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Emergence of In-Context Learning

Olsson et al. 2022, In-context Learning and Induction Heads

‣ In-context learning ability emerges at depth 2


‣ This ability emerges at consistent times during training regardless of depth


‣ [Olsson et al. 2022] connected this to the emergence of induction heads
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Induction Heads
Mr and Mrs Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they 
just didn't hold with such nonsense. Mr Dursley was the 
director of a firm called Grunnings, which made drills. He 
was a big, beefy man with hardly any neck, although he 
did have a very large moustache. Mrs Durs___ley

Given a prompt  the induction head:

1. Scans for previous occurrences of : 

2. Returns the next token: 

[…, A, B, …, A,?]
A […, A, B, …, A,?]

[…, A, B, …, A, B]

Olsson et al. 2022, In-context Learning and Induction Heads

In-context Markov structure: use historical patterns of tokens following  to predict st st+1



In-Context Learning Function Classes [Garg et al. 2022]

x1 y1 x2 y2 ⋯ xn yn xtest ?
x1 x2 xn

For each sequence:


(1) sample  from a random learning problem


(2) predict  given 

(x1, y1), …, (xn, yn), (xtest, ytest)

ytest (x1, y1), …, (xn, yn), xtest

Garg et al. 2022, What Can Transformers Learn In-Context? A Case Study of Simple Function Classes

x1 y1 x2 y2 x3 y3

latent causal structure



Sequences with Causal Structure

s1 s2 s3 s4 s5 s6

Markovian causal structure

x1 y1 x2 y2 x3 y3

in-context learning a function class

Motivating Question: 
How do Transformers learn such causal structure from data?

s1 s2 s3 s4 s5 s6

more complex causal structure

Our Approach: 

1. Construct a family of ICL tasks that require learning causal structure


2. Analyze the dynamics of gradient descent on a Transformer



The Simplest Task: In-Context Markov Chains

s1 s2 s3 s4 s5 s6

in-context Markov chain

To generate each sequence:


‣ Sample a transition kernel  from some prior (e.g. Dirichlet)


‣ Sample  from its stationary measure


‣ For : sample 

π

s1

i = 1,…, T − 1 si+1 ∼ π( ⋅ |si)

Natural Estimator: compute the empirical transition counts in-context 

̂p(s′￼|s) =
#s → s′￼ transitions in the sequence

#s in the sequence



More Complex Causal Structures
Causal Graph: 

‣  is a directed acyclic graph on 


‣ Each position  has at most one parent 


Sequence Generation: 

‣ Draw , a prior over transition matrices


‣ For each , sample . If , sample 


‣ Task: predict  given 

𝒢 1,…, T

i p(i) < i

π ∼ Pπ

i si ∼ π( ⋅ |sp(i)) p(i) = ∅ si ∼ μπ

st+1 ∼ π( ⋅ |sT) s1, …, sT

s1 s2 s3 s4 s5 s6

complex causal structure

Sequences share the same dependence structure, but have different transitions π



More Complex Causal Structures

How do transformers recover  from the dataset?𝒢

[a b a c b a ⋯]
[c a b c a a ⋯]
[c c a c a c ⋯]
[b b c a b c ⋯]
[c c a a c a ⋯]
[b c a c b b ⋯]
[a b b b c b ⋯]

Dataset Each sequence has the same dependence 

structure but different transitions π

To solve the task, the learner needs to:


1. Recover the latent causal graph 


2. estimate the transition  in-context

𝒢

π( ⋅ |sT)

s1 s2 s3 s4 s5 s6

complex causal structure

Given , can compute the empirical transition counts in-context
𝒢

̂p(s′￼|s) =
#s → s′￼ transitions in graph

# parents equal to s



Brief Detour: Residual streams

 where attn(X) = PX P = softmax(mask(XQKT X))

X ← X+
X ← X+

attn(X)
mlp(X)

V
WO

attn(X)
mlp(X)

V
WO

The residual stream is high 

dimensional and can be divided 

into different subspaces

Olsson et al. 2022, A Mathematical Framework for Transformer Circuits

Challenge: the residual stream becomes 

“entangled” when these subspaces overlap



The Disentangled Transformer
1. Use one-hot token+positional embeddings

2. Replace linear projections with concatenation

Completely impractical: the embedding dimension doubles at every step

‣ weights are directly interpretable


‣ easier to reason about the flow of information through the model


‣ useful tool for theory and mechanistic interpretability




For :






Return 

xi = [onehot(si) |onehot(i)]

i = 1,…, L
xi ← [xi, attn(X)i]
xi ← [xi, mlp(X)i]

WOxT

⏟ ⏟token position
Theorem: 

Transformers with  heads and 
 layers have the same 

expressive power as 
disentangled transformers with 

 heads and  layers.

H
L

H L

similar model considered in Friedman et al. 2023, Learning Transformer Programs



How do Transformers solve this task?
Causal Graph First Attention Second Attention

Readout Layer
input first attention second attention

input attention 1
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How do Transformers solve this task?
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The first attention matrix is the adjacency matrix for the causal graph!



How do Transformers solve this task?
Causal Graph First Attention Second Attention

Readout Layer
input first attention second attention

input attention 1
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The first attention matrix is the adjacency matrix for the causal graph!



How Transformers Solve This Task

a b a c b a
a b ca b

input

attention 1

First Attention: 
copy each parent



How Transformers Solve This Task

a b a c b ab a
a b ca

Second Attention: 
compare to each parent

b
a

b + c
2

a
a
b

b
input

attention 1

attention 2



attention 2

How Transformers Solve This Task

a b a c b a
a b ca

b
a

b + c
2

a
a
b

b

Readout Layer: output empirical counts

ℙ[sn+1 = b] =
1
2

, ℙ[sn+1 = c] =
1
2

attention 1

input



Gradient Descent Dynamics
Causal Graph First Attention Second Attention

Readout Layer
input first attention second attention

input attention 1
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Main Result
Loss: cross-entropy


L(θ) = − 𝔼π,s1:T ∑
s′￼∈[S]

π(s′￼|sT)log( fθ(s1:T)s′￼)

Theorem (informal): If  almost surely over the prior ,


(1) There exists  such that GD returns  satisfying:





(2) For any input sequence, the first attention pattern  satisfies:


,


     where  is the adjacency matrix of the causal graph.

min
s,s′￼

π(s |s′￼) ≥ γ/S Pπ

c > 0 θ
L(θ) − OPT ≲

1
Tcγ

A ∈ ℝT×T

∥A − G∥∞ ≲
1
T

G

Corollary: Transformers trained on in-context Markov chains learn an induction head



OOD Generalization

Corollary: 
Let  satisfy . Then with high probability over draw of :


 


Note that  does not need to be in the support of .

π̃ min
s,s′￼

π̃(s′￼∣ s) ≥ γ/S s1:T

f ̂θ(s1:T) − π̃( ⋅ |sT)
∞

≲
1

Tcγ

π̃ Pπ

Mechanistic understanding leads to provable OOD generalization:

Even if you learn an induction head on a very restricted class of sequences, this 
circuit automatically generalizes out of distribution to arbitrary sequences



How Transformers Learn Causal Structure
Key Lemma: For , the gradient of the first attention layer is approximately


.

j < i

∇A(1)
ij

L(θ) ≈ − I2
χ (si; sj |π) where Iχ2(si; sj |π) := 𝔼π ∑

si,sj

ℙ[si, sj]2

ℙ[si]ℙ[sj]
− 1

 mutual information between the token 
at position  and the token at position 

χ2

i j

∇A(1)L(θ)

i

j

how much token  attends to token i j

Corollary: Each position  will eventually 
attend to the position  that maximizes 
the  mutual information between  and 

i
j < i

χ2 si sj



How Transformers Learn Causal Structure
Corollary: Each position  will eventually attend to the position  that 
maximizes the  mutual information between  and 

i j < i
χ2 si sj

s1 s2 s3 s4 s5 s6

in-context Markov chain

Data Processing Inequality: 

Passing through a channel can only decrease mutual information:


… < I2
χ (s6; s3) < I2

χ (s6; s4) < I2
χ (s6; s5)

‣ Each token will attend to the token immediately before it


‣ The transformer learns an induction head!



How Transformers Learn Causal Structure
Corollary: Each position  will eventually attend to the position  that 
maximizes the  mutual information between  and 

i j < i
χ2 si sj

s1 s2 s3 s4 s5 s6

more complex causal structure

Data Processing Inequality: 

Passing through a channel can only decrease mutual information:


 is maximized at , the parent of Iχ2(si, sj) j = p(i) i

‣ The first attention layer learns the causal graph


‣ Special case of the well-known Chow-Liu algorithm (Chow & Liu, 1968) for 

learning tree-structured graphical models!



Beyond Tree Graphs — Multiple Parents & n-grams

s1 s2 s3 s4 s5 s6

in-context 3-gram

‣ Each node can have multiple parents in the causal graph


‣ Example: n-gram language models

Construction & Experiments: Each head attends to a different parent

Causal Graph First Head Second Head



Beyond Tree Graphs — Multiple Parents & n-grams

s1 s2 s3 s4 s5 s6

in-context 4-gram

‣ Each node can have multiple parents in the causal graph


‣ Example: n-gram language models

Construction & Experiments: Each head attends to a different parent

Causal Graph First Head Second Head Third Head



Beyond Tree Graphs — Multiple Parents & n-grams

‣ Each node can have multiple parents in the causal graph


‣ Example: n-gram language models

Construction & Experiments: Each head attends to a different parent

Causal Graph First Head Second Head



Gradient Descent Dynamics?

‣ Unfortunately, analyzing the GD dynamics is very challenging 🤕


‣ Dynamics/initialization must somehow break the symmetry between 

the multiple heads. Similar to learning a teacher net with  neurons


‣ (Edelman et al., 2024) observe sequential learning behavior. Model first 

learns best unigram, then bigram, and so on: 

H



Takeaways
‣ Transformers learn causal structure by estimating and comparing the  

mutual information between between tokens at different positions


‣ For Markovian sequences, Transformers learn induction heads


‣ Connection between the GD dynamics and graphical model estimation


‣ The disentangled transformer may be a useful tool for future theory

χ2

Interesting Directions:
‣ How general is this mechanism? Does it extend to more realistic datasets?


‣ How do transformers learn causal structure beyond trees?


‣ More interesting causal structures beyond absolute positional embeddings


