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Ŵ ∈ ℝp×d
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  Architecture: A two-layer neural net

  
neurons

p ≥ r



 Lazy approach: not training the first layer

W ∈ ℝp×d

â ∈ ℝp

̂y = f ̂(x) = â ⋅ σ(Wx)

x ∈ ℝd

̂y ∈ ℝ
̂y = ̂f(x) =

p

∑
i=1

̂aiσi(⟨wi, x⟩) =
p

∑
i=1

̂aiΦCK(x)

No training of the first layer: W is fixed

Random features

Very popular setting among theoreticians 

Equivalent to neural Tangent Kernel/Lazy Regime/Kernel methods/ etc..


 [Jacot, Gabriel, Hongler ’18; Lee, Jaehoon, et al. 18; Chizat, Bach ’19,…]

 [Balcan,Blum, Vempala ’06, Rahimi-Recht ’17…]

Computationally easy (linear regression)



 Unfortunately: very limited

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can 
only learn a polynomial approximation of of degree  as long as f ⋆ κ min(n, p) = O(dκ)

[Mei, Misiakiewicz, Montanari ’22]Theorem (Informal)
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For Gaussian data,  
lazy training is just polynomial  

fitting in disguise  



 Feature learning helps! A single gradient step can change the story

Ŵt=1 = Ŵt=0 −
η

2n
∇W ∑

μ

(yμ − ̂fŴt=1(xμ))2

[Damian, Lee, Soltanolkotabi ’22,Ba, Erdogdu, Suzuki, Wang, Wu, Yang ’22; Moniri et al ’23]



[ Cui,  Pesce,  Dandi, FK,  Lu,  Zdeborová,  Loureiro ’24; Dandi, Pesce, Cui, FK, Lu,  Loureiro ’24]

Spectrum of the 

Feature covariance


 before & after training

Ŵt=1 = Ŵt=0 −
η

2n
∇W ∑

μ

(yμ − ̂fŴt=1(xμ))2

 (Maximal Update parametrization [Yang et al., 2022])
η = O(d)
y = sin(h⋆)Single index model

• Long tail in the spectrum of feature covariance 

(+ large outlying eigenvalue, not represented). 

• Ties in with numerous previous empirical observations on deep 
learning [Martin and Mahoney, 21, Martin et al., 21, Want et al ’24]


• Drastic improvement of generalisation for single index models: 
Can fit the target function   over a random (over ) basis   

    &.     

g(h⋆) a0

μi
0(λ) = erf (at=0

i
λ

3 ) μi
1(λ) = e−3(at=0

i λ)2

 A single gradient step can change the story
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No generic proof, but this is the behaviour typically observed. Precise rigorous statement in e.g.:
[Chen at al '20+21, Damian, Lee, Soltanolkotabi ’22,Ba, Erdogdu, Suzuki, Wang, Wu, Yang ’22,


Abbe, Boix-Adsera, and Misiakiewicz ’22+'23, Dandi et at '23 + '24]





How hard is feature learning? 
A classification of  

easy & hard target functions 

II
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 What about efficient iterative algorithms?

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

z ∈ ℝd

 r  
directions 

W⋆ ∈ ℝr×d

y

We know …g⋆

 … but not !W⋆



  Our best shot: Bayes-AMP for multi-index models

[Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

Estimator for weights

Estimator for pre-activation gt = 𝔼 [V−1Z + ω |Y]

Performance can be analysed rigorously with the state evolution technics*

*(May require a hot start with a spectral method provided by linearising the algorithm, see e.g. Maillard et al ’20, Mondelli Venkataramanan ’21])
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 Multi-index models: Example #1
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 Multi-index models: Example #2
g⋆ = h⋆

1
2 + sign(h⋆

1 h⋆
2 h⋆

3 )

“Grand staircase” mechanism
Iterative learning of directions:

Grand staircase is different from

Staircase of [Abbe et al ‘22+’23]



 The situation so far
Classification of target functions

For even target (or a different 
symmetry for multi-index) 

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y ]2 − 1)2]−1

EASY

𝔼[H |Y ] ≠ 0

W* can be learned with any  
 as long as 

(for some value of Y)
n = 𝒪(d)

TRIVIAL
Very restricted set of hard functions 

( ) require more than  data!  αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r )

HARD

Example : r-parity

• This is all very nice, but from the point of view of machine learning, this is cheating:              
we cannot assume we know the function

• These are just (loose?) bounds on the hardness of learning a particular target class

•  What happens when one just use a neural network instead?





Can two-layer nets learn features  
as efficiently as AMP? 

III



 SGD for Gaussian data : a summary of the last 30 years

Wν+1 = Wν − γν ∇Wν(yν − fWν(xν))2
One gradient update 


for each new fresh sample

SGD one-sample-at-a-time

Many mathematical works on GD with fresh batch of Gaussian data: 
[Saad & Solla ’95,  … Goldt, Advani, Saxe, FK, Zdeborová ’19; YS Tan, R Vershynin ’19;  


Mei, Misiakiewicz, Montanari ’19; Ben Arous, Gheissari, Jagannath ’20 & ’22; Abbe et al ’21; Veiga, Stephan, Loureiro, 
FK, Zdeborová ’22;  Paquette,  Paquette,  Adlam,  Pennington ’22;  Abbe et al ’22; Abbe et al ’23; Berthier, Montanari, 
Zhou ’23; Arnaboldi, Stephan, FK, Loureiro ’23; Arnaboldi, Dandi, FK, Loureiro, Pesce, Stephan ’23+’24; Bruna et al 

’23; Chen,  Ge ’24; Simsek,  Bendjeddou, Hsu '24]
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𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ Cst mℓ−1
t − Cγmt

Theorem [Ben Arous et al ’22]

τ = n = 𝒪(d log d)ℓ = 2

ℓ > 2

τ = n = 𝒪(d)ℓ = 1

τ = n = 𝒪(dℓ−1)

f ⋆(x) = g⋆(h⋆) = cst + μ(1)h⋆ + μ(2)H2(h⋆) + μ(3)H3(h⋆) + …
Hermite decomposition 

 is defined as the order of the 
first non-zero coefficient in the 
Hermite expansion of  

ℓ

g⋆(h⋆)

Information exponent ℓ

Ex : g⋆ = H2(h⋆) = (h⋆)2 − 1

Ex : g⋆ = H3(h⋆) = h⋆3 − 3h⋆

      has   ℓ = 2
has  ℓ = 3



This is somehow disappointing



SGD/Correlational Statistical Queries (CSQ) bounds/ 
 Information exponent

𝔼[Yϕ(Z)] = ? Denote   as the order of the first 
non-zero Hermite coefficient, then

ℓ

n = 𝒪(dmax(1, ℓ
2 ))

 SGD is suboptimal:  CSQ vs SQ class 

AMP/ Statistical Queries (SQ) bounds / Generative exponents

𝔼[ϕ(Y, Z)] = ?
Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different 
symmetries for multi-index) 

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y ]2 − 1)2]−1

EASYTRIVIAL
Very restricted set of hard functions 

( ) require more than  data!  αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r )

HARD

Example : r-parity𝔼[H |Y ] ≠ 0

W* can be learned with any  
 if n = 𝒪(d)

with non-zero  
probability over y

n = 𝒪(d log d)ℓ = 2

ℓ > 2

n = 𝒪(d)ℓ = 1

n = 𝒪(d ℓ
2 )

Hermite decomposition 

f ⋆(x) = g⋆(h⋆) = cst + μ(1)h⋆ + μ(2)H2(h⋆) + μ(3)H3(h⋆) + …

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]
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 Multi-index : not much changes except … 

f ⋆(x) = g⋆(h⋆) = cst + ∑
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μ(1)
i h⋆

i + ∑
ij

μ(2)
ij H2(h⋆

i , h⋆
j ) + ∑

ijk

μ(3)
ijk H3(h⋆

i , h⋆
j , h⋆

k ) + …

Hermite decomposition : Each direction now has its own exponent (leap exponent)
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 Multi-index : not much changes except … 

[Abbe et al,’22]
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ij

μ(2)
ij H2(h⋆
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j ) + ∑

ijk

μ(3)
ijk H3(h⋆

i , h⋆
j , h⋆

k ) + …

Hermite decomposition : Each direction now has its own exponent (leap exponent)



y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 ) = h⋆

1 + f(h⋆
1 )h⋆

2 + f(h⋆
2 )h⋆

3

Hermite decomposition : Each direction now has its own exponent (leap exponent)

 Hierarchical iterative learning of directions 

One can learn new directions over 
time, iff they are linear conditioned 

on the previously learned ones.

Informally : 

Initialization O(d) steps O(d) steps O(d) steps

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]
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y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 ) = h⋆

1 + f(h⋆
1 )h⋆

2 + f(h⋆
2 )h⋆

3

Hermite decomposition : Each direction now has its own exponent (leap exponent)

 Hierarchical iterative learning of directions 

One can learn new directions over 
time, iff they are linear conditioned 

on the previously learned ones.

Informally : 

Initialization O(d) steps O(d) steps O(d) steps

y = h⋆
1 + [(h⋆

1 )3 − 3h⋆
1 ] h⋆

2 + [(h⋆
2 )3 − 3h⋆

2 )] h⋆
3

EX:

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]

f ⋆(x) = g⋆(h⋆) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij H2(h⋆

i , h⋆
j ) + ∑

ijk

μ(3)
ijk H3(h⋆

i , h⋆
j , h⋆

k ) + …



Are neural net trained with gradient 
methods that sub-optimal?



Wait! This was for online learning,  
with a fresh new sample at a time… 

Are neural net trained with gradient 
methods that sub-optimal?



Wait! This was for online learning,  
with a fresh new sample at a time… 

… what if instead we repeat gradient 
descent over a fixed large batch?

Are neural net trained with gradient 
methods that sub-optimal?



Information exponent = 1 Information exponent = 3

  Fixed nb=O(n) batch can learn  functions in 2 iterations!ℓ > 1

Wt+1 = Wt − γt
1
nB

nB

∑
ν=1

∇Wt(yν − fWt(zν))2
d=5000, with σ=relu, =0.1 γ

nb = 3d p=1



Information exponent = 1 Information exponent = 3

 Theorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

TRIVIAL
W* can be learned with any  

 if n = 𝒪(d)

with non-zero  
probability over y

𝔼[H |Y ] ≠ 0



Information exponent = 1 Information exponent = 3

 Theorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

TRIVIAL
W* can be learned with any  

 if n = 𝒪(d)

with non-zero  
probability over y

𝔼[H |Y ] ≠ 0
W* can be learned by 
shallow neural nets in  

, with just 2 full 
batches iterations!

n = 𝒪(d)



Information exponent = 1 Information exponent = 3

 Theorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

TRIVIAL
W* can be learned with any  

 if n = 𝒪(d)

with non-zero  
probability over y

𝔼[H |Y ] ≠ 0

W* can be learned by 
shallow neural nets in  

, with just O(log d) 
full batches iterations! 

for large enough 

n = 𝒪(d)

α > αc

Conjecture

For even target (or different 
symmetries for multi-index) 

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y ]2 − 1)2]−1

EASY



 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case 

Can we make this 

even more general?



Real dataset are never i.i.d. and data repetition of the same 
datapoint, or a very similar one is bound to occur 

Remark 1

Many deep learning SGD algorithm are actually performing 
multiple steps over the same datapoint, e.g. Extra-gradient, 
Look-ahead GD, or Sharp Minima Aware gradient descent

Remark 2

Wν+1 = Wν − γ∇ℒ(zν, Wν) Wν+1 = Wν − γ∇ℒ(zν, Wν − γ̃∇ℒ((zν, Wν))

SGD SGD with extra-gradient 

   Data repetition



Real dataset are never i.i.d. and data repetition of the same 
datapoint, or a very similar one is bound to occur 

Remark 1

Many deep learning SGD algorithm are actually performing 
multiple steps over the same datapoint, e.g. Extra-gradient, 
Look-ahead GD, or Sharp Minima Aware gradient descent

Remark 2

Wν+1 = Wν − γ∇ℒ(zν, Wν) Wν+1 = Wν − γ∇ℒ(zν, Wν − γ̃∇ℒ((zν, Wν))

SGD SGD with extra-gradient 

   Data repetition

Two SGD steps with the same data



 Repetuta iuvant

Wν+1 = Wν − γ∇ℒ(zν, Wν) Wν+1 = Wν − γ∇ℒ(zν, Wν − γ̃∇ℒ((zν, Wν))

SGD SGD with extra-gradient 

y = g⋆(h⋆) = (h⋆)3 − 3h⋆ y = g⋆(h⋆) = (h⋆)4 − 6(h⋆)2 + 3

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case 



  Main theorem (informal, some part still open) 

𝔼[ϕ(Y, Z)] = ? Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different 
symmetry for multi-index) 

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y ]2 − 1)2]−1

EASY
Very restricted set of hard functions 

( ) require more than  data!  αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r )

HARD

Example : r-partity

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case 
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W* can be learned with any  

 if n = 𝒪(d)

with non-zero  
probability over y

𝔼[H |Y ] ≠ 0

AMP/ Statistical Queries (SQ) bounds / Generative exponents
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Example : r-partity

W* can be learned by 
shallow neural nets with   

 using  
extragradient algorithms

τ = n = 𝒪(d)

Target without symmetries
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shallow neural nets with   

 using  
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τ = n = 𝒪(d)

Target without symmetries

W* can be learned by 
2LLN  with   

 
using extragradient 
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(* Still not completely proved for 
multi-index models) 

τ = n = 𝒪(d log d)

Target with symmetries
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  Main theorem (informal, some part still open) 

𝔼[ϕ(Y, Z)] = ? Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different 
symmetry for multi-index) 

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y ]2 − 1)2]−1

EASY
Very restricted set of hard functions 

( ) require more than  data!  αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r )

HARD

Example : r-partity

W* can be learned by 
shallow neural nets with   

 using  
extragradient algorithms

τ = n = 𝒪(d)

Target without symmetries

W* can be learned by 
2LLN  with   

 
using extragradient 

algorithms 

(* Still not completely proved for 
multi-index models) 

τ = n = 𝒪(d log d)

Target with symmetries Hard target functions

For hard problems such 
as parities, W* can be 

learned by shallow neural 
with  
using extragradient 

τ = n = 𝒪(dr−1)

(* open) 

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case 
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·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt
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 Why repetition works?   Remember this ?

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

𝔼 [g⋆(h⋆)σ′ ((wt − γgt) ⋅ x) h⋆]Slightly different  
with extra-gradient!

= 𝔼 [g⋆(h⋆)σ′ (ht + γg⋆(h⋆)σ′ (ht)) h⋆]It now reads 

= 𝔼 g⋆(h⋆)(∑
k

αk(ht)g⋆(h⋆)k) h⋆Allows arbitrary polynomial 
 transformation of the teacher!

Statistical Queries  
(SQ) bounds

𝔼[ϕ(Y, Z)] = ?

Correlational Statistical  
Queries (CSQ) bounds

𝔼[Yϕ(Z)] = ?



         CSQ staircase vs Grand staircase

[Abbe et al,’22+’23] [Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

Without repetition With repetition 

Information exponent/CSQ staircase Generative exponent/ grand staircase



y = (h⋆
1 )2 + sign(h⋆

1 h⋆
2 h⋆

3 )

First we learn  in  d log dh⋆
1 Then we learn right after this….h⋆

2 , h⋆
3

   Example #1 : a standard staircase

Can be learned in O(dog d) steps with and without repetition



y = He4(h⋆
1 ) + sign(h⋆

1 h⋆
2 h⋆

3 )

First we learn  in  d log dh⋆
1 Then we learn right after this….h⋆

2 , h⋆
3

   Example #2 : a grand staircase

Can be learned in steps with repetition 
Require instead  without repetitions

O(d log d)
O(d3)



Can two-layer nets learn features  
as efficiently as AMP? 

III



Can two-layer nets learn features  
as efficiently as AMP? 

III

Yes!





Beyond multi-index models: 

A different benchmark to illustrate the 
advantage of depth in neural nets 

IV
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#datapoints: n = dκ
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̂y = Ŵ3σ(W2σ(W1x))

̂y = Ŵ3σ(W̃2x + noise) Random feature  
in d dimensions
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No learning 
(Can learn linear part, but here no linear part) κ

1 2
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i )pk = H2

e (x) + H3
e (x)
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No learning No Learning
(Can learn linear part, but here no linear part) κ
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κ
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̂y = Ŵ3σ(W2σ(Ŵ1x))

̂y ≈ Ŵ3σ(W2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1

g = tanh(h⋆
i )pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ



̂y ≈ Ŵ3σ(W̃2z + noise) Random feature in reduce 
dimension deff = d1/2
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h⋆ ∈ ℝr z⋆ ∈ ℝr d

κ
1 2

̂y = Ŵ3σ(W2σ(Ŵ1x))

̂y ≈ Ŵ3σ(W2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1

g = tanh(h⋆
i )pk = H2
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̂y ≈ Ŵ3σ(W̃2z + noise) Random feature in reduce 
dimension deff = d1/2

 Scenario II : Train first layer then readout
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1 ⋅ pk(z⋆
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No learning 
κ

1 2

̂y = Ŵ3σ(W2σ(Ŵ1x))

̂y ≈ Ŵ3σ(W2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1

 n ≫ d3/2 = (deff)3

Can fit cubic function over  z⋆

3/2

g = tanh(h⋆
i )pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ
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i )

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))
#datapoints: n = dκ



 Scenario III : First, second, then readout
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g = tanh(h⋆
i )

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1
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 Scenario III : First, second, then readout
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2 ⋅ pk(z⋆
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2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i )

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1

̂y ≈ Ŵ3σ(W̃2h⋆ + noise))
 n ≫ d3/2 = (d1/2)3

Can learn to represent pk

GD on Ŵ2

#datapoints: n = dκ
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space deff = r = finite

 Scenario III : First, second, then readout
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1 ⋅ pk(z⋆
1 = W⋆

1 x))
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2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i )

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1

̂y ≈ Ŵ3σ(W̃2h⋆ + noise))
 n ≫ d3/2 = (d1/2)3

Can learn to represent pk

GD on Ŵ2

#datapoints: n = dκ



Random feature in reduced 
space deff = r = finite

 Scenario III : First, second, then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i )

κ
1 23/2

Can fit any function over  h⋆

 n ≫ r = deff

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1

̂y ≈ Ŵ3σ(W̃2h⋆ + noise))
 n ≫ d3/2 = (d1/2)3

Can learn to represent pk

GD on Ŵ2

#datapoints: n = dκ



 Advantage of depth: Numerical illustration 

Scenario I 

Scenario II

Scenario III

Best 2LLN

κ =
log n
log d
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        Main theorem (simplified version)

[Dandi, Pesce, FK, Zdeborova ’24, in preparation]

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

ℝd
ℝϵ1d×d

ℝϵ1ℝ

Target 3LLN

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

ℝdℝp1×dℝp2 ℝp2×p1ℝ
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  How neural networks learn simple functions?

• Future: realistic data models, token data, other architectures, etc…

• 2LNN can learn efficiently random multi-index functions with GD                                
(may require a few tricks, aka reusing/full batch…)

• Iterative/hierarchical learning: staircase / grand staircase functions

• With multi-layer tree-index target functions, one can prove the 
computational advantage of multi-layer networks over 2LLN ones

• Need to consider complex complex example for deep learning



Thanks to everyone in the team(s)!
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