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plastic recycling (PETase) CO2 biosequestration (RuBisCO) 

gene editing (CRISPR/Cas9)

Protein engineering: therapeutics, environment, etc.

antibody therapeutics gene therapy virus 
delivery (AAV)

payload

antibiotics & biofuel 
production (PKS)



Fundamental difficulty: design space is nearly infinite

#atoms in 
universe

#grains of sand 
on earth

~1080

~1018

• Also highly rugged design space 
⟹ size scales as ~20𝐿𝐿

• Discrete search space (no gradients)

𝐿𝐿



Successes in navigating this complex space

1. Nature: via evolution over millions of years.

green fluorescent 
protein folding itself

MSKGEELFTGVVPILV
ELDGDVNGHKFSVSG
EGEGDATYGKLTLKFIC
TTGKLPVPWPTLVTTF
SYGVQCFSRYPDHMK
QHDFFKSAMPEGYVQ
ERTIFFKDDGNYKTRA
EVKFEGDTLVRIELKGI
DFKEDGNILGHKLEYN
YNSHNVYIMADKQKN
GIKVNFKIRHNIEDGSV
QLADYQQNTPIGDGPV
LLPDNHYLSTQSALSK
DPNEKRDHMVLLEFVT
AAGITHGMDELYK



1. Nature: via evolution over millions of years.
2. Various protein engineering strategies.

Successes in navigating this complex space



Protein engineering strategies until now
i. Computation (“data free”): physics-based 

energy functions (e.g., Rosetta) to model protein 
structure, and protein binding.                       
~1997-2023’ish (almost R.I.P.) [2024 Nobel Prize]

ii. Wetlab: directed evolution to iteratively directly 
design property of interest.  
~1993-present [2018 Nobel Prize]

emerging

iii. Machine learning (augmented): generative 
models; function prediction; structure 
prediction, etc. ~2018(?)-present



Did AlphaFold2/3 “solve” protein engineering?

• No: don’t typically know which 
protein structures we need.

• If did, would need: 
structure→sequence.                     
(decent ML solutions exist).

sequence→ structure

• Bottleneck challenge: predict
which proteinsjj have the 
function we desire—often 
extrapolatively.

• AlphaFold2 was a breakthrough, 
and is already useful.



A suite of ML protein engineering problems

Prediction tasks

function 
prediction



backbone 
design

Design tasks

A suite of ML protein engineering problems



Some trends in ML + protein engineering
1. Representation learning: 

un(self)supervised learning on large-
scale databases (millions of natural 
proteins,  with e.g., Transformers), or 
families.

• This is (approx.) density estimation,
𝑝𝑝𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 through a bottleneck.

[Bepler et al., Cell Systems 2021]



Some trends in ML + protein engineering
2. (Conditional) generative models for sequences. 
This is (conditional) density estimation, 𝑝𝑝𝜃𝜃(sequence|C), (e.g. 
auto-regressive Transformer, Potts/VAE).
a) structure-conditioned,                                                  

aka “inverse folding” 
b) “control tag” conditioned,                                           e.g., 

protein family



Some trends in ML + protein engineering
3. (Conditional) generative models for structure. 
• This is (conditional) density estimation, 𝑝𝑝𝜃𝜃(backbone|F), 

(e.g. “Diffusion” models latest trend).
• Only as good as function prediction, 𝑝𝑝(𝐹𝐹|𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏).
• Paired with inverse-folding to get sequence.

[Ingraham et al. Nature 20223



Some trends in ML + protein engineering
4. ML to estimate function from sequence and/or function:

• e.g., 𝑝𝑝𝜃𝜃(𝐹𝐹|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠).
• Few or no labelled data.
• Leverage evolutionary 
information*, or large 
unsupervised models on pan-
proteomic database.

*key part of AlphaFold2/3



Some trends in ML + protein engineering
5. Structure prediction: filling the gaps left by AlphaFold2

• Orphan proteins (with no/few homologs).
• Protein-protein/DNA/RNA/small 

molecule binding.
• Protein dynamics and            

conformational distributions.



Unpacking some of the hype in AI+Science
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Analogy: can we trust “banana” design?

desired property
cell fitness

…

catalytic 
efficiency



desired property
cell fitness

…

Naïve design yields abstract art (“pathology-finding”).

catalytic 
efficiency

non-folding protein 1. Brookes et al ICLM 2019 (CbAS)
2. Fannjiang et al NeurIPS 2020 (autofocus)



ML-based design challenges tackled in our group
1. A natural tension between leveraging the trained model for 

extrapolation, vs knowing that the model is not trustworthy in many 
areas of protein space (related to causality) [1,2]. 

1. Brookes et al ICLM 2019 (CbAS)
2. Fannjiang et al NeurIPS 2020 (autofocus)
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ML-based design challenges tackled in our group
1. A natural tension between leveraging the trained model for 

extrapolation, vs knowing that the model is not trustworthy in many 
areas of protein space (related to causality) [1,2]. 

2. Also related to estimation of epistemic uncertainty (whereas we 
typically think mostly of aleotoric) uncertainty [3,4].

3. Suitable protein inductive biases when using neural networks [3,5,6,7].
4. Design of distributions instead of individual sequences [1,2,8].

1. Brookes et al ICLM 2019 (CbAS)
2. Fannjiang et al NeurIPS 2020 (autofocus)
3. Nisinoff et al ACS Synth Bio 2023 (fv-BNN)
4. Fannjiang et al PNAS 2023(conformal)
5. Aghazadeh et al Nat. Comm. 2021
6. Brookes et al PNAS 2022
7. Hsu et al Nat. Biotech. 2022
8. Zhu, Brookes et al Science Advances 2024

2023



Conditioning by Adaptive Sampling for Robust Design

EDA: replace search over 𝑥𝑥 with search over 𝜃𝜃 in 𝑝𝑝 𝑥𝑥 𝜃𝜃

Suitable for library design (but no only).
Model can sample broad areas of sequence space.
Does not require gradients of 𝑓𝑓.
Can use tools from probabilistic modelling.
Can naturally add an entropic regularizer on 𝑝𝑝(𝑥𝑥|𝜃𝜃).

Brookes, Park & Listgarten ICML 2019
David Brookes

Intimately related to Estimation of 
Distribution Algorithms (EDAs)
• Modern day “evolutionary” algorithms where 

“mutations”, etc. replaced by generative model 
[Baluja & Caruana ‘95]

• CEM–rare event estimation [Rubinstein ‘99, ‘97]
• CMA-ES [Hansen et al. ‘03]
• Can be written as Expectation-Maximization 

[Brookes et al. 2019]
• Also more superficially to RL.



Two technical challenges:
1. 𝜃𝜃 is in the expectation 

distribution.
2. MC estimates for rare 

events.

EM-like algorithm emerges

≥

Anneal and MC

weights 
for MLE

Conditioning by Adaptive Sampling for Robust Design

Brookes, Park & Listgarten ICML 2019



Two technical challenges:
1. 𝜃𝜃 is in the expectation 

distribution.
2. MC estimates for rare 

events.

EM-like algorithm emerges

≥

Anneal and MC

weights 
for MLE

Conditioning by Adaptive Sampling for Robust Design

Brookes, Park & Listgarten ICML 2019

Assumes regression model is unbiased 
and has calibrated uncertainty estimates



Brookes, Park & Listgarten ICML 2019

How to handle non-trustworthy 
predictive model in design problems

If have access data {𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖} used to train 
oracle, or prior “soft trust” information,

• then have prior knowledge about where 
𝑝𝑝(𝑦𝑦|𝑥𝑥) is likely to be accurate: near 𝑥𝑥𝑖𝑖 , 
so estimate 𝑝𝑝(𝑥𝑥𝑖𝑖) from those data.

Conditioning by Adaptive Sampling for Robust Design (CbAS)

𝑝𝑝 𝑦𝑦 𝑥𝑥

𝑝𝑝(𝑥𝑥)



Brookes, Park & Listgarten ICML 2019

How to handle non-trustworthy 
predictive model in design problems

2. If don’t have access to such data,
• then leverage implicit domain 

knowledge, such as taking all proteins 
known to fold, to estimate 𝑝𝑝(𝑥𝑥𝑖𝑖). 

Conditioning by Adaptive Sampling for Robust Design (CbAS)



Accounting for untrustworthy predictor

≥

Anneal and MC

First approach (DbAS): Updated approach (CbAS)

=

=

Anneal and 
MC

Brookes, Park & Listgarten ICML 2019



• Previously, predictive model is fixed because we are not 
acquiring any new data.

• Should we consider changing the oracle as the 
optimization progresses, even in a fixed data setting?

Related to accounting for domain shift (e.g., IWERM).

yes we should!

Fannjiang & Listgarten NeurIPS 2020

Autofocused oracles for model-based design



Clara Fannjiang

Show how updating the predictive model for function can 
help design, even when not collecting new data to train in.

Auto-focused oracles for model-based design

Fannjiang & Listgarten, NeurIPS 2020

ML-based design has 
“domain shift” as explore 
new regions of design space.



Hunter Nisonoff

Coherent blending of function value prior information, such 
as biophysical models, to Bayesian Neural Networks (BNN).

regular BNN

Augmenting Neural Networks with Priors on Functional Values

Nisonoff, Wang, Listgarten, ACS Synth Bio 2023

function-value 
augmented BNN

Easy to implement, zero added cost.



Design necessitates moving to regions of input space far from 
training data, where we trust the model’s predictions the least.

Confidence sets for model-based design, with 
generalized conformal prediction

[Conformal prediction for the design problem, Clara Fannjiang, et al PNAS 2022]

design algo



Standard conformal prediction gives finite sample 
guaranteed valid confidence sets (in expectation*).

• Under assumption of exchangeability of 
training and test data, obtain confidence sets 
on the labels,

• Generalizations for different train and test distributions, 
but requires independence of train vs test

• Clara: generalize further to “design dependence” 
(feedback covariate shift), allowing dependence.



Sketch of conformal prediction for design dependence

score of candidate test data point
scores of all
n + 1 data points 

weights that take into account that the 
training and test data are
(i) from different distributions and
(ii) statistically dependent 

Intuition: include all candidate labels, y, such that (𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑦𝑦), looks sufficiently similar to 
the weighted training data as quantified by a user-crafted score, 𝑆𝑆𝑖𝑖 .

: regression model trained on training + candidate test data points

score of candidate test data point

scores of n + 1
training + candidate test data points 

distribution of designed inputs 
induced by training model on D



Can guide hyperparameter choice (e.g. 𝜆𝜆) of design algorithm 
e.g., use confidence interval width to assess trade-off between 
entropy/diversity and expected predicted fitness



Sparse Epistatic Networks

Aghazadeh*, Nisonoff* et al, Nat Comm 2020

• Inject suitable inductive 
biases for protein sequence 
functions.

• i.e. sparsity in “epistatic” 
terms (aka Walsh-Hadamard
basis of features).
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How to condition for design?
• Suppose I have a 

generative model for 
protein sequences, 𝑝𝑝(𝑥𝑥).

• But I want to generate 
from a conditional 
generative model, 
𝑝𝑝(𝑥𝑥|𝑦𝑦), conditioned on 
structure.

• And I have access to 
either 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖 or a 
predictive model 𝑝𝑝(𝑦𝑦|𝑥𝑥).

• 𝑝𝑝(𝑥𝑥) small molecule  
library (e.g. Enamine)

• 𝑝𝑝(𝑥𝑥|𝑦𝑦), conditioned on 
desired chemical 
property (e.g, binding 
affinity)

• 𝑝𝑝(𝑦𝑦|𝑥𝑥) predict binding 
affinity from molecule



How to condition for design?
Three ways to do this:
1. Start from scratch and directly train a conditional 

generative model. 
2. Start with unconditional model, and “update it” using 

calls to the predictive model (e.g. CbAS [1-3], DPO [4]).
3. Freeze the unconditional model, and “guide” it at 

generation time (e.g., diffusion models) [5-7].

1. Brookes, Park, Listgarten  ICLM 2019 
2. Fannjiang & Listgarten NeurIPS 2020
3. Brookes, Busia, et al. GECCO 2020 

4. Rafailov et al. NeurIPS 2023
5. Sohl-Dickstein et al. ICML 2015
6. Dhariwal & Nichol NeurIPS 2021
7. Song et al. ICLR 2021



You are using Bayes rule!

For any modeling strategy, unless we 
bake in conditioning, we are using Bayes 
rule (even if we don’t know it*).

*possibly approximately, such as in DPO, which could view as contrastive-based approximation to CbAS.



The beauty of classifier-guided diffusion

• Recall: diffusion/score models estimate 𝛻𝛻𝑥𝑥𝑝𝑝𝜃𝜃(𝑥𝑥).
• By pushing gradient through Bayes rule, we get rid of 

the normalizing constant

J. Ingraham et al.  Nature 623.7989 (2023): 1070-1078.

Unconditional model Guidance for conditioning



What about diffusion on discrete state spaces?
MYTWTGALITPCAAEESKLPINPLSNSLLRHH
YDTRCFDSTVTESDIRVEESIYQCCDLAPEEA
LTERLYIGGPLTNSKGQNCGYRRCRASGVLTT
SCGNTLTCYLKATAACRAAKLQDCTMLVNGDD
LVVICESAGTQEDAAALRAFTEAMTRYSAPPG

Challenge: for sequences, graphs, text, etc., 𝛻𝛻𝑥𝑥𝑝𝑝𝜃𝜃(𝑥𝑥) not useful.
Consequence I: Standard diffusion/score doesn’t work.
Consequence II: Cannot use guidance, 𝛻𝛻𝑥𝑥𝑝𝑝𝜙𝜙(𝑦𝑦|𝑥𝑥) .

Some mitigating strategies: 
a. Relax 𝑥𝑥 into real-valued space and snap back.
b. Diffusion(flow) on multinomial space [Stark et al. arXiv 2024].
c. Continuous-time Markov processes [Campbell et al. 2022, 2024]



Unlocking Guidance for Discrete 
State-Space Diffusion and Flow Models

jump
hold

jump

hold

Hunter Nisonoff Junhao (Bear) Xiong

Stephan Allenspach

CTMC enable not only diffusion, but 
also guidance, on both diffusion and 
flow models.

Campbell*, Yim* et al., ICML (2024)
Campbell et al., NeurIPS (2022)

Nisonoff*, Xiong*, Allenspach*, Listgarten, arXiv 2024
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Unlocking Guidance for Discrete 
State-Space Diffusion and Flow Models

Nisonoff*, Xiong*, Allenspach*, Listgarten, arXiv 2024



Application in the sciences

Small molecules

Amino acids (proteins)
stability-guided inverse folding

DNA sequences 
(enhancers) Nisonoff*, Xiong*, Allenspach*, Listgarten, arXiv 2024



The real deal: testing+developing our ideas with 
wetlab collaborators

• David Schaffer (UC Berkeley; AAV for gene therapy)
• David Savage (UC Berkeley; CRISPR-Cas9 system)
• Phil Romero (U Wisconsin; enzymes for plastic degradation)
• Secure and Robust Biosystems Design Group (LL National Labs, 

Columbia University, University of Maryland, University of Minnesota)
• Andrew Yang (UCSF; blood-brain barrier permeable proteins)

+



Parting thoughts: ML + protein engineering
1. Exciting times!
2. Are we close to ChatGPT4 for protein engineering? No.
3. AF2/3 super important, but doesn’t solve design task.
4. Predicting function (generally) will remain difficult problem 

for a long time.
5. Generative models cool and powerful, but don’t solve the 

need to understand/extrapolate on designed properties 
from predictive models.

6. Far less data than in text, vision—will need to be much more 
clever for the answers.



David Brookes, PhD 
(now at Dyno)

The group of people who make it happen

Hunter Nisonoff
(PhD student)

Junhao (Bear) Xiong
(PhD student)

Stephan Allenspach, 
PhD (postdoc)

Akosua Busia, PhD
(now at Dyno)

Chloe Hsu, PhD
(now at startup)

Clara Fannjiang, PhD
(now at Genentech)

Hanlun Jiang, 
PhD (postdoc)

James Bowden
(PhD student)

Come join us! 
• PhD apps via EECS, 

BioE, CCB programs.
• Postdocs contact me.
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