)]
$$
\n
$$
\text{Anneal and MC}
$$
\n
$$
\theta^{(t+1)} = \arg\max_{\theta} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_i^{(t)}) \log p(\mathbf{x}_i^{(t)}|\theta)
$$
\n
$$
\text{weights}
$$
\n
$$
\text{for MLE}
$$

Brookes, Park & Listgarten *ICML* 2019

Conditioning by Adaptive Sampling for Robust Design

Conditioning by Adaptive Sampling for Robust Design (CbAS)

How to handle non-trustworthy predictive model in design problems

If have access data $\{x_i, y_i\}$ used to trair oracle, or prior "soft trust" information,

• then have prior knowledge about where $p(y|x)$ is likely to be accurate: near $\{x_i\}$, so estimate $p(x_i)$ from those data.

Brookes, Park & Listgarten ICML 2019

Conditioning by Adaptive Sampling for Robust Design (CbAS)

How to handle non-trustworthy predictive model in design problems

2. If don't have access to such data,

• then leverage implicit domain knowledge, such as taking all proteins known to fold, to estimate $p(x_i)$.

NALKELLKSANVIALIDMMEVPAVQLQEIRDK KTLKGLIKSKPVVAIVDMMDVPAPQLQEIRDK EELANLIKSYPVIALVDVSSMPAYPLSQMRRI EE<mark>LAKLIKSYPV</mark>IALVDVSSM<mark>P</mark>AY<mark>P</mark>LSQMRRL EELANLIKSYPVVALVDVSSMPAYPLSQMRRI

Brookes, Park & Listgarten ICML 2019

Autofocused oracles for model-based design

- Previously, predictive model is fixed because we are not acquiring any new data.
- Should we consider changing the oracle as the optimization progresses, *even in a fixed data setting?*

Related to accounting for domain shift (*e.g.,* IWERM).

Fannjiang & Listgarten *NeurIPS* 2020

Auto-focused oracles for model-based design

Show how updating the predictive model for function can help design, even when not collecting new data to train in.

ML-based design has "domain shift" as explore new regions of design space.

 $\beta^{(t)} = \arg \max_{\beta \in B} \frac{1}{n} \sum_{i=1}^n \frac{p_{\theta^{(t)}}(\mathbf{x}_i)}{p_0(\mathbf{x}_i)} \log p_{\beta}(y_i | \mathbf{x}_i).$

Clara Fannjiang

Fannjiang & Listgarten, *NeurIPS* 2020

Augmenting Neural Networks with Priors on Functional Values

Coherent blending of function value prior information, such as biophysical models, to Bayesian Neural Networks (BNN).

Easy to implement, zero added cost.

$$
\mu(\mathbf{x}) = \frac{\sigma_{\text{BNN}}^2(\mathbf{x})^{-1} \mu_{\text{BNN}}(\mathbf{x}) + \sigma_{\text{fv}}^2(\mathbf{x})^{-1} \mu_{\text{fv}}(\mathbf{x})}{\sigma_{\text{BNN}}^2(\mathbf{x})^{-1} + \sigma_{\text{fv}}^2(\mathbf{x})^{-1}},
$$

$$
\sigma^2(\mathbf{x}) = \left(\sigma_{\text{BNN}}^2(\mathbf{x})^{-1} + \sigma_{\text{fv}}^2(\mathbf{x})^{-1}\right)^{-1}.
$$

Hunter Nisonoff

Nisonoff, Wang, Listgarten, *ACS Synth Bio 2023*

Confidence sets for model-based design, with generalized *conformal prediction*

Design necessitates moving to regions of input space *far from training data*, where we trust the model's predictions the least.

[Conformal prediction for the design problem, Clara Fannjiang, *et al PNAS* 2022]

Standard *conformal prediction* gives finite sample guaranteed valid confidence sets (in expectation*).

• Under assumption of exchangeability of training and test data, obtain confidence sets on the labels,

$$
\mathbb{P}\left(Y_{\text{test}} \in C(X_{\text{test}})\right) \geq 1 - \alpha
$$

- Generalizations for different train and test distributions, but requires independence of train vs test
- Clara: generalize further to "design dependence" *(feedback covariate shift*), allowing dependence.

Sketch of *conformal prediction* for design dependence

Intuition: include all candidate labels, y , such that (x_{test}, y) , looks sufficiently similar to the weighted training data as quantified by a user-crafted score, S_i .

$$
S_i(X_{\text{test}}, y) = |Y_i - \mu_y(X_i)|
$$

\n
$$
\mu_y : \text{regression model trained on training } + \text{ candidate test data points} \text{ scores of } n + 1
$$

\n
$$
C_{\alpha}(X_{\text{test}}) = \left\{ y \in \mathbb{R} : \underline{S_{n+1}(X_{\text{test}}, y)} \le \text{QUANTILE}_{1-\alpha} \left(\sum_{i=1}^{n+1} \frac{w_i^y(X_{\text{test}}) \delta_{S_i(X_{\text{test}}, y)}}{\delta_{S_i(X_{\text{test}}, y)}} \right) \right\}
$$

\n
$$
w_i^y(X_{\text{test}}) \propto v(X_i; Z_{-i} \cup \{(X_{\text{test}}, y)\}), i = 1, ..., n, \text{ weights that take into account that the training and test data are\n
$$
w_{n+1}^y(X_{\text{test}}) \propto v(X_{\text{test}}; Z_{1:n}),
$$

\n
$$
v(X; D) = \frac{\tilde{p}_{X;D}(X)}{p_X(X)}
$$
 distribution of designed inputs
\ninduced by training model on D
\n
$$
D
$$
$$

Can guide hyperparameter choice (e.g. λ) of design algorithm

e.g., use confidence interval width to assess trade-off between entropy/diversity and expected predicted fitness

 $\widetilde{p}_{X;Z_{1:n}}(X_{\text{test}}) \propto \exp(\lambda \cdot \mu_{Z_{1:n}}(X_{\text{test}}))$

Sparse Epistatic Networks

- •Inject suitable inductive biases for protein sequence functions.
- •*i.e.* sparsity in "epistatic" terms (aka Walsh-Hadamard basis of features).

Aghazadeh*, Nisonoff* *et al*, Nat Comm 2020

Talk outline

- 1. Intro: protein engineering + ML
- 2. ML-based design challenges
- 3. Conditioning for design

How to condition for design?

- Suppose I have a generative model for protein sequences, $p(x)$.
- But I want to generate from a conditional generative model, $p(x|y)$, conditioned on structure.
- And I have access to either $\{(x_i, y_i)\}_i$ or a predictive model $p(y|x)$.
- $p(x)$ small molecule library (e.g. Enamine)
- $p(x|y)$, conditioned on desired chemical property (e.g, binding affinity)
- $p(y|x)$ predict binding affinity from molecule

How to condition for design?

Three ways to do this:

- 1. Start from scratch and directly train a conditional generative model.
- 2. Start with unconditional model, and "update it" using calls to the predictive model (e.g. CbAS [1-3], DPO [4]).
- 3. Freeze the unconditional model, and "guide" it at generation time (*e.g.,* diffusion models) [5-7].
	- 1. Brookes, Park, Listgarten *ICLM* 2019 2. Fannjiang & Listgarten *NeurIPS* 2020 3. Brookes, Busia, *et al. GECCO* 2020
- 4. Rafailov *et al. NeurIPS* 2023
- 5. Sohl-Dickstein *et al. ICML* 2015
- 6. Dhariwal & Nichol *NeurIPS* 2021
- 7. Song *et al. ICLR* 2021

You are using Bayes rule!

For any modeling strategy, unless we bake in conditioning, we are using Bayes rule (even if we don't know it*).

$$
p(x \mid y) = \frac{p(y \mid x)p(x)}{\widetilde{p(y)}}
$$

* possibly approximately, such as in DPO, which could view as contrastive-based approximation to CbAS.

The beauty of classifier-guided diffusion

- Recall: diffusion/score models estimate $\nabla_{x} p_{\theta}(x)$.
- By pushing gradient through Bayes rule, we get rid of the normalizing constant

$$
\nabla_{\mathbf{x}} \log p_t(\mathbf{x}|\mathbf{y}) = \nabla_{\mathbf{x}} \log \frac{p_t(\mathbf{x})p_t(\mathbf{y}|\mathbf{x})}{p_t(\mathbf{y})}
$$
\n
$$
= \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) + \nabla_{\mathbf{x}} \log p_t(\mathbf{y}|\mathbf{x}) - \nabla_{\mathbf{x}} \log p_t(\mathbf{y})
$$
\n
$$
= \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) + \nabla_{\mathbf{x}} \log p_t(\mathbf{y}|\mathbf{x}).
$$
\nUnconditional model\n
$$
\text{Guidance for conditioning}
$$

J. Ingraham et al. Nature 623.7989 (2023): 1070-1078.

What about diffusion on discrete state spaces?

MYTWTGALITPCAAEESKLPINPLSNSLLRHH YDTRCFDSTVTESDIRVEESIYQCCDLAPEEA LTERLYIGGPLTNSKGQNCGYRRCRASGVLTT SCGNTLTCYLKATAACRAAKLQDCTMLVNGDD LVVICESAGTQEDAAALRAFTEAMTRYSAPPG

Challenge: for sequences, graphs, text, etc., $\nabla_{x} p_{\theta}(x)$ not useful. Consequence I: Standard diffusion/score doesn't work. Consequence II: Cannot use guidance, $\nabla_x p_{\phi}(y|x)$.

Some mitigating strategies:

- a. Relax x into real-valued space and snap back.
- b. Diffusion(flow) on multinomial space [Stark *et al. arXiv* 2024].
- c. Continuous-time Markov processes [Campbell *et al.* 2022, 2024]

Unlocking Guidance for Discrete State-Space Diffusion and Flow Models

CTMC enable not only diffusion, but also guidance, on both diffusion and flow models.

Nisonoff*, Xiong*, Allenspach*, Listgarten, *arXiv* 2024

Stephan Allenspach

Unlocking Guidance for Discrete State-Space Diffusion and Flow Models

Hunter Nisonoff Junhao (Bear) Xiong

CTMC enable not only diffusion, but also guidance, on both diffusion and

Unlocking Guidance for Discrete State-Space Diffusion and Flow Models

> unconditional predictor **Continuous** $\nabla_{x_t} \log p^{(\gamma)}(x_t|y) = \nabla_{x_t} \log p(x_t) + \gamma \nabla_{x_t} \log p(y|x_t)$ state-space J. Sohl-Dickstein et al., ICML (2015). P. Dhariwal* and A. Nichol*, NeurlPS (2021). Y. Song et al., ICLR (2021).

unconditional predictor $\log R_t^{(\gamma)}(x,\tilde x|y) = \log R_t(x,\tilde x) + \gamma \bigg(\log p(y|\tilde x,t) - \log p(y|x,t)\bigg)$ **Discrete** state-space

Nisonoff*, Xiong*, Allenspach*, Listgarten, *arXiv* 2024

Application in the sciences

Small molecules

DNA sequences
(enhancers)

Amino acids (proteins)

stability-guided inverse folding

Nisonoff*, Xiong*, Allenspach*, Listgarten, arXiv 2024

The real deal: testing+developing our ideas with wetlab collaborators

- David Schaffer (UC Berkeley; AAV for gene therapy)
- David Savage (UC Berkeley; CRISPR-Cas9 system)
- Phil Romero (U Wisconsin; enzymes for plastic degradation)
- Secure and Robust Biosystems Design Group (LL National Labs, Columbia University, University of Maryland, University of Minnesota)
- Andrew Yang (UCSF; blood-brain barrier permeable proteins)

Parting thoughts: ML + protein engineering

- 1. Exciting times!
- 2. Are we close to ChatGPT4 for protein engineering? No.
- 3. AF2/3 super important, but doesn't solve design task.
- 4. Predicting function (generally) will remain difficult problem for a long time.
- 5. Generative models cool and powerful, but don't solve the need to understand/extrapolate on designed properties from predictive models.
- 6. Far less data than in text, vision—will need to be much more clever for the answers.

The group of people who make it happen

Stephan Allenspach, PhD (postdoc)

James Bowden (PhD student)

David Brookes, PhD (now at Dyno)

Akosua Busia, PhD (now at Dyno)

Clara Fannjiang, PhD (now at Genentech)

Chloe Hsu, PhD (now at startup)

Hanlun Jiang, PhD (postdoc)

Hunter Nisonoff (PhD student)

Come join us!

- PhD apps via EECS, BioE, CCB programs.
- Postdocs contact me.

Junhao (Bear) Xiong (PhD student)