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Talk outline

1. Intro: protein engineering + ML



Protein engineering: therapeutics, environment, etc.

antibody therapeutics gene therapy virus
delivery (AAV)

Oxyge;'aation 'y : .‘ Carboxylation
antibiotics & biofuel  plastic recycling CO, biosequestration (RuBisCO)

production (PKS)



Fundamental difficulty: design space is nearly infinite

* Also highly rugged design space
= size scales as ~20*

» Discrete search space (no gradients)
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Successes in navigating this complex space

1. Nature: via evolution over millions of years.
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Successes in navigating this complex space

2. Various protein engineering strategies.



Protein engineering strategies emerging

. Computation (“data free"): physics-based
energy functions (e.g., Rosetta) to model protein

structure, and protein binding.
~199/-2023"ish (almost R.I.P) [2024 Nobel Prize]

. Wetlab: directed evolution to iteratively directly

design property of interest.
~1993-present (2018 Nobel Prize]

. Machine learning (augmented): generative
models; function prediction; structure
prediction, etc. ~2018(?)-present




Did AlphaFold2/3 “solve” protein engineering?

NEWS | 22 July 2021

DeepMind’s Al predicts structures e NO' don't typicaHy know which
for avast trove of proteins Hrotein structures we need.

AlphaFold neural network produced a ‘totally transformative’ database of more than 350,000

structures from Homo sapiens and 20 model organisms. .
* It did, would need:
sequence— structure

Ewen Callaway

y f =

structure—seqguence.
(decent ML solutions exist).

» Bottleneck challenge: predict
which proteinsjj have the
function we desire—often
extrapolatively.

 Alphafold2 was a breakthrough,
and is already usetul.




A suite of ML protein engineering problems
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A suite of ML protein engineering problems
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Some trends in ML + protein engineering

1. Representation learning:
un(self)supervised learning on large-
scale databases (millions of natural
proteins, with e.g., Transformers), or

families.

* This is (approx.) density estimation,
pg (sequence) through a bottleneck.
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Some trends in ML + protein engineering

2. (Conditional) generative models tfor sequences.

This is (conditional) density estimation, pg(sequence|C), (e.g.
auto-regressive Transtormer, Potts/VAE).

a) structure-conditioned,
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Some trends in ML + protein engineering

3. (Conditional) generative models for structure.

* Thisis (conditional) density estimation, pg(backbone|F),
(e.g. "Dittusion” models latest trend).

* Only as good as tunction prediction, p(F|backbone).

o Palred Wlth |nverse_f(—\|f\||mm +~ "nAt AFAANL AN A~—A
Colansed Primer | Published: 15 February 2024
ollapse
o Generative models for protein structures and
sequences

Chloe Hsu ™, Clara Fannjiang & Jennifer Listgarten ™
Nature Biotechnology 42, 196-199 (2024) | Cite this article
v X, -

[Ingraham et al. Nature 20223



Some trends in ML + protein engineering

4. ML to estimate function from sequence and/or function:

*e.g., pg(F|sequence). anen
» Few or no labelled data.

dog horse_ donkey

. rabbit kangaroo
PIg '

« Leverage evolutionary &Y' A/ i,
information*, or large
unsupervised models on pan-
oroteomic database.

*key part of AlphaFolaz/3



Some trends in ML + protein engineering

5. Structure prediction: Tilling the gaps left by AlphaFold?

» Orphan proteins (with no/few homologs).

* Protein-protein/DNA/RNA/small
molecule binding.

* Protein dynamics and
conformational distributions.




Unpacking some of the hype in Al+Science

Correspondence | Published: 25 January 2024

The perpetual motion machine of Al-generated data
and the distraction of ChatGPT as a ‘scientist’

Jennifer Listgarten ™

Nature Biotechnology (2024) | Cite this article
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2. ML-based design challenges



Analogy: can we trust “banana” design?

catalytic
efficiency




Naive design yields abstract art (“pathology-tinding”).

catalytic
efficiency

non—fo[d[ng prote[n 1. Brookes et al ICLM 2019 (CbAS)
2. Fannjiang et al NeurlPS 2020 (autofocus)



ML-based design challenges tackled in our group

1. A natural tension between leveraging the trained model for
extrapolation, vs knowing that the model is not trustworthy in many
areas of protein space (related to causality) [1,2].

1. Brookes et al ICLM 2019 (CbAS)
2. Fannjiang et al NeurlPS 2020 (autofocus)

find sequence specify properties

y1  protein expression
2 cell fitness

3 2 1 0 1 2 3 4 “stochastic oracle”



ML-based design challenges tackled in our group

1.

A natural tension between leveraging the trained model for
extrapolation, vs knowing that the model is not trustworthy in many
areas of protein space (related to causality) [1,2].

Also related to estimation of epistemic uncertainty (whereas we
typically think mostly of aleotoric) uncertainty (3, 4.

Brookes et al ICLM 2019 (CbAS)

Fannjiang et al NeurlPS 2020 (autofocus) |
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ML-based design challenges tackled in our group

1. A natural tension between leveraging the trained model for
extrapolation, vs knowing that the model is not trustworthy in many
areas of protein space (related to causality) [1,2].

2. Also related to estimation of epistemic uncertainty (whereas we
typically think mostly of aleotoric) uncertainty [3,4].

3. Suitable protein inductive biases when using neural networks [3,5,6,7].
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Fannjiang et al PNAS 2023(conformal) ; ‘
Aghazadeh et al Nat. Comm. 2021
Brookes et al PNAS 2022

Hsu et al Nat. Biotech. 2022
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ML-based design challenges tackled in our group

1.

A natural tension between leveraging the trained model for
extrapolation, vs knowing that the model is not trustworthy in many

rA _~1

areas of p .

Also relate IS Novelty Pred|Ctab|e? we
tygcally t Clara Fannjiang and Jennifer Listgarten

Suitable P Cold Spring Harb Perspect Biol 2023 [3,5,6,7].

Design of distributions instead of individual sequences [1,2,8].

Brookes et al ICLM 2019 (CbAS)
Fannjiang et al NeurlPS 2020 (autofocus) |
Nisinoff et al ACS Synth Bio 2023 (fv-BNN) /19 sequence specify properties
Fannjiang et al PNAS 2023(conformal) ; | ‘
Aghazadeh et al Nat. Comm. 2021
Brookes et al PNAS 2022

Hsu et al Nat. Biotech. 2022

y1  protein expression
2 cell fitness
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Zhu, Brookes et al Science Advances 2024 ‘stochastic oracle”



Conditioning by Adaptive Sampling for Robust Design

ntimately related to Estimation of
Distribution Algorithms (EDAS)

* Modern day “evolutionary” algorithms where
"mutations’, etc. replaced by generative model
[Baluja & Caruana '95]

e (CEM-rare event estimation [Rubinstein ‘99, ‘97]

e (CMA-ES [Hansen et al 03] —
Can be written as Expectation-Maximization i 7

[Brookes et al. 2019]

» Also more superficially to RL.

Brookes, Park & Listgarten ICML 2019

E

8 =

AN NI NN

David Brooks




Conditioning by Adaptive Sampling for Robust Design

EM-like algorithm emerges

Two technical challenges:

* log B (w101 [P(S]x)] .
1. 8 is in the expectation argmax log By xjo) [P(:5])

distribution. | -
2. MC estimates for rare argrana-xlﬁlp(xmm) P(S|x)log p(x|0)]
events.

l Anneal and MC

M
6+ — argmax Z P(S® |x§t)) logp(xgt) 0)
9 4
=1 weights

Brookes, Park & Listgarten ICML 2019 orMEE




Conditioning by Adaptive Sampling for Robust Design

distribution.

2. MC estimates for r -~ a ) [P(S]x) log p(x|6)]
events. '

l Anneal and MC

" P(SY[x{) log p(x{"|6)

1
weights

for MILE

Brookes, Park & Listgarten /Civie cuiy— |




Conditioning by Adaptive Sampling for Robust Design (CbAS)

How to handle non-trustworthy Y .\
predictive model in design problems

It have access data {x;, y;} used to trair
oracle, or prior “soft trust” information,
* then have prior knowledge about where

p(y|x) is likely to be accurate: near {x;},
so estimate p(x;) from those data.

p(x)

ACS Cent. Sci. 2018, 4, 268-276

Brookes, Park & Listgarten ICML 2019



Conditioning by Adaptive Sampling for Robust Design (CbAS)

HOW J[O handle nOn_trUStWOrthy NALKELILKS BNV TATIDHMME ¥P A VOLOE TRDK
prediCti\/e deel iﬂ design problems KTLKGLIKSKPVVAIVDMMDYPAPQLOE IRDK
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2. If don't have access to such data,

* then leverage implicit domain
knowledge, such as taking all proteins
known to fold, to estimate p(x;).

Brookes, Park & Listgarten ICML 2019
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Accounting for untrustworthy predictor "

Evolution

First approach (DbAS): Updated approach (CbAS) — ° \/
M
e+l — argmaXZP(S(t)|x§t)) logp(xf;t)\e)

o =1

M
argmax P (th) |0(0))
o = p(x"|ow)

Brookes, Park & Listgarten ICML 2019

P(SW |x§t)) log p(xz(-t) 19)



Autofocused oracles for model-based design

* Previously, predictive model is fixed because we are not
acquiring any new data.

* Should we consider changing the oracle as the
optimization progresses, even in a fixed data setting?

AT =) 05 e should!

»Related to accounting for domain shift (e.g., IWERM).

Fannjiang & Listgarten NeurlPS 2020




Auto-focused oracles for model-based design

Show how updating the predictive model for function can
help design, even when not collecting new data to train in.

@ ground-truth function ML—based d@Slgn haS
O nasdebcledoit "domain shift” as explore
X new regions of design space.

1 x— Poo (X
B = arg max = Z Py (i) log ps(y; | x;).

ges 1= po(xi)

VA AV
Z\ /\ IA)

Jest daty

Fannjiang & Listgarten, NeurlPS 2020

Clara Fannjiang



Augmenting Neural Networks with Priors on Functional Values

Coherent blending of function value prior information, such
as biophysical models, to Bayesian Neural Networks (BNN).

Fasy to implement, zero added cost. T e (%) + 0 (0) 1, ().

_ -1
P2 ) + 02 (x)

o(x) = (02, (0 + 02 (%)) -

METHOD LOG-LIKELIHOOD
NN —8.33 + 0.66
BNN —5.73+0.18
STACKING: BNN+NON-FUNCTIONAL PRIOR —8.63 4+ 0.33
st ! : ! S ! : ! ! STACKING: BNN+STABILITY PRIOR —8.61 +0.34
| _ fv-BNN (NON-FUNCTIONAL PRIOR) —1.82 + 0.00
reg u |a r B N N ]Cu N Ctl On-va | ue fv-BNN (STABILITY PRIOR) —1.53 £ 0.00

augmented BNN

:) .,/“V~ .
Hunter N|sonoﬁ

Nisonoff, Wang, Listgarten, ACS Synth Bio 2023




Contidence sets for model-based design, with
generalized conformal prediction

training data distribution test data distribution
Y regression model Y
“Prix a®
\&( | ® 'O
o%e ¢
Py Co design algo

X

Design necessitates moving to regions of input space far from
training data, where we trust the model’s predictions the least.

[Conformal prediction for the design problem, Clara Fannjiang, et al PNAS 2022]



Standard conformal prediction gives finite sample
guaranteed valid confidence sets (in expectation®).

« Under assumption of exchangeability of
training and test data, obtain confidence sets
on the labels,

0.5 B
IED()/test ~ O(Xtest)) il l -« " i
15

* (Generalizations for different train and test distributions,
but requires independence of train vs test

 Clara: generalize further to "design dependence”
(feedback covariate shift), allowing dependence.




Sketch of conformal prediction tor design dependence

Intuition: include all candidate labels, y, such that (x¢est, ¥), I00ks sufficiently similar to
the weighted training data as quantified by a user-crafted score, S;.

Si(Xtest, y) = [Yi — py (Xi)]

My : regression model trained on training + candidate test data points scores of n + 1
training + candidate test data points
score of candidate test data point n+1 l
C (Xtest) {y cR: Sn—l—l(Xtesta ) < QUANTILEl—a ( Z ’UJ,? (XteSt) 6Si(Xtestay)) }
=1 !

y(Xtest) o< v( X5 Z—i U{(Xtests9)}); 1 =1,...,m, weights that take into account that the

Xiest) X V( Xteost: £1: training and test data are
Wnt1 (Kiest) o€ 0(Kicat; Ziin), (i) from different distributions and
'U(X D) Px; D(—X) <— distribution of designed inputs (i) statistically dependent
px(X) induced by training model on D




Can guide hyperparameter choice (e.g. A) of design algorithm

e.g., use confidence interval width to assess trade-off between
entropy/diversity and expected predicted fitness

< 1.0 o A=6 1.00- Y o ~0.020
S o .
=
© ' . o
> JdAr=4 ~ 0.75- ¢ N -0.015 ®
0.8 / = p =
< Al @
) — <
O , © 0.50- \ -0.010 &
“CJ A=2 A=6 qE) \Y
@ = =
£06 —— £ | I =
S o, A=4 & 0.25- -0.005 4
- B ®= blue fluorescence
O é' =07 _p o= red fluorescence
€04 0.00- -0.000
0.25 050 0.75 1.00 1.25 0 2 4 §)
mean predicted fithess inverse temperature (A)

PxX:Z1.n (Xtest) X €Xp(A - pz,., (Xtest))



Sparse Epistatic Networks

b DNN regularization with

*Inject suitable inductive

e, niases for protein sequence
111111111 S functions.

= *[e. sparsity in "epistatic”

terms (aka Walsh-Hadamard

<= [ basis of features).

ut sequ
||||I‘||
Index of WH coefficient

|

¢,-norm of WH transform

Aghazadeh*, Nisonoff* et al, Nat Commm 2020
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3. Conditioning for design



ow to condition for design?

* Suppose | have a
generative model for
orotein sequences, p(x).

* Butlwantto generate

* p(x) small molecule
ibrary (e.g. Enamine)

from a conditional * p(x|y), conditioned on
generative model, desired chemical
p(x|y), conditioned on property (e.g, binding
structure. affinity)

 And | have access to
either {(x;, yi)}; or a * p(y|x) predict binding

predictive model p(y|x). affinity from molecule



How to condition for design?

‘hree ways to do this:

Start from scratch and directly train a conditional
generative model.

2. Start with unconditional model, and “update it" using
calls to the predictive model (e.g. CbAS [1-3], DPO [4]).

3. Freeze the unconditional model, and “guide” it at
generation time (e.g., diffusion models) [5-7].

| 4. Rafailov et al. NeurlPS 2023
1. Brookes, Park, Listgarten /CLM 2019 5 Sohl-Dickstein et al. /CML 2015

2. Fannjiang & Listgarten NeurlP5 2020 ¢ Dhariwal & Nichol Neur/PS 2021
3. Brookes, Busia, et al. GECCO 2020 7. Song et al. ICLR 2021



You are using Bayes rule!

-or any modeling strateqy, unless we
nake in conditioning, we are using Bayes
rule (even if we don't know it*).

"‘possibly approximately, such as in DPO, which could view as contrastive-based approximation to CbAS.



The beauty of classifier-guided diffusion

iffusion/score models estimate V,pg(x).

« Recall: c
» By pushing gradient through Bayes rule, we get rid of
the normalizing constant
P (X)pe(y[x)
V1o X|v) = Vlo

= Vxlog p:(x) + Vxlog p;(y

x)—V Ay

= Vxlog p;(x) + Vxlog p;(y|x).
e N
Unconditional model Guidance for conditioning

J. Ingraham et al. Nature 623.7989 (2023): 1070-1078.



What about diffusion on discrete state spaces?

LTERLYIGGPLTNSKGONCGYRRCRASGVLTT
SCGNTLTCYLKATAACRAAKLODCTMLVNGDD
LVVICESAGTQEDAAALRAFTEAMTRYSAPPG

MYTWTGALITPCAAEESKLPINPLSNSLLRHH OJN\
YDTRCFDSTVTESDIRVEESIYQCCDLAPEEA S5 I )

Challenge: for sequences, graphs, text, etc., V,.pg(x) not usetul.
Consequence I: Standard diffusion/score doesn’t work.
Consequence II: Cannot use guidance, Vypg (y]x) -

Some mitigating strategies:

a.
D.
C.

Relax x into real-valued space and snap back.
Diffusion(flow) on multinomial space [Stark et al. arXiv 2024].

Continuous-time Markov processes [Campbell et al. 2022, 2024]




Unlocking Guidance for Discrete
State-Space Diffusion and Flow Models

Hunter Nisonoff Junhao (Bear) Xiong

CTMC enable not only diffusion, but
also guidance, on both diffusion and

flow models.
Nisonoff*, Xiong*, Allenspach?*, Listgarten, arXiv 2024

Denoising
4 - :
hold . hold
3= - —— : 1jump .T_—’ .......
2" hold g[jump . =¢ o
0 . . hol .
1 - old :
; r : -
11 2 13 t

P(Tiyar=2|Tr =) = 05z + Re(x,Z)dt
- Campbell et al., NeurlPS (2022)
Stephan Allenspach Campbell*, Yim* et al.,, ICML (2024)



Unlocking Guidance for Discrete
State-Space Diffusion and Flow Models

Hunter Nisonoff Junhao (Bear) Xiong

g .
" |
’

CTMC enable not only diffusion, but
also guidance, on both diffusion and

= ="
-,  Bayes theorem: 3 ~ iy 2024
| - _ PV |Xeraer X )P (Xepaclxe)
P(Xeraclxe, y) = , r
Z P(VIxtsaer X0 )P (Xt 1 pelXe ) L.
Xt+At
1 |ﬂ>| hold
| ':[1 ':E2 -:[3 ’t

p(xt—l—dt zi‘xt :x) — 53:,51': + Rt(xa CE)dt
- Campbell et al., NeurlPS (2022)
Stephan Allenspach Campbell*, Yim* et al.,, ICML (2024)




Unlocking Guidance for Discrete
State-Space Diffusion and Flow Models

unconditional predictor

Conti
ONHINUOUS ¢ log p™ (4|y) = Vs, logp(@s) + YV, log p(yla:)

state-space

J. Sohl-Dickstein et al, ICML (2015).

P. Dhariwal* and A. Nichol*, NeurlPS (2021).
Y. Song et al, ICLR (2021).

unconditional predictor

Discrete . . .
g Bz, ly) = 1og Rl ) + 1 108 o012, 0) - og (a0

state-space

Nisonoff*, Xiong*, Allenspach*, Listgarten, asXiv2024
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DNA sequences
(enhancers)

Application in the sciences

Amino acids (proteins)
stability-guided inverse folding

Nisonoff*, Xiong*, Allenspach*, Listgarten, arXiv2024



The real deal: testing+developing our ideas with
wetlab collaborators

 David Schaffer (UC Berkeley; AAV for gene therapy)
* David Savage (UC Berkeley, CRISPR-Cas9 system)
e Phil Romero (U Wisconsin; enzymes for plastic degradation)

e Secure and Robust Biosystems Design Group (LL National Labs,
Columbia University, University of Maryland, University of Minnesota)

« Andrew Yang (UCSF; blood-brain barrier permeable proteins)




Parting thoughts: ML + protein engineering

O

Exciting times!
Are we close to ChatGPT4 for protein engineering? No.
AF2/3 super important, but doesn't solve design task.

Predicting function (generally) will remain difficult problem
for a long time.

. Generative models cool and powerful, but don't solve the

need to understand/extrapolate on designed properties
from predictive models.

Far less data than in text, vision—will need to be much more
clever for the answers.



The group of people who make it happen

StephanAllenspach, James Bowden  David Brookes, PhD  Akosua Busia, PhD Clr Frmjiang, PhD
PhD (postdoc) (PhD student) (now at Dyno) (now at Dyno)

(now at Genentech)

Come join us!

PhD apps via EECS,
Biok, CCB programs.

Postdocs contact me

Chloe Hsu, PhD Hanlun Jiang,  Hunter Nisonoff  Junhao (Bear) Xiong
(now at startup) PhD (postdoc) (PhD student) (PhD student)
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