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Unknown futures of generalisation?

A physicist’s bias: focus on understanding simple problems
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F" Y Atthe working on AGI (Artificial Gaussian Intelligence)
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Multi-index functions and the
necessity of feature learning
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Multi-index functions...
Target function: Y ~ P*(Y | H = W*X) _

y =g*(h™) h*=x-w"
C fX) = h*

\ . f*(x) = |h*|
‘ :
/;

y =f*x) = g*(h* = W*x)
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Multi-index functions...
Target function: Y ~ P*(Y | H = W*X) _

y = g*(h™) W =x-w*
y =f*x) = g*(h* = W*x) . R =
- [F(x) = |h™]
\ . f*(x) =sign(h* + \/ZZ),Z ~ N (0,1)
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Multi-index functions...
Target function: Y ~ P*(Y | H = W*X) _

y = g*(h™) W =x-w*
Y= =gt = W T
‘ - [F(x) = |h™]
‘%\ . f*(x) = sign(h* +\/AZ),Z ~ #(0,1)
N W
7
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Multi-index functions...
Target function: Y ~ P*(Y | H = W*X) _

y = g*(h™) W =x-w*
N T
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Multi-index functions...
Target function: Y ~ P*(Y | H = W*X) _

* *(h* — W* Y= g*(h*) W =x-w"
=S =gt =W T
‘ - [F(x) = |h™]
‘%\ . f*(x) = sign(h* +\/AZ),Z ~ #(0,1)
N W
7
@ | Multi-index examples

:&7 g o y = g* (B hE, %) B =x W
: - o fFX) =h{+|hy]|

‘/VV* e Rer f*(X) — h* _|_ Zh* + h*h* + 3(}1*)2

x € RY . ) = 2 o(h*) ++/AZ

Dataset 2 = {x,,y, = f*(x)}/_, , Gaussian data x* ~ .#/(0,1,), High-d limit d — oo

can we learn these functions from data?



Architecture: A two-layer neural net

Target function: Y ~ P*(Y | H = W*X) b

y = f(X) = Z a,0,((Wj, X))

y=f*(x) = g*(h* = W*x) -

o
o |
‘/VV* = Rrxd

x € R

0
g
]

Dataset 2 = {x,,y, = f*(x)}/_, , Gaussian data x* ~ .#/(0,1,), High-d limit d — oo

. can we learn these functions from data?



Lazy approach: not training the first layer

Random features y=f(x) = a- o(Wx)

[Balcan,Blum, Vempala ‘06, Rahimi-Recht ’17...]

No training of the first layer: W is fixed
A p p
y=fx) = Z a,0((W;,X)) = Z a, Dk (x)

Computationally easy (linear regression)

W € RpPxd
x € R?

Very popular setting among theoreticians

Equivalent to neural Tangent Kernel/Lazy Regime/Kernel methods/ etc..
[Jacot, Gabriel, Hongler ’18; Lee, Jaehoon, et al. 18; Chizat, Bach ’19,...]



Unfortunately: very limited

Theorem (Informal) [Mei, Misiakiewicz, Montanari *22]

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can
only learn a polynomial approximation of f *of degree k as long as min(n, p) = O(d")

F*(%) = cst + 2 uOh* + Z uORERE + ) uOR*hE S+

ijk
ijk

See also [El Karaoui '10; Mei-Montanari '19; Gerace, Loureiro, FK, Mézard, Zdeborova '20; Jacot,
Simsek, Spadaro, Hongler, Gabriel '20; Hu, Lu, '20; Dhifallah, Lu '20; Loureiro, Gerbelot, Cui, Goldt, FK,
Mézard, Zdeborova '21; Montanari & Saeed '22; Xiao, Hu, Misiakiewicz, Lu, Pennington '22; Dandi,
Stephan, FK, Loureiro, Zdeborova '23; Aguirre-Lopez, Franz, Pastore '24]
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Unfortunately: very limited

For Gaussian data,
lazy training is just polynomial /~ A (;;
fitting in disguise

Theorem (Informal) [Mei, Misiakiewicz, Montanari *22]

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can
only learn a polynomial approximation of f *of degree k as long as min(n, p) = O(d")

F*(%) = cst + 2 uOh* + Z uPnin + Y uOn i +

ijk
ijk

(n,p)=0d)  (n,p) = 0> (n,p) = O(d”)

See also [El Karaoui '10; Mei-Montanari '19; Gerace, Loureiro, FK, Mézard, Zdeborova '20; Jacot,
Simsek, Spadaro, Hongler, Gabriel '20; Hu, Lu, '20; Dhifallah, Lu '20; Loureiro, Gerbelot, Cui, Goldt, FK,
Mézard, Zdeborova '21; Montanari & Saeed '22; Xiao, Hu, Misiakiewicz, Lu, Pennington '22; Dandi,
Stephan, FK, Loureiro, Zdeborova '23; Aguirre-Lopez, Franz, Pastore '24]



A single gradient step can change the story

VAVt=1 — Wt=0 d
2n

Virl D O = fipmi(X,))?
H

[Damian, Lee, Soltanolkotabi ’22,Ba, Erdogdu, Suzuki, Wang, Wu, Yang '22; Moniri et al ’23]



A single gradient step can change the story

Single index model y = sin(h™)

cr=1 _ vii=0 1 A 2
W=l — 1 -~V D 0 = fipm(x)
U

2.00

1.75 A1

1.50 1

1.25 A

1.00 A

0.75 A1

0.50

0.25 A

0.00

- == jnitialization
- trained (theory)
trained (simulations)

Spectrum of the
Feature covariance
before & after training

eigenvalue

n = O(d) (Maximal Update parametrization [Yang et al., 2022])

* Long tail in the spectrum of feature covariance
(+ large outlying eigenvalue, not represented).

* Ties in with numerous previous empirical observations on deep
learning [Martin and Mahoney, 21, Martin et al., 21, Want et al ’24]

* Drastic improvement of generalisation for single index models:
Can fit the target function g(h*) over a random (over a’) basis

| A .
ud) =erf a=0—) & ui(d) =@V’

l

[ Cui, Pesce, Dandi, FK, Lu, Zdeborova, Loureiro ’'24; Dandi, Pesce, Cui, FK, Lu, Loureiro '24]
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Feature learning helps: a heuristic argument

Assume W in the two layer correlates with some of target directions h,, C h*
What do we expect ?

In the learned subspace In the not-learned subspace
y =~ a - o(Wh,, + noise) y =~ a-o(Wx)

(Noisy) Random feature in

Random feature in
(finite) reduced space d°!' = r

"Cannot do better than a polynomial 4
of degree K with min(n, p) = O(d")

== —

Can fit well the target function as
long as p and n are large enough!

No generic proof, but this is the behaviour typically observed. Precise rigorous statement in e.g.:
[Chen at al '20+21, Damian, Lee, Soltanolkotabi '22,Ba, Erdogdu, Suzuki, Wang, Wu, Yang '22,
Abbe, Boix-Adsera, and Misiakiewicz ’22+'23, Dandi et at '23 + '24]
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How hard is feature learning?
A classification of
easy & hard target functions



Toy problem : we know the function, not the directions

Target function: Y ~ P*(Y|H* = W*X)

‘§
%2
2 S

x € R

=f*(x) = g*(h* = W*x)

L/‘V“’

vv/

L/

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]
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Toy problem : we know the function, not the directions

Target function: Y ~ P*(Y|H* = W*X)

— ~ We know g*...

=f*(x) = g*(h* = W*x)
'\ ~___ -butnot W*

A long list of physicists over the last 35 years
‘ worked on this problems

[Derrida Gardner ’89 ...
... Parisi, Mezard, Sompolinsky, Zechinna...]

s, vw% \x\vw%

‘%7 %
‘ W* = Rrxd

x € R

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]



Toy problem : we know the function, not the directions

Target function: Y ~ P*(Y|H* = W*X)

— ~ We know g*...

=f*(x) = g*(h* = W*x)
'\ ~___ -butnot W*

A long list of physicists over the last 35 years
‘ worked on this problems

[Derrida Gardner ’89 ...
... Parisi, Mezard, Sompolinsky, Zechinna...]

° n= O(d) samples are sufficient !

~ W// \W%

‘%7 %
‘ W* = Rrxd

x € R

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]



Toy problem : we know the function, not the directions

Target function: Y ~ P*(Y|H* = W*X)

— ~ We know g*...

y=f*(x) = g*(h* = W*x) .
'\ e but not W™!

A long list of physicists over the last 35 years
worked on this problems
[Derrida Gardner ’89 ...

... Parisi, Mezard, Sompolinsky, Zechinna...]

n= O(d) samples are sufficient !

Theorem 7.1 (Bayes-optimal correlation, Theorem 3.1 in Anbin et al. [2019], informal). Let (z:,y:)ic . denote
n wi.d. samples from the mulli-index model defined v 1. Denole by Whe = E[W|X,y] € RP*? the mean of the
posterior marginals eq. (7). Then, under Assumption 1 in the high-dimensional asymptotic limit where n,d — oc
with fived ratio a = nfa, the asymptotic correlation between the posterior mean and W™ :

1. T
M* = dlu}iE [EWWW" ] (23)
X € U 15 the solution of the following supinf problem.:

1 -1 . 1 -
sup inf {—;TrMM —3 log‘(Ip +M) + §IVI +():Hy(M)} (24)

Mes)HMeSE

where Hy (M) = E¢. aro,1,) [Hy (ml€)], with Hy (M) the the conditional entropy of the cffective p-dimensional
estimalion problemn eq. (10).

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]



What about efficient iterative algorithms?

Target function: Y ~ P*(Y|H* = W*X)
— ~ We know g*
=f*(x) = g*(h* = W*x)

'\ ... but not W*!
-

‘ Solution of 'Solvable model of a spin glass'

D. ). Thouless, P. W. Andersan & R. G. Palmer

To cite this article: D. J. Thouless , P, W. Andarson & R, G, Palmar (1277) Solution of "Selvable
mode! of a spin glass’, Philosophical Magazine, 35:3. 583-601, DCI: 10.1080/14786437 708735982

The estimation error of general first order methods

L/ \VV/% \N\vw

Michael Celentano® Andres Montanari*! Yuchen Wu*

‘ Message-passing algorithms for compressed sensing

Z E Rd David L. Donoho*', Arian Maleki®, and Andrea Montanari*®'

Departments of *Statistics and "Electrical Engineering, Stanford University, Stanford, CA 94305

An 1terative construction of solutions of the TADP equations State Evolution for General Approximate Message Passing

for the Sherrington-Kirkpatrick model Algorithms, with Applications to Spatial Coupling
Erwin Bolthausen™ Universitat Ziirich Adel Javanmard® and  Andrea Montanari

S



Our best shot: Bayes-AMP for multi-index models

Qt — Xft(Bt) o gt—l(ﬂt_lay)w
B = X" g,(Q,y) + fi(B") A,
B € R%*P and Q € R**P

Estimator for weights Wt c RpXd — fi (Bt)T
Estimator for pre-activation VAV RGNS SN = [V_IZ + w | Y]

Performance can be analysed rigorously with the state evolution technics®
*(May require a hot start with a spectral method provided by linearising the algorithm, see e.q. Maillard et al 20, Mondelli Venkataramanan ’21]))

[Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]



A classification of problems

Target function: Y ~ P*(Y|H* = W*X)

Error
A
Random guess
> 7
a=—
d
AMP/TAP Classification
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) (@; — o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-parity, r > 3
. o * 71, X *
with non-zero a, = E[(E[H | Y]2 _ 1)2]—1 y = 51gn(h1 h2 .o .hr )

probability over y

[ Barbier, FK, Macris, Miolane, Zdeborova '17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, '24]



A classification of problems
Target function: Y ~ P*(Y|H* = W*X)
t y=g*(x) = (h*)* = 3n*

Random guess

AMP/TAP Classification
TRIVIAL EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) (@; — o0) require more than O(d) data!
[E[H‘ Y] ?é 0 learning W* requires n > a.d Example : r-parity. r > 3
. o * 71, X *
with non-zero a. = E[(E[H | Y]2 _ 1)2]—1 y = 31gn(h1 hz ...h,, )

probability over y

[ Barbier, FK, Macris, Miolane, Zdeborova '17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, '24]



A classification of problems

Target function: Y ~ P*(Y|H* = W*X)

Error
¢ R ¢ _ *\3 *
Random guess
3 %k o * 12 _
: y=g*® = =172
. 21-1 a ==
ac — [E[(HeZ[Hl Y]) ] d
AMP finds h* after O(log d) iterations
(Rigorously: requires an initialisation with a spectral start)
AMP/TAP Classification
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) (@; — o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-parity, r > 3
. . * 7, % *
with non-zero a, = E[(E[H | Y]2 _ 1)2]—1 y = 51gn(h1 h2 .o .hr )

probability over y

[ Barbier, FK, Macris, Miolane, Zdeborova '17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, '24]



A classification of problems

Target function: Y ~ P*(Y|H* = W*X)

Error
¢ R ¢ _ *\3 *
Random guess
3 %k o * 12 _
: y=g*® = =172
° ok ol * 1, %
; y = ¢*(%) = sign(h}h})
. 21-1 a ==
ac — [E[(HeZ[Hl Y]) ] d
AMP finds h* after O(log d) iterations
(Rigorously: requires an initialisation with a spectral start)
AMP/TAP Classification
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) (@; — o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-parity, r > 3
. . * 7, % *
with non-zero a, = E[(E[H | Y]2 _ 1)2]—1 y = 51gn(h1 h2 : ..hr )

probability over y

[ Barbier, FK, Macris, Miolane, Zdeborova '17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, '24]



A classification of problems
Target function: Y ~ P*(Y|H* = W*X)
y=g*(x) = (h*)’ - 3n*

Error

Random guess

y:g*(x):lh*lz 0(C=1/2

y = g*(x) = sign(h{'hJ)

[
ol » © o 6 6 6 o o6 o o o

° a=—
a !l = sup E[H,,(H|Y)MH, ,(H|Y)"] d
(MeS;||IM|3=1) AMP finds h* after O(log d) iterations
(Rigorously: requires an initialisation with a spectral start)
AMP/TAP Classification
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0d)if symmetry for multi-index) || (a,— oo) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-parity, r > 3
. o * 7, % *
with non-zero a, = E[(E[H | Y]2 _ 1)2]—1 y = 51gn(h1 h2 .o .hr )

probability over y

[ Barbier, FK, Macris, Miolane, Zdeborova '17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, '24]



A classification of problems

Target function: Y ~ P*(Y|H* = W*X)

Error

A ° B . B . 3 B .
: Random guess y=28 (X) T (h ) 3h
o y=g*(X)=|h*|2 —1/2
: ’
: y = g*(x) = sign(h;*h)") A =

1 ° T “a=7
a !l = sup H,H|Y)MH, ,(H|Y)T] d
(MeS| ||M||§=1} AMP finds h* after O(log d) iterations
(Rigorously: requires an initialisation with a spectral start)
AMP/TAP Classification
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) (@; — o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-parity, r > 3
. o * 71, X *
with non-zero a, = E[(E[H | Y]2 _ 1)2]—1 y = 51gn(h1 h2 .o .hr )

probability over y

[ Barbier, FK, Macris, Miolane, Zdeborova '17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, '24]



A classification of problems

Target function: Y ~ P*(Y|H* = W*X)
Error
1 : y =g*(x) = (h*)’ = 3h*

Random guess

y:g*(x):lh*lz O{CZI/Z

72.2

y = g*(x) = sign(h"h)) % =
y = g*(x) = sign(h]"hh)

& |

a7 = sup”  E[H,(H|Y)MH,H|Y)']

n
d
¢ + 2__
tMeS, |[|M]|3=1} AMP does not find h*with O(d) data

AMP/TAP Classification

- EASY HARD

W* can be learned with any For even target (or different Very restricted set of hard functions
n=0d)if symmetry for multi-index) || (a,— oo) require more than O(d) data!
[E[H ‘ Y ] ?é O learning W* requires n > acd Example : r-parity, r > 3
. o * 71, X *
with non-zero a, = E[(E[H | Y]2 _ 1)2]—1 y = 31gn(h1 hz ...h,, )

probability over y

[ Barbier, FK, Macris, Miolane, Zdeborova '17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, '24]



Computer scientists agree with us!

AMP/TAP Classification
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) (a; — o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-parity, r > 3
. o * 71, X *
with non-zero a. = E[(E[H] Y]2 _ 1)2]—1 y = 31gn(h1 hz .h))

probability over y

Statistical Queries Generative exponents classification
(SQ) bounds

oY, Z)] =7
TRIVIAL EASY

W* can be learned with any Very restricted set of hard functions
For even target

n=0(d)if learning W requires 11 > a.d (a; = o0) require more than O(d) data!
I [ H ‘ Y] ;é 0 ¢ Example : r-parity
with non-zero a,. = E[(E[H | Y]2 — 1)2]_1 y = Sign(hl*hz*. : hr*)

probability over y

See e.g. [Damian, Pillaud-Vivien, Lee, Bruna '24] Trivial & Easy targets correspond to generative exponent 1 & 2



Computer scientists agree with us!

AMP/TAP Classification
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) (a; — o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-parity, r > 3
. o * 71, X *
with non-zero a. = E[(E[H] Y]2 _ 1)2]—1 y = 31gn(h1 hz .h))

probability over y

Statistical Queries Generative exponents classification
(SQ) bounds

(oY, Z2)] ="
TRIVIAL EASY

W* can be learned with any Very restricted set of hard functions
For even target

n=0(d)if learning W requires 11 > a.d (a; — o0) require more than O(d) data!
I [ H ‘ Y] ;é 0 ¢ Example : r-parity
with non-zero a. = [E[([E[H| Y]2 — 1)2]_1 y = Sign(hl*hz*. . hr*)

probability over y

See e.g. [Damian, Pillaud-Vivien, Lee, Bruna '24] Trivial & Easy targets correspond to generative exponent 1 & 2



Multi-index models: Example #1
g™ = sign(hThY)

2.0 2.5 3.0 3.9 4.0
Sample complexity o = n/d

Figure 1: Numerical illustration of the weak learnability phase transition for the 2-sparse parity g(z, 22) =
sign(z122) that has a phase transition at a.(2) = m2/4. The overlap shows how well the directions z; and 2z,
are recovered. Given the permutation symmetry in (19), we show here and in all the subsequent figures the
optimal permutation of the overlap matrix elements reached by AMP. The solid black line is the prediction
from the theory. Crosses are averages over 72 runs of AMP Algorithm 1 with d=>500.



Multi-index models: Example #2

g* = hl"(2 + sign(h7h2hy)

e 2.0

-

o

= 2.0 1

2

= X

2 1.5 1

x

=

8 1.0 _"W
0 1 2 3 4 0 1 2 3 4

Sample complexity a = n/d Sample complexity a = n/d

Figure 2: Hierarchical weak learnability for the staircase function g(z1, 29, 23) = z% + sign(z12223). (Left):
Overlaps with the first direction |Mj;| (blue), and with the second and third one 1/2(Mass + M33) (red) as
a function of the sample complexity a = "/4, with solid lines denoting state evolution curves Equation (8),
and crosses/dots finite-size runs of AMP Algorithm 1 with d = 500 and averaged over 72 seeds. All other
overlaps are zero (black). The two black dots indicate the critical thresholds at a; &~ 0.575 and ap = 72 /4.
(Right) Corresponding generalization error as a function of the sample complexity. Details on the numerical
implementation are discussed in Appendix D.



Multi-index models: Example #2

g* = h1*2 + sign(h7h2hy)

e 2.0

-

o

= 2.0 1

2

@ X

2 1.5 1

=

= ) 4

=

8 1.0 W
0 1 2 3 4 0 1 2 3 4

Sample complexity a = n/d Sample complexity a = n/d

' Iterative learning of directions:

Figure 2: Hierarchical weak learnability for the s§ v “Grand staircase” mechanism
Overlaps with the first direction |M;;| (blue), an{i# ' ;SN N L

a function of the sample complexity o = "/d, with® | i "‘.!.,_ , '-]I 'f’f
and crosses/dots finite-size runs of AMP Algorit > . b [:—M -
overlaps are zero (black). The two black dots indf X 2P
(Right) Corresponding generalization error as a fu
implementation are discussed in Appendix D.
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Multi-index models: Example #2

g% = h1*2 + sign(h7h2hy)

0 1 2 3 4

Figure 2: Hierarchical weak learnability for the s§

Overlaps with the first direction |M;j;| (blue), <  :

a function of the sample complexity o = /4, wit
and crosses/dots finite-size runs of AMP Algorit
overlaps are zero (black). The two black dots indf
(Right) Corresponding generalization error as a fu
implementation are discussed in Appendix D.

\ \

Grand staircase is different from
Staircase of [Abbe et al ‘22+’23]

(Generalisation error

2.5
2.0 -
X
1.5 -
p 4
1.0 A W
0 1 2 3 4

Sample complexity a = n/d

' Iterative learning of directions:

% N “Grand staircase” mechanism
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The situation so far

Classification of target functions

TRIVIAL EASY

W* can be learned with any = For even target (or a different Very restricted set of hard functions
n = O(d) as long as symmetry for multi-index) (a; — o0) require more than O(d) data!
(for some value of Y) learning W* requires n > a.d

Example : r-parity

E[H|Y]#0 a.=E[(E[H|Y] - 1)*]! y = sign(h}hy...h})

 This is all very nice, but from the point of view of machine learning, this is cheating:
we cannot assume we know the function

* These are just (loose?) bounds on the hardness of learning a particular target class

 What happens when one just use a neural network instead?






()

Can two-layer nets learn features
as efficiently as AMP?



SGD for Gaussian data : a summary of the last 30 years

Many mathematical works on GD with fresh batch of Gaussian data:
[Saad & Solla '95, ... Goldt, Advani, Saxe, FK, Zdeborova '19; YS Tan, R Vershynin ’19;

Mei, Misiakiewicz, Montanari ’19; Ben Arous, Gheissari, Jagannath 20 & ’22; Abbe et al ’21; Veiga, Stephan, Loureiro,
FK, Zdeborova '22; Paquette, Paquette, Adlam, Pennington '22; Abbe et al '22; Abbe et al ’23; Berthier, Montanari,
Zhou ’23; Arnaboldi, Stephan, FK, Loureiro '23; Arnaboldi, Dandi, FK, Loureiro, Pesce, Stephan '23+’24; Bruna et al
'23; Chen, Ge '24; Simsek, Bendjeddou, Hsu '24]

SGD one-sample-at-a-time

One gradient update WV_H — WU T }/y va()’y _fWV(XU))Z

for each new fresh sample



What’s going on in a nutshell : (here spherical GD)

1
_ _ W =7g ~w. — el _ 20
Spherical gradient descent W, | = T ~ W, — Y8, Yy LW,
W, —rerll,
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What’s going on in a nutshell : (here spherical GD)

1
_ _ W =7g ~w. — el _ 20
Spherical gradient descent W, | = T ~ W, — Y8, Yy LW,
W, —rerll,

Projection on the
teacher vector

*x A * L ok _ 2 J—
Wi WX R W, W — gt W — 2Cw - w

~ 1 * 2
My & m,—yg - W —yCmy

ODE on order parameter
+ Concentration

m, = — E[g; - w*] — yCm,

m, ~ [k, [g*(w* - X)o' (W, - X)W™ - X] — Cym,
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What’s going on in a nutshell

m, ~ E, [g*(w* - X)o' (W, - X)W™ - X] — Cym,

Gaussian vectors (aka fields)

()00 ) Brals™BDoA]

h*ZW*'Xt 0) m, 1

Integration by part (aka Stein’s lemma) — |[T ht,h* [g *,(h *)0,(ht)]

Hermite expansion — glgd ]2 [ [H k(h *)H k(ht )]

(Orthogonal basis for Gaussians)

Expectation is just — ! </ k
the correlation! T 2 ' g kakmt

Dominated by the first

non-zero Hermite coefficient of g* X C St mt



What’s going on in a nutshell

m, ~ Cstm? ™! — Cym,

Theorem [Ben Arous et al ’22] Information exponent £

- T=n= 0(d) £ is defined as the order of the
first non-zero coefficient in the
- r=n= 0(dlogd) Hermite expansion of g*(h™)
Ex:g* = H,(h*) = (h*)* -1 has 7 = 2

R £—1
- t=n=0d"") Ex:g*=Hh*)=h* —3n* has £ =3

FX(x) = g*(h*) = cst + uOn* + pPHL,(h*) + p@H (W) + ...



This I1s somehow disappointing



SGD is suboptimal: CSQ vs SQ class

SGD/Correlational Statistical Queries (CSQ) bounds/
Information exponent

2=1 n=0(d)
2=2 n=0(dlogd)
BB =0

= [Y¢( Z)] — 9 Denote ¢ as the order of the first

non-zero Hermite coefficient, then

n = @(dmax(l,f))

FX(x) = g*(h*) = cst + uOn* + pPHL,(h*) + pOH (™) + ...

AMP/ Statistical Queries (SQ) bounds / Generative exponents

(Y, Z)] = 2

Y ~ P*(Y|H = W*Z)

W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetries for multi-index) | (a,— o) require more than O(d) data!
= [H ‘ Y] ;& 0 learning W* requires n > a.d Example : r-parity
2 21—1 — o * 7, % *
with non-zero a. = E[(E[H|Y] = 1)7] y = Slgn(hl hz ...h)

probability over y
Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+'22+'23]



Multi-index : not much changes except ...

Hermite decomposition : Each direction now has its own exponent (leap exponent)

Frx) =g W) = est+ 3 uOnt + ) uPH (0 W) + 3w HABE B +
l ij ijk

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, 21+'22+'23]



Multi-index : not much changes except ...

Hermite decomposition : Each direction now has its own exponent (leap exponent)

fXx) = g* () = cst+ )\ uOhx + L P H (W ) + ) wH WS S B +
l ij ijk

[Abbe et al,’22]

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, 21+'22+'23]



Hierarchical iterative learning of directions

Hermite decomposition : Each direction now has its own exponent (leap exponent)

Frx) =g W) = est+ 3 uOnt + ) uPH (0 W) + 3w HABE B +
l ij ijk

y =g (h],hy, h}) = h]" + f(h[)h) + f(h)h]

Informally :

One can learn new directions over

‘ time, iff they are linear conditioned
on the previously learned ones.

Jnitialization O(d)steps  O(d)steps O(d)steps -

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, 21+'22+'23]



Hierarchical iterative learning of directions

Hermite decomposition : Each direction now has its own exponent (leap exponent)

f*(%) = g*(h*) = cst + Zﬂ(”h* + Zﬂ@)H (P 1)+ ) W (B ) + ..

ijk

y =g (h],hy, h}) = h]" + f(h[)h) + f(h)h]

Informally :

) n One can learn new directions over
‘ time, iff they are linear conditioned
k ' j«\ __/)/,. w on the previously learned ones.

JInitialization O(d)steps  O(d)steps O(d) steps

y =hi+ () = 3h| by + [(h3)" = 3h)| '

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, 21+'22+'23]



Are neural net trained with gradient
methods that sub-optimal?



Are neural net trained with gradient
methods that sub-optimal?

Wait! This was for online learning,
with a fresh new sample at a time...



Are neural net trained with gradient
methods that sub-optimal?

Wait! This was for online learning,
with a fresh new sample at a time...

... what if instead we repeat gradient
descent over a fixed large batch?



Fixed np,=0(n) batch can learn £ > 1 functions in 2 iterations!

g, = tanh z g, = Hes(z)
0.6 - - g
:{ Information exponent = 3
— 0.5 = - -
—~
X
B 0.4 - _ i
\3, 0.3 - - i
Q.‘ ). B - —_
& 0.2
B0 - m— N ulti-pass _ i
5 - Single-pass
0.0 - - -
I 1 1 1 1 1 1 1 | 1 | 1 | 1 B
0 1 2 3 4 5 6 0 1 2 3 4 D 6
Time step Time step

d=5000, with o=relu, y=0.1

0, — _ RS v v
b 3d p=1 WH'l — Wt }/tn Z VWt(y _th(Z ))2
B =1



heorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

Qs = HCS(Z)

g, = tanh z
0.6 =
S
g Information exponent = 1
— 0.5 -~
T
X
2 0.4 -
\E/ 0.3 -
S 0.2 -
E 0.2
B0 - m— N ulti-pass
5 —— Single-pass
0.0 -
T T T T |
0 1 2 3 4 D
Time step

W* can be learned with any

n=0d)if
E[H|Y] # 0

with non-zero
probability over y

Information exponent = 3

Time step




heorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

g, = tanh z g, = Hes(z)
0.6 - - g
:{ Information exponent = 3
— 0.5 = - -
—~
X
B 0.4 - _ i
\3, 0.3 - - i
Q.‘ ). B - —_
& 0.2
B0 - m— N ulti-pass _ i
5 - Single-pass
0.0 - - -
I 1 1 1 1 1 1 1 | 1 | 1 | 1 B
0 1 2 3 4 5 6 0 1 2 4 4 5 6
Time step Time step

W* can be learned with any
n=0d)if
E[H|Y] # 0

with non-zero
probability over y

W* can be learned by
shallow neural nets in

n = 0(d), with just 2 full
batches iterations!




heorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

gy = tanh 2 g, = Hes(z)
0.6 - - T
=2
e 05 - - -
X
B 0.4 - _ i
E, 0.3 - - _
Q'i *) - — -
3 0.2 |
B0 - m— N ulti-pass i i
5 - Single-pass
0.0 - - -
| 1 1 1 1 1 1 1 | 1 | 1 | 1 -
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time step Time step
W* can be learned with any || For even target (or different W can be learned by
n=0(d)if symmetries for multi-index) shallow neural nets in
EIH|Y 0 learning W* requires n > o d n = O(d), with just O(log d)
[ ‘ ] 7& 2 i full batches iterations!
with non-zero ad. = [E[([E[H| Y|©—1)7] for large enough a > «,

probability over y



eee REPETITION ooe
IS THE MOTHE:R
of learning

Can we make this
even more general?

[Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case



Data repetition

Remark 1 g

,' Real dataset are never i.i.d. and data repetition of the same
datapoint, or a very similar one is bound to occur ]

ece REPETITION ooo

ol 1S THE MOTHER
i —_— aﬁmmg —
Remark 2 e ’
Many deep learning SGD algorithm are actually performing j
¢ multiple steps over the same datapoint, e.g. Extra-gradient, ;
} Look-ahead GD, or Sharp Minima Aware gradient descent
SGD SGD with extra-gradient

wrtl = wr — yVZ(z", W") * Wt = WY — y VL (2, WY — 7V L (2%, W)



Data repetition

Remark 1 g

§ Real dataset are never i.i.d. and data repetition of the same
datapoint, or a very similar one is bound to occur ]

Exact Duplicate No. ar- I)uplu ate Very Similar
% | : : , :
= . :
S =
O E
= ' - . -~

Remark 2 B i

. Many deep learning SGD algorithm are actually performing '
t multiple steps over the same datapoint, e.g. Extra-gradient, !
} Look-ahead GD, or Sharp Minima Aware gradient descent

Two SGD steps with the same datag

SGD

ece REPETITION ooo

IS THE MOTHER

A

of learning

SGD with extra-gradient

wrtl = wr — yVZ(z", W") * Wt = WY — y VL (2, WY — 7V L (2%, W)

|‘|“ )



Repetuta iuvant

y=g*h*) = (h*)’ - 3h* y = g*(h*) = (W*)* — 6(h*)? + 3

0.06 4 —¢ SGD
1

0.05 -

=" 0.04 -
0.03 -

CosSim

0.02 -
0.01 -

0.00 -

SGD SGD with extra-gradient

wrHl = wr — yVZ(z%, WY) * Wrtl = WY — y VL (2, WY — 7V L (2%, WY))

[Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case



Main theorem (informal, some part still open)

AMP/ Statistical Queries (SQ) bounds / Generative exponents

Y~P*Y|H=W*Z
[p(Y,Z)] = ? o >
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) || (a,— o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-partity
. 2 21—-1 — ol * 7, % *
with non-zero a. = [E[([E[Hl Y] — 1) ] y = 81gn(h1 h2 : ..h,, )

probability over y

[Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case



Main theorem (informal, some part still open)

W* can be learned by
shallow neural nets with

T =n = 0(d) using
extragradient algorithms

AMP/ Statistical Queries (SQ) bounds / Generative exponents

Y~P*Y|H=W*Z
[p(Y,Z)] = ? o >
- EASY HARD
W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) || (a,— o0) require more than O(d) data!
[E[H‘ Y] ;é 0 learning W* requires n > a.d Example : r-partity
. 2 21—-1 — ol * 7, % *
with non-zero a. = [E[([E[Hl Y] — 1) ] y = 81gn(h1 h2 : ..h,, )

probability over y

[Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case



Main theorem (informal, some part still open)

Target without symmetries :  Target with symmetries

W* can be learned by

W* can be learned by 2LLN with
shallow neural nets with v =n= 0(dlogd)
7 =n = 0O(d) using : using extragradient

: algorithms

extragradient algorithms

(* Still not completely proved for
multi-index models)

AMP/ Statistical Queries (SQ) bounds / Generative exponents

TRIVIAL EASY

W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) || (a,— o0) require more than O(d) data!
E [H ‘ Y] ;é 0 learning W* requires n > a.d Example : r-partity
. _ 2 21—1 — ol * 7, % *
with non-zero a. = [E[([E[Hl Y] — 1) ] y = 81gn(h1 h2 : ..h,, )

probability over y

[Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case



Main theorem (informal, some part still open)

W* can be learned by For hard problems such

W* can be learned by : 2LLN with : as parities, W* can be
shallow neural nets with t=n= O(d 10_g d) : learned by shallow neural
7 =n = 0(d) using : using extragradient : withz =n = O0(d"™)

: algorithms :

extragradient algorithms using extragradient

(* Still not completely proved for

* open
multi-index models) (* open)

AMP/ Statistical Queries (SQ) bounds / Generative exponents

W* can be learned with any For even target (or different Very restricted set of hard functions
n=0(d)if symmetry for multi-index) || (a,— o0) require more than O(d) data!
E [H ‘ Y] ;é 0 learning W* requires n > a.d Example : r-partity
. _ 2 21—1 — ol * 7, % *
with non-zero a. = [E[([E[Hl Y] — 1) ] y = 81gn(h1 h2 : ..h,, )

probability over y

[Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case
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m, ~ Ity [8 *w* - xX)o X)W - X] — Cym,

> [g*(h*)a’ ((w,—re') - x) h*]

It now reads

= g* o (+ vg o () ) 7|



Why repetition works? Remember this ?

m, =~ It [g*(w* -

Slightly different
with extra-gradient!

It now reads

Allows arbitrary polynomial

. Vo
. -4
\ ) A
Sk
b e
- i
, ‘

- [g*(h*)a’ ( (w, — 7g") - X) h*]

g%t (h+ vg* (e () ) 1]

k
transformation of the teacher! — L \|& *(h *)( Z ak(ht)g *(h*) ) h*
k



Why repetition works? Remember this ?

m, =~ It [g*(w* -

Slightly different
with extra-gradient!

. Vo
. -4
\ ) A
Sk
b e
- i
, ‘

- [g*(h*)a’ ( (w, — 7g") - X) h*]

It now reads = I [g*(h*)ﬁl (ht + }/g*(h*)g, (ht> ) h*]
Ao s | = g*(h*>( > %(h»g*(h*)k) p*
k

[ YP(Z)] =7

Statistical Queries
(SQ) bounds

(oY, Z)] =7




CSQ staircase vs Grand staircase

Without repetition With repetition

Information exponent/CSQ staircase Generatlve exponent/ grand stalrcase

Tl

T[ U.\NIE Sl i

[Abbe et al,’22+'23] [Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, *24]



Example #1 : a standard staircase

y = (h}*)* + sign(h}h}hy)

Can be learned in O(dog d) steps with and without repetition

1.0 1 Hiiinwo«o 0.30
0.8 - {{{ 0.25
0.6 } —o— hg,; EgD 0.20
- 0.15 -
0.4 - } N
vd 10.10 -
0.21 0.05
004 ~ T TTTTTEEEEEEES 10.00 -
0 1000 2000

T/dlogd

_——— L T _——- L -
Va T Va
~110.25 T
0 r|le
671 l0.20- o]
ol |l dil
1+ j0.15 1 =
{H{ 0.10 A ;HH
iﬁ” 0.05 - iiil
0.00 -
0 1000 2000 0 1000 2000
T/dlogd T/dlog d

;:air(z) = Hez(21) + sign(z12223)




Example #2 : a grand staircase
y = H,,(h") + sign(h]"h; h)

Can be learned in O(d log d)steps with repetition

1.0+

0.8 -

0.6 1

0.4

0.2 1

0.0

Require instead O(d?) without repetitions

C.05

.00

g 250 500 750 1000 1230

T/dlogd

L L
0.20 =
i T o
_ o7t T '3t
’ i 0
- | le? 0.15 - 7 <
T14% 11497
? 0
&
& 0
{+0 0.10 - **' 1
ﬁ# ﬁﬁ
T e Y 1L £
Q.00 | @
250 500 750 1000 1250 0 250 sC0 750 1000 1250
Tidlcgd Tidogd
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Can two-layer nets learn features
as efficiently as AMP?
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Can two-layer nets learn features
as efficiently as AMP?

Yes!






W)

Beyond multi-index models:

A different benchmark to illustrate the
advantage of depth in neural nets



Multilayer tree-target functions

(" )

y= Y g@* - p(Wrx) g(hl" = af - p(z] = Wi'x))
=1

_J

-

g(hf = a3 - p(zy = W3x)

/ :
\ g(hr = ay -}k(zl’f = W’x))

Construction inspired by [Nishiani, Damian, Lee 23]
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Multilayer tree-target functions

* x € RY

W* e RVdxd

(" )

y= Y g@* - p(Wrx) g(hl" = af - p(z] = Wi'x))
=1

_J

-

g(ht = a3 - py(z} = W)

/ :
\ g(hr = ay -jvk(zl’f = W’x))

Construction inspired by [Nishiani, Damian, Lee 23]



Multilayer tree-target functions

Construction inspired by [Nishiani, Damian, Lee 23]



Multilayer tree-target functions

Construction inspired by [Nishiani, Damian, Lee 23]



Multilayer tree-target functions

Construction inspired by [Nishiani, Damian, Lee 23]



Multilayer tree-target functions

Construction inspired by [Nishiani, Damian, Lee 23]



No feature learning
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% o . o ’ p=H(x)+H)(x) g= tanh(h.")

g(h* = a* - p(zF = W*X)) #datapoints: n = d*

y = W3 o(W,o(W,Xx))

P = W30(W2X + noise)

(Can learn linear part, but here no linear part)
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No learning



No feature learning

8(h1* = af ’Pk(zf = Wl*X)) h* e R” z* € [R”\/C—Z

g(hy = a} - p(zy = Wyx))
% T e pr=H;(x)+H)(x) g=tanh(h*)

g(h* = a* - p(zF = W*X)) #datapoints: n = d*

5 = W3e(W,0(W,x))

P = W30(W2X + noise)

(Can learn linear part, but here no linear part)

> K

—_— ok

No learning No Learning



Train first layer then readout

g(h = af - p(z] = W'x)) h* € R’ 75 € R"Vd

g(hy = aj - p(z3 = W)X))
% 2 2 | k™2 2 Dr = HeZ(x) + HS(X) g = tanh(hl.*)

g(h* = a* - p(zF = W*X)) #datapoints: n = d*

y = WBU(WZG(WIX))




Train first layer then readout

g(h" = af - py(zy = Wi'x)) h* € R’ e R4
g(hy = ay - pzy = WyX))
% S . T pr=H;x)+H)(x) g =tanh(h*)
Y ;
B ghr = ar .° pi(zr = W*X)) #datapoints: n = d*

n>d3 =d2xd

j} — WSG('WZG(Wlx)) GD on Wl
y & W30(W20(W1z* + noise))




Train first layer then readout

/ s(hi =2y pdag = W) h* € R’ 2* € R7V4
g(hy = ay - pzy = Wyx))
= H;(x) + H; = tanh(h*
y/ Pr (x)+ H;(x) g =tanh(h>)
B g(h* = a* - p(zF = W*X)) #datapoints: n = d*
y = W35(W20(W1X)) GD on W,
' n>d’*=d"”xd
9 ~ Wa(W,o( W,z* + noise))
9 ~ W 6(W,z + noise) T nsion el 1B




Train first layer then readout

g(hy" = ay - p(zf = W) h* € R e R4
(h*= * (*=W*))
% g\, =4, | Pi\Z, R P = HeZ(X) + HS(X) g = tanh(hl.*)
Y :
T g(h* =a* - pi(zr = W*X)) #datapoints: n = d*
A - 3 A X
y = Wo(W,0(W;x)) GD on W,
' nss 32 = 412 % g
9 ~ Wa(W,o( W,z* + noise))
~ A —~— . — v : y
9 ~ W 6(W,z + noise) e e i
1 3/2  n> P2 = (g} 2
| | K

No learning Can fit cubic function over Z*



First, second, then readout

g(h = af - p(z] = W'x)) h* € R’ 75 € R"Vd

g(hy = aj - p(z3 = W)X))
% 2 2 | k™2 2 Dr = HeZ(x) + HS(X) g = tanh(hl.*)

g(h* = a* - p(zF = W*X)) #datapoints: n = d*

y = W3U(W20(W1X))




First, second, then readout

g(h" = af - py(zy = Wi'x)) h* € R’ e R4
g(hy = ay - pzy = WyX))
% S . T pr=H;x)+H)(x) g =tanh(h*)
Y ;
B ghr = ar .° pi(zr = W*X)) #datapoints: n = d*

j} — W3G("W20(W1X)) GD on Wl

n>d32 =d2xd

y & W3a(W,6(W,z* + noise))




First, second, then readout

g(h" = af - py(zy = Wi'x)) h* € R’ e R4
g(hy = ay - pzy = WyX))
% S . T pr=H;x)+H)(x) g =tanh(h*)
Y ;
B ghr = ar .° pi(zr = W*X)) #datapoints: n = d*

j} — W?)U("WZU(WlX)) GD on W,
n>d"*=d"”xd
y ~ W30(W20( le* + N01S€)) ap or W,
' n> d¥? = (d"?)3
N A 3 ~ * ) Can learn to represent p,
y &% W2a(W,h™ 4+ noise))

1 3/2 0

| | > K



First, second, then readout

g(h" = af - py(zy = Wi'x)) h* € R’ e R4
g(hy = ay - pzy = WyX))
% S . T pr=H;x)+H)(x) g =tanh(h*)
Y ;
B ghr = ar - pi(zr = W*X)) #datapoints: n = d*

j\/ — ng("'X/ZG(WIX)) GD on W,

n>d’”*=d"”xd

y ~ W30(W20(le* + N01S€)) 6p on W,
\ 4

n> d¥? = (d"?)?
Can learn to represent p,

$ ~ W36(W,h* + noise)

Random feature in reduced

space d°' = r = finite




First, second, then readout

8(h1* = af ’Pk(zf = Wl*X)) h* e R’ z* € [R”\/C—l

g(hy = a} - pzs = Wyx))
% P e pp = HXx) + H x) g = tanh(h*)

g(h* = a* - p(zF = W*X)) #datapoints: n = d*

j\/ — ng("'X/ZG(WIX)) GD on W,

n>d’”*=d"”xd

y & W30(W20(le* + N01S€)) 6p on W,
\ 4

n> d¥? = (d"?)?
Can learn to represent p,

$ ~ W36(W,h* + noise)

Random feature in reduced

space d°' = r = finite

1 32 pn>r=dt 2
| | P K

Can fit any function over h*




Advantage of depth: Numerical illustration

Generalisation error

Scenario |

Scenario |l

« Best 2LLN




Main theorem (simplified version)

4 i (" . - A
y= ) g@ar pk(W*x» 9 = W3o(W,o(W,x))
/‘ b L A, \

R REI Rd RP2 [RP2XP: Rple
N Y J

Theorem 2 (Informal). For any 0 < 0 < 1, d an initialization scale ¢ > 0 and time-steps'l7 = O(polylogd),15 =
O(polylog d) such that with batch-size ny — O(d*1119) ny, — O(d*11%) and p; = O(dF119),p, = O(d%), the
following holds with high probability as d — co:

(i) SGD on W1 with T steps on independent batches of size n, results in W, learning random projections along
Fye o WX upto error og(1).

(ii) Subsequently, pre-conditioned SGD on Wy with T iterations on independent batches of size ny results in Woo (Wi )
learning random projections along hy, - -- , h} upto error o4(1).

(iii) Upon training Wy, W5 as above, updating W3 with ridge-regression on ©(d’) samples results in W3 o(Wyo (W)
approximating f*(x) upto erroroy(1).

[Dandi, Pesce, FK, Zdeborova ’24, in preparation]
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How neural networks learn simple functions?

« 2LNN can learn efficiently random multi-index functions with GD
(may require a few tricks, aka reusing/full batch...)

 Iterative/hierarchical learning: staircase / grand staircase functions

* Need to consider complex complex example for deep learning

 With multi-layer tree-index target functions, one can prove the
computational advantage of multi-layer networks over 2LLN ones

 Future: realistic data models, token data, other architectures, etc...



Thanks to everyone in the team(s)!
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