
How neural networks learn simple functions?

Florent Krzakala

 … have been shattered by neural nets Souvenirs from 2016 in Berkeley

A physicist’s bias: focus on understanding simple problems

 Unknown futures of generalisation?

A physicist’s bias: focus on understanding simple problems

 Unknown futures of generalisation?

Multi-index functions and the
necessity of feature learning

I

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

x ∈ ℝd

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

• f ⋆(x) = h⋆

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |
• f ⋆(x) = sign(h⋆ + ΔZ), Z ∼ 𝒩(0,1)

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |
• f ⋆(x) = sign(h⋆ + ΔZ), Z ∼ 𝒩(0,1)

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y
Multi-index examples

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 , …, h⋆

r) h⋆
i = x ⋅ w⋆

i

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |
• f ⋆(x) = sign(h⋆ + ΔZ), Z ∼ 𝒩(0,1)

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y
Multi-index examples

• f ⋆(x) = h⋆
1 + |h⋆

2 |

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 , …, h⋆

r) h⋆
i = x ⋅ w⋆

i

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |
• f ⋆(x) = sign(h⋆ + ΔZ), Z ∼ 𝒩(0,1)

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y
Multi-index examples

• f ⋆(x) = h⋆
1 + |h⋆

2 |
• f ⋆(x) = h⋆

1 + 2h⋆
2 + h⋆

1 h⋆
2 + 3(h⋆

2)2

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 , …, h⋆

r) h⋆
i = x ⋅ w⋆

i

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…
Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |
• f ⋆(x) = sign(h⋆ + ΔZ), Z ∼ 𝒩(0,1)

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y
Multi-index examples

• f ⋆(x) = h⋆
1 + |h⋆

2 |
• f ⋆(x) = h⋆

1 + 2h⋆
2 + h⋆

1 h⋆
2 + 3(h⋆

2)2

• f ⋆(x) =
1
r

r

∑
i=1

σ(h⋆
i) + ΔZ

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 , …, h⋆

r) h⋆
i = x ⋅ w⋆

i

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…

Dataset , Gaussian data , High-d limit 𝒟 = {xν, yν = f ⋆(x)}n
ν=1 xν ∼ 𝒩(0,1d) d → ∞

Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |
• f ⋆(x) = sign(h⋆ + ΔZ), Z ∼ 𝒩(0,1)

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y
Multi-index examples

• f ⋆(x) = h⋆
1 + |h⋆

2 |
• f ⋆(x) = h⋆

1 + 2h⋆
2 + h⋆

1 h⋆
2 + 3(h⋆

2)2

• f ⋆(x) =
1
r

r

∑
i=1

σ(h⋆
i) + ΔZ

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 , …, h⋆

r) h⋆
i = x ⋅ w⋆

i

Target function: Y ∼ P⋆(Y |H = W⋆X)

 Multi-index functions…

Dataset , Gaussian data , High-d limit 𝒟 = {xν, yν = f ⋆(x)}n
ν=1 xν ∼ 𝒩(0,1d) d → ∞

Single-index examples

• f ⋆(x) = h⋆

• f ⋆(x) = |h⋆ |
• f ⋆(x) = sign(h⋆ + ΔZ), Z ∼ 𝒩(0,1)

y = g⋆(h⋆) h⋆ = x ⋅ w⋆

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y
Multi-index examples

• f ⋆(x) = h⋆
1 + |h⋆

2 |
• f ⋆(x) = h⋆

1 + 2h⋆
2 + h⋆

1 h⋆
2 + 3(h⋆

2)2

• f ⋆(x) =
1
r

r

∑
i=1

σ(h⋆
i) + ΔZ

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3 , …, h⋆

r) h⋆
i = x ⋅ w⋆

i

 … can we learn these functions from data?

Ŵ ∈ ℝp×d

â ∈ ℝp

̂y = ̂f(x) =
p

∑
i=1

̂aiσi(⟨ŵi, x⟩)

x ∈ ℝd

̂y ∈ ℝ

 … can we learn these functions from data?
Dataset , Gaussian data , High-d limit 𝒟 = {xν, yν = f ⋆(x)}n

ν=1 xν ∼ 𝒩(0,1d) d → ∞

Target function: Y ∼ P⋆(Y |H = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r (finite)
orthogonal
directions

W⋆ ∈ ℝr×d

y

 Architecture: A two-layer neural net

neurons

p ≥ r

 Lazy approach: not training the first layer

W ∈ ℝp×d

â ∈ ℝp

̂y = f ̂(x) = â ⋅ σ(Wx)

x ∈ ℝd

̂y ∈ ℝ
̂y = ̂f(x) =

p

∑
i=1

̂aiσi(⟨wi, x⟩) =
p

∑
i=1

̂aiΦCK(x)

No training of the first layer: W is fixed

Random features

Very popular setting among theoreticians

Equivalent to neural Tangent Kernel/Lazy Regime/Kernel methods/ etc..

 [Jacot, Gabriel, Hongler ’18; Lee, Jaehoon, et al. 18; Chizat, Bach ’19,…]

 [Balcan,Blum, Vempala ’06, Rahimi-Recht ’17…]

Computationally easy (linear regression)

 Unfortunately: very limited

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can
only learn a polynomial approximation of of degree as long as f ⋆ κ min(n, p) = O(dκ)

[Mei, Misiakiewicz, Montanari ’22]Theorem (Informal)

f ⋆(x) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij h⋆

i h⋆
j + ∑

ijk

μ(3)
ijk h⋆

i h⋆
j h⋆

k + …

See also [El Karaoui ’10; Mei-Montanari ’19; Gerace, Loureiro, FK, Mézard, Zdeborová ’20; Jacot,
Simsek, Spadaro, Hongler, Gabriel ’20; Hu, Lu, ’20; Dhifallah, Lu ’20; Loureiro, Gerbelot, Cui, Goldt, FK,

Mézard, Zdeborová ’21; Montanari & Saeed ’22; Xiao, Hu, Misiakiewicz, Lu, Pennington ’22; Dandi,
Stephan, FK, Loureiro, Zdeborová ’23; Aguirre-López, Franz, Pastore ’24]

 Unfortunately: very limited

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can
only learn a polynomial approximation of of degree as long as f ⋆ κ min(n, p) = O(dκ)

[Mei, Misiakiewicz, Montanari ’22]Theorem (Informal)

f ⋆(x) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij h⋆

i h⋆
j + ∑

ijk

μ(3)
ijk h⋆

i h⋆
j h⋆

k + …

See also [El Karaoui ’10; Mei-Montanari ’19; Gerace, Loureiro, FK, Mézard, Zdeborová ’20; Jacot,
Simsek, Spadaro, Hongler, Gabriel ’20; Hu, Lu, ’20; Dhifallah, Lu ’20; Loureiro, Gerbelot, Cui, Goldt, FK,

Mézard, Zdeborová ’21; Montanari & Saeed ’22; Xiao, Hu, Misiakiewicz, Lu, Pennington ’22; Dandi,
Stephan, FK, Loureiro, Zdeborová ’23; Aguirre-López, Franz, Pastore ’24]

(n, p) = O(d)

 Unfortunately: very limited

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can
only learn a polynomial approximation of of degree as long as f ⋆ κ min(n, p) = O(dκ)

[Mei, Misiakiewicz, Montanari ’22]Theorem (Informal)

f ⋆(x) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij h⋆

i h⋆
j + ∑

ijk

μ(3)
ijk h⋆

i h⋆
j h⋆

k + …

See also [El Karaoui ’10; Mei-Montanari ’19; Gerace, Loureiro, FK, Mézard, Zdeborová ’20; Jacot,
Simsek, Spadaro, Hongler, Gabriel ’20; Hu, Lu, ’20; Dhifallah, Lu ’20; Loureiro, Gerbelot, Cui, Goldt, FK,

Mézard, Zdeborová ’21; Montanari & Saeed ’22; Xiao, Hu, Misiakiewicz, Lu, Pennington ’22; Dandi,
Stephan, FK, Loureiro, Zdeborová ’23; Aguirre-López, Franz, Pastore ’24]

(n, p) = O(d) (n, p) = O(d2)

 Unfortunately: very limited

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can
only learn a polynomial approximation of of degree as long as f ⋆ κ min(n, p) = O(dκ)

[Mei, Misiakiewicz, Montanari ’22]Theorem (Informal)

f ⋆(x) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij h⋆

i h⋆
j + ∑

ijk

μ(3)
ijk h⋆

i h⋆
j h⋆

k + …

See also [El Karaoui ’10; Mei-Montanari ’19; Gerace, Loureiro, FK, Mézard, Zdeborová ’20; Jacot,
Simsek, Spadaro, Hongler, Gabriel ’20; Hu, Lu, ’20; Dhifallah, Lu ’20; Loureiro, Gerbelot, Cui, Goldt, FK,

Mézard, Zdeborová ’21; Montanari & Saeed ’22; Xiao, Hu, Misiakiewicz, Lu, Pennington ’22; Dandi,
Stephan, FK, Loureiro, Zdeborová ’23; Aguirre-López, Franz, Pastore ’24]

(n, p) = O(d) (n, p) = O(d2) (n, p) = O(d3)

 Unfortunately: very limited

In absence of feature learning (i.e. at initialisation when the first layer is fully random) one can
only learn a polynomial approximation of of degree as long as f ⋆ κ min(n, p) = O(dκ)

[Mei, Misiakiewicz, Montanari ’22]Theorem (Informal)

f ⋆(x) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij h⋆

i h⋆
j + ∑

ijk

μ(3)
ijk h⋆

i h⋆
j h⋆

k + …

See also [El Karaoui ’10; Mei-Montanari ’19; Gerace, Loureiro, FK, Mézard, Zdeborová ’20; Jacot,
Simsek, Spadaro, Hongler, Gabriel ’20; Hu, Lu, ’20; Dhifallah, Lu ’20; Loureiro, Gerbelot, Cui, Goldt, FK,

Mézard, Zdeborová ’21; Montanari & Saeed ’22; Xiao, Hu, Misiakiewicz, Lu, Pennington ’22; Dandi,
Stephan, FK, Loureiro, Zdeborová ’23; Aguirre-López, Franz, Pastore ’24]

(n, p) = O(d) (n, p) = O(d2) (n, p) = O(d3)

For Gaussian data,
lazy training is just polynomial

fitting in disguise

 Feature learning helps! A single gradient step can change the story

Ŵt=1 = Ŵt=0 −
η

2n
∇W ∑

μ

(yμ − ̂fŴt=1(xμ))2

[Damian, Lee, Soltanolkotabi ’22,Ba, Erdogdu, Suzuki, Wang, Wu, Yang ’22; Moniri et al ’23]

[Cui, Pesce, Dandi, FK, Lu, Zdeborová, Loureiro ’24; Dandi, Pesce, Cui, FK, Lu, Loureiro ’24]

Spectrum of the

Feature covariance

 before & after training

Ŵt=1 = Ŵt=0 −
η

2n
∇W ∑

μ

(yμ − ̂fŴt=1(xμ))2

 (Maximal Update parametrization [Yang et al., 2022])
η = O(d)
y = sin(h⋆)Single index model

• Long tail in the spectrum of feature covariance

(+ large outlying eigenvalue, not represented).

• Ties in with numerous previous empirical observations on deep
learning [Martin and Mahoney, 21, Martin et al., 21, Want et al ’24]

• Drastic improvement of generalisation for single index models:
Can fit the target function over a random (over) basis

 &.

g(h⋆) a0

μi
0(λ) = erf (at=0

i
λ

3) μi
1(λ) = e−3(at=0

i λ)2

 A single gradient step can change the story

Ŵ

 Feature learning helps: a heuristic argument

Assume in the two layer correlates with some of target directions  
What do we expect ?

Ŵ h// ⊂ h⋆

̂y = â ⋅ σ(Ŵx)y = g⋆(h⋆ = W⋆x) W⋆

Ŵ

 Feature learning helps: a heuristic argument

Assume in the two layer correlates with some of target directions  
What do we expect ?

Ŵ h// ⊂ h⋆

̂y = â ⋅ σ(Ŵx)y = g⋆(h⋆ = W⋆x) W⋆

Can fit well the target function as
long as p and n are large enough!

̂y ≈ â ⋅ σ(W̃h// + noise)
(Noisy) Random feature in

(finite) reduced space deff = r

In the learned subspace

Ŵ

 Feature learning helps: a heuristic argument

Assume in the two layer correlates with some of target directions  
What do we expect ?

Ŵ h// ⊂ h⋆

̂y = â ⋅ σ(Ŵx)y = g⋆(h⋆ = W⋆x) W⋆

Can fit well the target function as
long as p and n are large enough!

̂y ≈ â ⋅ σ(W̃h// + noise)
(Noisy) Random feature in

(finite) reduced space deff = r

In the learned subspace

 Cannot do better than a polynomial fit
of degree with κ min(n, p) = O(dκ)

̂y ≈ â ⋅ σ(W̃x)
Random feature in

dimension d

In the not-learned subspace

Ŵ

 Feature learning helps: a heuristic argument

Assume in the two layer correlates with some of target directions  
What do we expect ?

Ŵ h// ⊂ h⋆

̂y = â ⋅ σ(Ŵx)y = g⋆(h⋆ = W⋆x) W⋆

Can fit well the target function as
long as p and n are large enough!

̂y ≈ â ⋅ σ(W̃h// + noise)
(Noisy) Random feature in

(finite) reduced space deff = r

In the learned subspace

 Cannot do better than a polynomial fit
of degree with κ min(n, p) = O(dκ)

̂y ≈ â ⋅ σ(W̃x)
Random feature in

dimension d

In the not-learned subspace

No generic proof, but this is the behaviour typically observed. Precise rigorous statement in e.g.:
[Chen at al '20+21, Damian, Lee, Soltanolkotabi ’22,Ba, Erdogdu, Suzuki, Wang, Wu, Yang ’22,

Abbe, Boix-Adsera, and Misiakiewicz ’22+'23, Dandi et at '23 + '24]

How hard is feature learning?
A classification of

easy & hard target functions

II

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r
directions

W⋆ ∈ ℝr×d

y

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]

 Toy problem : we know the function, not the directions

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r
directions

W⋆ ∈ ℝr×d

y

We know …g⋆

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]

 Toy problem : we know the function, not the directions

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r
directions

W⋆ ∈ ℝr×d

y

We know …g⋆

 … but not !W⋆

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]

 Toy problem : we know the function, not the directions

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r
directions

W⋆ ∈ ℝr×d

y

We know …g⋆

 … but not !W⋆

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]

 Toy problem : we know the function, not the directions

A long list of physicists over the last 35 years

worked on this problems

 [Derrida Gardner ’89 …

… Parisi, Mezard, Sompolinsky, Zechinna…]

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r
directions

W⋆ ∈ ℝr×d

y

We know …g⋆

 … but not !W⋆

 n= O(d) samples are sufficient !

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]

 Toy problem : we know the function, not the directions

A long list of physicists over the last 35 years

worked on this problems

 [Derrida Gardner ’89 …

… Parisi, Mezard, Sompolinsky, Zechinna…]

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

x ∈ ℝd

 r
directions

W⋆ ∈ ℝr×d

y

We know …g⋆

 … but not !W⋆

 n= O(d) samples are sufficient !

[Barbier, FK, Macris, Miolane, Zdeborova ’17; Aubin, Maillard, Barbier, FK, Macris, Zdeborova ’19]

 Toy problem : we know the function, not the directions

A long list of physicists over the last 35 years

worked on this problems

 [Derrida Gardner ’89 …

… Parisi, Mezard, Sompolinsky, Zechinna…]

 What about efficient iterative algorithms?

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

y = f ⋆(x) = g⋆(h⋆ = W⋆x)

g⋆ : ℝr → ℝ

z ∈ ℝd

 r
directions

W⋆ ∈ ℝr×d

y

We know …g⋆

 … but not !W⋆

 Our best shot: Bayes-AMP for multi-index models

[Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

Estimator for weights

Estimator for pre-activation gt = 𝔼 [V−1Z + ω |Y]

Performance can be analysed rigorously with the state evolution technics*

*(May require a hot start with a spectral method provided by linearising the algorithm, see e.g. Maillard et al ’20, Mondelli Venkataramanan ’21])

 A classification of problems

α =
n
d

Random guess

Error

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASYTRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

[Barbier, FK, Macris, Miolane, Zdeborová ’17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 A classification of problems

α =
n
d

Random guess

Error

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASYTRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

y = g⋆(x) = (h⋆)3 − 3h⋆

[Barbier, FK, Macris, Miolane, Zdeborová ’17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

AMP finds after O(1) iterationsh⋆

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 A classification of problems

α =
n
d

Random guess

Error

αc = 𝔼[(He2[H |Y])2]−1

y = g⋆(x) = |h⋆ |2 αc = 1/2

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASYTRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

y = g⋆(x) = (h⋆)3 − 3h⋆

[Barbier, FK, Macris, Miolane, Zdeborová ’17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

AMP finds after iterations
(Rigorously: requires an initialisation with a spectral start)

h⋆ O(log d)

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 A classification of problems

α =
n
d

Random guess

Error

αc = 𝔼[(He2[H |Y])2]−1

y = g⋆(x) = |h⋆ |2 αc = 1/2

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASYTRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

y = g⋆(x) = (h⋆)3 − 3h⋆

[Barbier, FK, Macris, Miolane, Zdeborová ’17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

y = g⋆(x) = sign(h⋆
1 h⋆

2)

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

AMP finds after iterations
(Rigorously: requires an initialisation with a spectral start)

h⋆ O(log d)

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 A classification of problems

α =
n
d

Random guess

Error

α−1
c = sup

{M∈S+
p |∥M∥2

2=1}
𝔼[He2(H |Y)MHe2(H |Y)T]

y = g⋆(x) = |h⋆ |2 αc = 1/2

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

EASY

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

TRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

y = g⋆(x) = (h⋆)3 − 3h⋆

[Barbier, FK, Macris, Miolane, Zdeborová ’17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

y = g⋆(x) = sign(h⋆
1 h⋆

2)

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

AMP finds after iterations
(Rigorously: requires an initialisation with a spectral start)

h⋆ O(log d)

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 A classification of problems

α =
n
d

Random guess

Error

α−1
c = sup

{M∈S+
p |∥M∥2

2=1}
𝔼[He2(H |Y)MHe2(H |Y)T]

y = g⋆(x) = |h⋆ |2 αc = 1/2

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

EASY

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

TRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

y = g⋆(x) = (h⋆)3 − 3h⋆

[Barbier, FK, Macris, Miolane, Zdeborová ’17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

y = g⋆(x) = sign(h⋆
1 h⋆

2) αc =
π2

4

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

AMP finds after iterations
(Rigorously: requires an initialisation with a spectral start)

h⋆ O(log d)

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 A classification of problems

α =
n
d

Random guess

Error

α−1
c = sup

{M∈S+
p |∥M∥2

2=1}
𝔼[He2(H |Y)MHe2(H |Y)T]

y = g⋆(x) = |h⋆ |2 αc = 1/2

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

EASY

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

TRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

y = g⋆(x) = (h⋆)3 − 3h⋆

y = g⋆(x) = sign(h⋆
1 h⋆

2 h⋆
3)

[Barbier, FK, Macris, Miolane, Zdeborová ’17; Mondelli, Montanari ’18;Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

y = g⋆(x) = sign(h⋆
1 h⋆

2) αc =
π2

4

Target function: Y ∼ P⋆(Y |H⋆ = W⋆X)

AMP does not find with O(d) datah⋆

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 Computer scientists agree with us!

For even target
learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity

Statistical Queries
(SQ) bounds

𝔼[ϕ(Y, Z)] = ?

Very restricted set of hard functions
() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Generative exponents classification

See e.g. [Damian, Pillaud-Vivien, Lee, Bruna ’24] Trivial & Easy targets correspond to generative exponent 1 & 2

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

EASY

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

TRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

Statistical Queries
(SQ) bounds

𝔼[ϕ(Y, Z)] = ?

 Computer scientists agree with us!

For even target
learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity

Statistical Queries
(SQ) bounds

𝔼[ϕ(Y, Z)] = ?

Very restricted set of hard functions
() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Generative exponents classification

See e.g. [Damian, Pillaud-Vivien, Lee, Bruna ’24] Trivial & Easy targets correspond to generative exponent 1 & 2

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

AMP/TAP Classification

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

EASY

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

TRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity, r ≥ 3

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

 Multi-index models: Example #1
g⋆ = sign(h⋆

1 h⋆
2)

 Multi-index models: Example #2
g⋆ = h⋆

1
2 + sign(h⋆

1 h⋆
2 h⋆

3)

 Multi-index models: Example #2
g⋆ = h⋆

1
2 + sign(h⋆

1 h⋆
2 h⋆

3)

“Grand staircase” mechanism
Iterative learning of directions:

 Multi-index models: Example #2
g⋆ = h⋆

1
2 + sign(h⋆

1 h⋆
2 h⋆

3)

“Grand staircase” mechanism
Iterative learning of directions:

Grand staircase is different from

Staircase of [Abbe et al ‘22+’23]

 The situation so far
Classification of target functions

For even target (or a different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY

𝔼[H |Y] ≠ 0

W* can be learned with any
 as long as

(for some value of Y)
n = 𝒪(d)

TRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity

• This is all very nice, but from the point of view of machine learning, this is cheating:
we cannot assume we know the function

• These are just (loose?) bounds on the hardness of learning a particular target class

• What happens when one just use a neural network instead?

Can two-layer nets learn features
as efficiently as AMP?

III

 SGD for Gaussian data : a summary of the last 30 years

Wν+1 = Wν − γν ∇Wν(yν − fWν(xν))2
One gradient update

for each new fresh sample

SGD one-sample-at-a-time

Many mathematical works on GD with fresh batch of Gaussian data:
[Saad & Solla ’95, … Goldt, Advani, Saxe, FK, Zdeborová ’19; YS Tan, R Vershynin ’19;

Mei, Misiakiewicz, Montanari ’19; Ben Arous, Gheissari, Jagannath ’20 & ’22; Abbe et al ’21; Veiga, Stephan, Loureiro,
FK, Zdeborová ’22; Paquette, Paquette, Adlam, Pennington ’22; Abbe et al ’22; Abbe et al ’23; Berthier, Montanari,
Zhou ’23; Arnaboldi, Stephan, FK, Loureiro ’23; Arnaboldi, Dandi, FK, Loureiro, Pesce, Stephan ’23+’24; Bruna et al

’23; Chen, Ge ’24; Simsek, Bendjeddou, Hsu '24]

 What’s going on in a nutshell : (here spherical GD)

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

wt+1 =
wt − γg⊥

t

∥wt − γg⊥
t ∥2

Spherical gradient descent ≈ wt − γg⊥
t − γ2Cwt

 What’s going on in a nutshell : (here spherical GD)

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

wt+1 =
wt − γg⊥

t

∥wt − γg⊥
t ∥2

Spherical gradient descent ≈ wt − γg⊥
t − γ2Cwt

Projection on the
teacher vector wt+1 ⋅ w⋆ ≈ wt ⋅ w⋆ − γg⊥

t ⋅ w⋆ − γ2Cwt ⋅ w⋆

 What’s going on in a nutshell : (here spherical GD)

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

wt+1 =
wt − γg⊥

t

∥wt − γg⊥
t ∥2

Spherical gradient descent ≈ wt − γg⊥
t − γ2Cwt

Projection on the
teacher vector wt+1 ⋅ w⋆ ≈ wt ⋅ w⋆ − γg⊥

t ⋅ w⋆ − γ2Cwt ⋅ w⋆

mt+1 ≈ mt − γg⊥
t ⋅ w⋆ − γ2Cmt

 What’s going on in a nutshell : (here spherical GD)

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

wt+1 =
wt − γg⊥

t

∥wt − γg⊥
t ∥2

Spherical gradient descent ≈ wt − γg⊥
t − γ2Cwt

Projection on the
teacher vector wt+1 ⋅ w⋆ ≈ wt ⋅ w⋆ − γg⊥

t ⋅ w⋆ − γ2Cwt ⋅ w⋆

mt+1 ≈ mt − γg⊥
t ⋅ w⋆ − γ2Cmt

ODE on order parameter
+ Concentration

·mt = − 𝔼[g⊥
t ⋅ w⋆] − γCmt

 What’s going on in a nutshell : (here spherical GD)

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

wt+1 =
wt − γg⊥

t

∥wt − γg⊥
t ∥2

Spherical gradient descent ≈ wt − γg⊥
t − γ2Cwt

Projection on the
teacher vector wt+1 ⋅ w⋆ ≈ wt ⋅ w⋆ − γg⊥

t ⋅ w⋆ − γ2Cwt ⋅ w⋆

mt+1 ≈ mt − γg⊥
t ⋅ w⋆ − γ2Cmt

ODE on order parameter
+ Concentration

·mt = − 𝔼[g⊥
t ⋅ w⋆] − γCmt

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

 What’s going on in a nutshell

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

 What’s going on in a nutshell

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

𝔼ht,h⋆[g⋆(h⋆)σ′ (ht)h⋆](ht = w(t) ⋅ xt

h⋆ = w⋆ ⋅ xt) ∼ 𝒩 ((0
0), (1 mt

mt 1))
Gaussian vectors (aka fields)

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

 What’s going on in a nutshell

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

𝔼ht,h⋆[g⋆(h⋆)σ′ (ht)h⋆](ht = w(t) ⋅ xt

h⋆ = w⋆ ⋅ xt) ∼ 𝒩 ((0
0), (1 mt

mt 1))
Gaussian vectors (aka fields)

= 𝔼ht,h⋆[g⋆′ (h⋆)σ′ (ht)]Integration by part (aka Stein’s lemma)

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

 What’s going on in a nutshell

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

𝔼ht,h⋆[g⋆(h⋆)σ′ (ht)h⋆](ht = w(t) ⋅ xt

h⋆ = w⋆ ⋅ xt) ∼ 𝒩 ((0
0), (1 mt

mt 1))
Gaussian vectors (aka fields)

= 𝔼ht,h⋆[g⋆′ (h⋆)σ′ (ht)]Integration by part (aka Stein’s lemma)

= ∑
k

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)]Hermite expansion
(Orthogonal basis for Gaussians)

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

 What’s going on in a nutshell

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

𝔼ht,h⋆[g⋆(h⋆)σ′ (ht)h⋆](ht = w(t) ⋅ xt

h⋆ = w⋆ ⋅ xt) ∼ 𝒩 ((0
0), (1 mt

mt 1))
Gaussian vectors (aka fields)

= 𝔼ht,h⋆[g⋆′ (h⋆)σ′ (ht)]Integration by part (aka Stein’s lemma)

= ∑
k

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)]Hermite expansion
(Orthogonal basis for Gaussians)

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

= ∑
k

g′ kσ′ kmk
t

Expectation is just
the correlation!

 What’s going on in a nutshell

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

𝔼ht,h⋆[g⋆(h⋆)σ′ (ht)h⋆](ht = w(t) ⋅ xt

h⋆ = w⋆ ⋅ xt) ∼ 𝒩 ((0
0), (1 mt

mt 1))
Gaussian vectors (aka fields)

= 𝔼ht,h⋆[g⋆′ (h⋆)σ′ (ht)]Integration by part (aka Stein’s lemma)

= ∑
k

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)]Hermite expansion
(Orthogonal basis for Gaussians)

∝ Cst mℓ−1
t

Dominated by the first
non-zero Hermite coefficient of g*

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

= ∑
k

g′ kσ′ kmk
t

Expectation is just
the correlation!

 What’s going on in a nutshell

≈ − a𝔼[g⋆(h⋆)σ′ (h(t))h⋆]

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ Cst mℓ−1
t − Cγmt

Theorem [Ben Arous et al ’22]

τ = n = 𝒪(d log d)ℓ = 2

ℓ > 2

τ = n = 𝒪(d)ℓ = 1

τ = n = 𝒪(dℓ−1)

f ⋆(x) = g⋆(h⋆) = cst + μ(1)h⋆ + μ(2)H2(h⋆) + μ(3)H3(h⋆) + …
Hermite decomposition

 is defined as the order of the
first non-zero coefficient in the
Hermite expansion of

ℓ

g⋆(h⋆)

Information exponent ℓ

Ex : g⋆ = H2(h⋆) = (h⋆)2 − 1

Ex : g⋆ = H3(h⋆) = h⋆3 − 3h⋆

 has ℓ = 2
has ℓ = 3

This is somehow disappointing

SGD/Correlational Statistical Queries (CSQ) bounds/
 Information exponent

𝔼[Yϕ(Z)] = ? Denote as the order of the first
non-zero Hermite coefficient, then

ℓ

n = 𝒪(dmax(1, ℓ
2))

 SGD is suboptimal: CSQ vs SQ class

AMP/ Statistical Queries (SQ) bounds / Generative exponents

𝔼[ϕ(Y, Z)] = ?
Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different
symmetries for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASYTRIVIAL
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-parity𝔼[H |Y] ≠ 0

W* can be learned with any
 if n = 𝒪(d)

with non-zero
probability over y

n = 𝒪(d log d)ℓ = 2

ℓ > 2

n = 𝒪(d)ℓ = 1

n = 𝒪(d ℓ
2)

Hermite decomposition

f ⋆(x) = g⋆(h⋆) = cst + μ(1)h⋆ + μ(2)H2(h⋆) + μ(3)H3(h⋆) + …

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]

 Multi-index : not much changes except …

f ⋆(x) = g⋆(h⋆) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij H2(h⋆

i , h⋆
j) + ∑

ijk

μ(3)
ijk H3(h⋆

i , h⋆
j , h⋆

k) + …

Hermite decomposition : Each direction now has its own exponent (leap exponent)

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]

 Multi-index : not much changes except …

[Abbe et al,’22]

f ⋆(x) = g⋆(h⋆) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij H2(h⋆

i , h⋆
j) + ∑

ijk

μ(3)
ijk H3(h⋆

i , h⋆
j , h⋆

k) + …

Hermite decomposition : Each direction now has its own exponent (leap exponent)

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3) = h⋆

1 + f(h⋆
1)h⋆

2 + f(h⋆
2)h⋆

3

Hermite decomposition : Each direction now has its own exponent (leap exponent)

 Hierarchical iterative learning of directions

One can learn new directions over
time, iff they are linear conditioned

on the previously learned ones.

Informally :

Initialization O(d) steps O(d) steps O(d) steps

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]

f ⋆(x) = g⋆(h⋆) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij H2(h⋆

i , h⋆
j) + ∑

ijk

μ(3)
ijk H3(h⋆

i , h⋆
j , h⋆

k) + …

y = g⋆(h⋆
1 , h⋆

2 , h⋆
3) = h⋆

1 + f(h⋆
1)h⋆

2 + f(h⋆
2)h⋆

3

Hermite decomposition : Each direction now has its own exponent (leap exponent)

 Hierarchical iterative learning of directions

One can learn new directions over
time, iff they are linear conditioned

on the previously learned ones.

Informally :

Initialization O(d) steps O(d) steps O(d) steps

y = h⋆
1 + [(h⋆

1)3 − 3h⋆
1] h⋆

2 + [(h⋆
2)3 − 3h⋆

2)] h⋆
3

EX:

Investigated in detail by [Abbe, Boix-Adsera & Misiakiewicz, ‘21+’22+’23]

f ⋆(x) = g⋆(h⋆) = cst + ∑
i

μ(1)
i h⋆

i + ∑
ij

μ(2)
ij H2(h⋆

i , h⋆
j) + ∑

ijk

μ(3)
ijk H3(h⋆

i , h⋆
j , h⋆

k) + …

Are neural net trained with gradient
methods that sub-optimal?

Wait! This was for online learning,
with a fresh new sample at a time…

Are neural net trained with gradient
methods that sub-optimal?

Wait! This was for online learning,
with a fresh new sample at a time…

… what if instead we repeat gradient
descent over a fixed large batch?

Are neural net trained with gradient
methods that sub-optimal?

Information exponent = 1 Information exponent = 3

 Fixed nb=O(n) batch can learn functions in 2 iterations!ℓ > 1

Wt+1 = Wt − γt
1
nB

nB

∑
ν=1

∇Wt(yν − fWt(zν))2
d=5000, with σ=relu, =0.1 γ

nb = 3d p=1

Information exponent = 1 Information exponent = 3

 Theorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

Information exponent = 1 Information exponent = 3

 Theorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0
W* can be learned by
shallow neural nets in

, with just 2 full
batches iterations!

n = 𝒪(d)

Information exponent = 1 Information exponent = 3

 Theorem (informal) [Dandi, Pesce, Troiani, Zdeborova, FK ’24]

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

W* can be learned by
shallow neural nets in

, with just O(log d)
full batches iterations!

for large enough

n = 𝒪(d)

α > αc

Conjecture

For even target (or different
symmetries for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case

Can we make this

even more general?

Real dataset are never i.i.d. and data repetition of the same
datapoint, or a very similar one is bound to occur

Remark 1

Many deep learning SGD algorithm are actually performing
multiple steps over the same datapoint, e.g. Extra-gradient,
Look-ahead GD, or Sharp Minima Aware gradient descent

Remark 2

Wν+1 = Wν − γ∇ℒ(zν, Wν) Wν+1 = Wν − γ∇ℒ(zν, Wν − γ̃∇ℒ((zν, Wν))

SGD SGD with extra-gradient

 Data repetition

Real dataset are never i.i.d. and data repetition of the same
datapoint, or a very similar one is bound to occur

Remark 1

Many deep learning SGD algorithm are actually performing
multiple steps over the same datapoint, e.g. Extra-gradient,
Look-ahead GD, or Sharp Minima Aware gradient descent

Remark 2

Wν+1 = Wν − γ∇ℒ(zν, Wν) Wν+1 = Wν − γ∇ℒ(zν, Wν − γ̃∇ℒ((zν, Wν))

SGD SGD with extra-gradient

 Data repetition

Two SGD steps with the same data

 Repetuta iuvant

Wν+1 = Wν − γ∇ℒ(zν, Wν) Wν+1 = Wν − γ∇ℒ(zν, Wν − γ̃∇ℒ((zν, Wν))

SGD SGD with extra-gradient

y = g⋆(h⋆) = (h⋆)3 − 3h⋆ y = g⋆(h⋆) = (h⋆)4 − 6(h⋆)2 + 3

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case

 Main theorem (informal, some part still open)

𝔼[ϕ(Y, Z)] = ? Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-partity

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

AMP/ Statistical Queries (SQ) bounds / Generative exponents

 Main theorem (informal, some part still open)

𝔼[ϕ(Y, Z)] = ? Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-partity

W* can be learned by
shallow neural nets with

 using
extragradient algorithms

τ = n = 𝒪(d)

Target without symmetries

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

AMP/ Statistical Queries (SQ) bounds / Generative exponents

 Main theorem (informal, some part still open)

𝔼[ϕ(Y, Z)] = ? Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-partity

W* can be learned by
shallow neural nets with

 using
extragradient algorithms

τ = n = 𝒪(d)

Target without symmetries

W* can be learned by
2LLN with

using extragradient

algorithms

(* Still not completely proved for
multi-index models)

τ = n = 𝒪(d log d)

Target with symmetries

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

AMP/ Statistical Queries (SQ) bounds / Generative exponents

 Main theorem (informal, some part still open)

𝔼[ϕ(Y, Z)] = ? Y ∼ P⋆(Y |H = W⋆Z)

For even target (or different
symmetry for multi-index)

learning W* requires n > αcd

αc = 𝔼[(𝔼[H |Y]2 − 1)2]−1

EASY
Very restricted set of hard functions

() require more than data! αd →∞ 𝒪(d)

y = sign(h⋆
1 h⋆

2 …h⋆
r)

HARD

Example : r-partity

W* can be learned by
shallow neural nets with

 using
extragradient algorithms

τ = n = 𝒪(d)

Target without symmetries

W* can be learned by
2LLN with

using extragradient

algorithms

(* Still not completely proved for
multi-index models)

τ = n = 𝒪(d log d)

Target with symmetries Hard target functions

For hard problems such
as parities, W* can be

learned by shallow neural
with
using extragradient

τ = n = 𝒪(dr−1)

(* open)

 [Arnaboldi, Dandi, Pesce, Stephan, FK ’24], see also [Lee, Oko, Suzuki, Wu ’24] for the single index case

TRIVIAL
W* can be learned with any

 if n = 𝒪(d)

with non-zero
probability over y

𝔼[H |Y] ≠ 0

AMP/ Statistical Queries (SQ) bounds / Generative exponents

 Why repetition works? Remember this ?

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

 Why repetition works? Remember this ?

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

 Why repetition works? Remember this ?

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

𝔼 [g⋆(h⋆)σ′ ((wt − γgt) ⋅ x) h⋆]Slightly different
with extra-gradient!

 Why repetition works? Remember this ?

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

𝔼 [g⋆(h⋆)σ′ ((wt − γgt) ⋅ x) h⋆]Slightly different
with extra-gradient!

= 𝔼 [g⋆(h⋆)σ′ (ht + γg⋆(h⋆)σ′ (ht)) h⋆]It now reads

 Why repetition works? Remember this ?

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

𝔼 [g⋆(h⋆)σ′ ((wt − γgt) ⋅ x) h⋆]Slightly different
with extra-gradient!

= 𝔼 [g⋆(h⋆)σ′ (ht + γg⋆(h⋆)σ′ (ht)) h⋆]It now reads

= 𝔼 g⋆(h⋆)(∑
k

αk(ht)g⋆(h⋆)k) h⋆Allows arbitrary polynomial
 transformation of the teacher!

 Why repetition works? Remember this ?

𝔼[g⋆(h⋆)σ′ (h(t))h⋆] = 𝔼[g⋆′ (h⋆)σ′ (h(t))] = ∑
ℓ

g′ kσ′ k𝔼[Hk(h⋆)Hk(ht)] ∝ mℓ−1

·mt ≈ 𝔼x [g⋆(w⋆ ⋅ x)σ′ (wt ⋅ x)w⋆ ⋅ x] − Cγmt

𝔼 [g⋆(h⋆)σ′ ((wt − γgt) ⋅ x) h⋆]Slightly different
with extra-gradient!

= 𝔼 [g⋆(h⋆)σ′ (ht + γg⋆(h⋆)σ′ (ht)) h⋆]It now reads

= 𝔼 g⋆(h⋆)(∑
k

αk(ht)g⋆(h⋆)k) h⋆Allows arbitrary polynomial
 transformation of the teacher!

Statistical Queries
(SQ) bounds

𝔼[ϕ(Y, Z)] = ?

Correlational Statistical
Queries (CSQ) bounds

𝔼[Yϕ(Z)] = ?

 CSQ staircase vs Grand staircase

[Abbe et al,’22+’23] [Troiani, Dandi, Delilippis, Zdeborova, Loureiro, FK, ’24]

Without repetition With repetition

Information exponent/CSQ staircase Generative exponent/ grand staircase

y = (h⋆
1)2 + sign(h⋆

1 h⋆
2 h⋆

3)

First we learn in d log dh⋆
1 Then we learn right after this….h⋆

2 , h⋆
3

 Example #1 : a standard staircase

Can be learned in O(dog d) steps with and without repetition

y = He4(h⋆
1) + sign(h⋆

1 h⋆
2 h⋆

3)

First we learn in d log dh⋆
1 Then we learn right after this….h⋆

2 , h⋆
3

 Example #2 : a grand staircase

Can be learned in steps with repetition
Require instead without repetitions

O(d log d)
O(d3)

Can two-layer nets learn features
as efficiently as AMP?

III

Can two-layer nets learn features
as efficiently as AMP?

III

Yes!

Beyond multi-index models:

A different benchmark to illustrate the
advantage of depth in neural nets

IV

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

 Multilayer tree-target functions

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

Construction inspired by [Nishiani, Damian, Lee ’23]

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

x ∈ ℝd

 Multilayer tree-target functions

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

Construction inspired by [Nishiani, Damian, Lee ’23]

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

x ∈ ℝd

W⋆
i ∈ ℝ d×d

 Multilayer tree-target functions

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

Construction inspired by [Nishiani, Damian, Lee ’23]

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

x ∈ ℝdz⋆ =

z⋆
1

z⋆
2…

z⋆
r

∈ ℝr d

W⋆
i ∈ ℝ d×d

 Multilayer tree-target functions

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

Construction inspired by [Nishiani, Damian, Lee ’23]

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

x ∈ ℝdz⋆ =

z⋆
1

z⋆
2…

z⋆
r

∈ ℝr d

W⋆
i ∈ ℝ d×da⋆

i ∈ ℝ d

 Multilayer tree-target functions

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

Construction inspired by [Nishiani, Damian, Lee ’23]

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

x ∈ ℝdz⋆ =

z⋆
1

z⋆
2…

z⋆
r

∈ ℝr dh⋆ =

h⋆
1

h⋆
2…

h⋆
r

∈ ℝr

W⋆
i ∈ ℝ d×da⋆

i ∈ ℝ d

 Multilayer tree-target functions

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

Construction inspired by [Nishiani, Damian, Lee ’23]

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

x ∈ ℝdz⋆ =

z⋆
1

z⋆
2…

z⋆
r

∈ ℝr dh⋆ =

h⋆
1

h⋆
2…

h⋆
r

∈ ℝr

W⋆
i ∈ ℝ d×da⋆

i ∈ ℝ d
y ∈ ℝ

 Multilayer tree-target functions

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

Construction inspired by [Nishiani, Damian, Lee ’23]

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

̂y = Ŵ3σ(W2σ(W1x))

 Scenario I : No feature learning

κ
1 2

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

̂y = Ŵ3σ(W2σ(W1x))

̂y = Ŵ3σ(W̃2x + noise) Random feature
in d dimensions

 Scenario I : No feature learning

κ
1 2

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

̂y = Ŵ3σ(W2σ(W1x))

̂y = Ŵ3σ(W̃2x + noise) Random feature
in d dimensions

 Scenario I : No feature learning

No learning
κ

1 2

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

̂y = Ŵ3σ(W2σ(W1x))

̂y = Ŵ3σ(W̃2x + noise) Random feature
in d dimensions

 Scenario I : No feature learning

No learning
(Can learn linear part, but here no linear part) κ

1 2

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

̂y = Ŵ3σ(W2σ(W1x))

̂y = Ŵ3σ(W̃2x + noise) Random feature
in d dimensions

 Scenario I : No feature learning

No learning No Learning
(Can learn linear part, but here no linear part) κ

1 2

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

 Scenario II : Train first layer then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

κ
1 2

̂y = Ŵ3σ(W2σ(Ŵ1x))

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

 Scenario II : Train first layer then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

κ
1 2

̂y = Ŵ3σ(W2σ(Ŵ1x))

̂y ≈ Ŵ3σ(W2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

̂y ≈ Ŵ3σ(W̃2z + noise) Random feature in reduce
dimension deff = d1/2

 Scenario II : Train first layer then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

κ
1 2

̂y = Ŵ3σ(W2σ(Ŵ1x))

̂y ≈ Ŵ3σ(W2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

̂y ≈ Ŵ3σ(W̃2z + noise) Random feature in reduce
dimension deff = d1/2

 Scenario II : Train first layer then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

No learning
κ

1 2

̂y = Ŵ3σ(W2σ(Ŵ1x))

̂y ≈ Ŵ3σ(W2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1

 n ≫ d3/2 = (deff)3

Can fit cubic function over z⋆

3/2

g = tanh(h⋆
i)pk = H2

e (x) + H3
e (x)

#datapoints: n = dκ

 Scenario III : First, second, then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i)

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))
#datapoints: n = dκ

 Scenario III : First, second, then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i)

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1

#datapoints: n = dκ

 Scenario III : First, second, then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i)

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1

̂y ≈ Ŵ3σ(W̃2h⋆ + noise))
 n ≫ d3/2 = (d1/2)3

Can learn to represent pk

GD on Ŵ2

#datapoints: n = dκ

Random feature in reduced
space deff = r = finite

 Scenario III : First, second, then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i)

κ
1 23/2

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1

̂y ≈ Ŵ3σ(W̃2h⋆ + noise))
 n ≫ d3/2 = (d1/2)3

Can learn to represent pk

GD on Ŵ2

#datapoints: n = dκ

Random feature in reduced
space deff = r = finite

 Scenario III : First, second, then readout

y

g(h⋆
1 = a⋆

1 ⋅ pk(z⋆
1 = W⋆

1 x))

g(h⋆
2 = a⋆

2 ⋅ pk(z⋆
2 = W⋆

2 x))

g(h⋆
r = a⋆

r ⋅ pk(z⋆
r = W⋆

r x))

h⋆ ∈ ℝr z⋆ ∈ ℝr d

g = tanh(h⋆
i)

κ
1 23/2

Can fit any function over h⋆

 n ≫ r = deff

pk = H2
e (x) + H3

e (x)

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

̂y ≈ Ŵ3σ(Ŵ2σ(W̃1z⋆ + noise))
 n ≫ d3/2 = d1/2 × d

GD on Ŵ1GD on Ŵ1

̂y ≈ Ŵ3σ(W̃2h⋆ + noise))
 n ≫ d3/2 = (d1/2)3

Can learn to represent pk

GD on Ŵ2

#datapoints: n = dκ

 Advantage of depth: Numerical illustration

Scenario I

Scenario II

Scenario III

Best 2LLN

κ =
log n
log d

X d =100

 d =200

G
en

er
al

is
at

io
n

er
ro

r

 Main theorem (simplified version)

[Dandi, Pesce, FK, Zdeborova ’24, in preparation]

y =
r

∑
i=1

g(a⋆
j ⋅ pk(W⋆

i x))

ℝd
ℝϵ1d×d

ℝϵ1ℝ

Target 3LLN

̂y = Ŵ3σ(Ŵ2σ(Ŵ1x))

ℝdℝp1×dℝp2 ℝp2×p1ℝ

 How neural networks learn simple functions?

 How neural networks learn simple functions?

• 2LNN can learn efficiently random multi-index functions with GD
(may require a few tricks, aka reusing/full batch…)

 How neural networks learn simple functions?

• 2LNN can learn efficiently random multi-index functions with GD
(may require a few tricks, aka reusing/full batch…)

• Iterative/hierarchical learning: staircase / grand staircase functions

 How neural networks learn simple functions?

• 2LNN can learn efficiently random multi-index functions with GD
(may require a few tricks, aka reusing/full batch…)

• Iterative/hierarchical learning: staircase / grand staircase functions

• Need to consider complex complex example for deep learning

 How neural networks learn simple functions?

• 2LNN can learn efficiently random multi-index functions with GD
(may require a few tricks, aka reusing/full batch…)

• Iterative/hierarchical learning: staircase / grand staircase functions

• With multi-layer tree-index target functions, one can prove the
computational advantage of multi-layer networks over 2LLN ones

• Need to consider complex complex example for deep learning

 How neural networks learn simple functions?

• Future: realistic data models, token data, other architectures, etc…

• 2LNN can learn efficiently random multi-index functions with GD
(may require a few tricks, aka reusing/full batch…)

• Iterative/hierarchical learning: staircase / grand staircase functions

• With multi-layer tree-index target functions, one can prove the
computational advantage of multi-layer networks over 2LLN ones

• Need to consider complex complex example for deep learning

Thanks to everyone in the team(s)!

http://florentkrakala.com

