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Animal intelligence



(Bair & Olshausen, 1991)

1 mm (Wayne Maddison)
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Fig. 1A ~nd B. Two sequences  of indire ct purs uit of a  s ta nda rd lure  (ha nging fly) by a  ma ie  P . 
pulcherrimus. S e que ntia l (numbe re d) pos itions  during the  purs uit were  tra ce d from proje ctions  of a  
se ries  of individua l photogra phs  ta ke n with e le ctronic flash. In  each case  the  lure  was  re move d 
imme dia te ly a fte r the  initia l orie nta tion to the  pre y (1). A The  s pide r orie nte d to the  pre y pos ition 
(1), turne d a nd wa lke d to the  s te m of the  p la nt (2), a nd the n reoriented to face  the  expected pos ition 
of the  pre y from a  ne w pos ition (3). S ubs e que ntly the  s pide r continue d its  a s ce nt (4) to a tta in  the  
obje ctive  pos ition (5). B Afte r orie nta tion to the  pre y (1), the  s pide r re a che d for a n  a va ila ble  dra gline  
(2) which it climbe d to the  s te m (3), a nd  the n re orie nte d to face  the  obje ctive  (4). Aga in, purs uit 
continue d (5) until the  s pide r a tta ine d the  obje ctive  pos ition (6) 

r e q u ir in g  e ith e r  a  r ig h t  o r  a  le ft t u rn ,  s u g g e s ts  th a t  fa m ilia r ity  with  th e  p r o b le m  
c a n n o t  a c c o u n t  fo r th e  o b s e rve d  re s u lts .  In  s im ila r  s it u a t io n s  wh e re  a  r o u t e  o f 
a c c e s s  wa s  n o t  re a d ily  vis ib le ,  th e  s p id e rs  g e n e ra lly  c o n d u c t e d  a n  e xte n s ive  s e rie s  
o f tu rn s ,  p r e s u m a b ly  in  s e a rc h  o f s u c h  a  ro u te .  Vis u a l o r ie n t a t io n  t o w a r d  a  r o u t e  
o f a c c e s s ,  p r io r  to  p u r s u it  o f th a t  r o u t e  o f a c c e s s ,  is  re a d ily  d e m o n s t r a t e d  in  a  
n o ve l s itu a t io n .  A s ig h te d  p la n t  c o n fig u r a t io n  wh ic h  re p la c e s  th e  p r im a r y  
o b je c t ive  (p re y p o s it io n )  a s  a  d e t e r m in a n t  o f im m e d ia t e  b e h a v io r  is  t e r m e d  a  
s e condary objective . 
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Fig. 3. A A s imple  s e gme nt of line a r purs uit in a  horizonta l plane , a s  vie we d from a bove . The  s pide r 
faces  the  pre y (1), which is  imme dia te ly re move d from vie w as  the  s pide r turns  to run in purs uit (2), 
a nd the n s tops  to re orie nt (3). B De finition of te rminology us e d to de s cribe  the  purs uit s hown in (A). 
C Circula r a re na  us e d for the  obs e rva tion of orie nta tion by the  s pide r during purs uit on the  
horizonta l ba r, a s  vie we d from a bove . The  inne r white  pa pe r cylinde r (1) rises  to the  le ve l of the  top  
of the  running ba r, while  the  oute r cylinde r (0) extends  to a  he ight of 30 cm a bove  the  bar. P rior to 
e a ch tria l, the  s pide r was  le d ba ck to a  ce nte r pos ition (1) on the  horizonta l ba r with a  s ta nda rd lure , 
to ma inta in a  cons ta nt pre y dis ta nce  of a bout 25 cm a t the  initia l s ighting. To initia te  e a ch tria l, the  
pre y was  pre s e nte d to the  s pide r in a  circumfe re ntia l pos ition (2). S ubs e que ntly, a s  the  pre y wa s  
droppe d be low the  vie w of the  s pide r (be tween the  two cylinders ), the  s pide r ra n to a  ne w pos ition (3) 
on the  horizonta l ba r a nd re orie nte d in the  dire ction of pos ition (4) on the  circumfe re ntia l sca le . 
F rom a  re cord of va lue s  1-4, the  de s criptive  te rms  de fine d in (B) could be  ca lcula te d for e a ch tria l. D 
P e rs pe ctive  vie w of horizonta l ba r in corridor, s howing how the  s us pe nde d fly could be  conce a le d in 
the  trough during the  purs uit a nd re orie nta tion of the  spider. E Horizonta l ba r in corridor vie we d 
from a bove . As  in (C), a  re cord of pos itions  I-4  wa s  ma de  for e a ch tria l. The  pre y dis ta nce  for a  give n 
0 could be  va rie d by cha nging the  dis ta nce  (L) be twe e n the  ba r a nd the  pe riphe ra l (fly pos ition) s ca le  

d ir e c t ly  (0c) in c re a s e s .  As  s h o w n  h e re  (F ig .  4 A),  0c wa s  a n  e ffe c t ive  p r e d ic t o r  o f 
th e  o b s e r v e d  r e o r ie n t a t io n  a n g le  (0r). 

A m o r e  r ig o r o u s  d e m o n s t r a t io n  o f th e  ro le  o f t h e  im m e d ia t e  r o u t e  (o r 
d ir e c t io n  o f p u rs u it )  a s  a  re fe re n c e  d ire c t io n ,  to  th e  e xc lu s io n  o f p e r ip h e r a l v is u a l 
c u e s ,  is  p r o v id e d  b y  th e  a b ility  o f Phidippus  to  c o m p le t e  a  s e g m e n t  o f p u rs u it ,  
fo llo w e d  b y  a n  a c c u r a t e  r e o r ie n t a t io n  (with  0~ a s  a  p r e d ic t o r  o f 0~), in  c o m p le t e  
d a rkn e s s  (F ig .  4 B).  

It  is  e v id e n t  t h a t  e a c h  r e o r ie n t a t io n  r e p re s e n t s  a n  a t t e m p t  b y th e  s p id e r  to  
fa c e  th e  e x p e c t e d  p o s it io n  o f its  p re y.  B a s e d  u p o n  d e fin it io n s  p r o v id e d  in  
F ig .  3 B,  o n e  c a n  c o n c lu d e  th a t  0~ ( th e  o p t im a l r e o r ie n t a t io n  a n g le )  is  a  fu n c t io n  
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Fig . 4. A Be h a vio r o f a  fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l b a r (Fig . 3C), in  re s p o n s e  to  a  
va ria b le  d ire c tio n  o f p re y p re s e n ta tio n  (va ria b le  0). He re  th e  m e a s u re d  a n g le  o f re o rie n ta tio n  with  
re fe re nce  to  th e  d ire c tio n  o f p u rs u it  (0~) is  p re s e n te d  a s  a  fu n c tio n  o f b o th  th e  in itia l o rie n ta tio n  a n g le  
(0) a n d  th e  c a lc u la te d  (m o ve m e n t  c o m p e n s a te d ) re o rie n ta tio n  a n g le  re q u ire d  to  b rin g  th e  s p id e r to  
fa ce  th e  o rig in a l p re y p o s itio n  d ire c tly (0c). As  in  s u b s e q u e n t figure s , th e  lin e a r re g re s s io n  o f Y o n  X 
is  in d ic a te d  a s  a  dashed line . B Be h a vio r o f a  d iffe re n t fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l ba r.  
As  in  (A), th e s e  d a ta  we re  o b ta in e d  with  th e  a p p a ra tu s  d e s c rib e d  in  F ig . 3C . F o r th e s e  tria ls ,  
h o we ve r,  th e  o ve rh e a d  lig h t wa s  s witc h e d  o ff a s  s o o n  a s  th e  s p id e r tu rn e d  to  ru n  in  p u rs u it.  O n ly 
th o s e  tria ls  in  wh ic h  th e  re o rie n ta tio n  tu rn  h a d  b e e n  e xe c u te d  comple te ly p rio r to  th e  tim e  a t wh ic h  
th e  lig h t wa s  s u b s e q u e n tly tu rn e d  o n  (s e ve ra l s e c o n d s  la te r) a re  s h o wn  he re . In  o n e  o f th e s e  tria ls  th e  
s p id e r wa s  e ve n  p re p a rin g  to  ju m p  in  th e  p re y d ire c tio n  a s  th e  ligh t we n t on .  In  a  n u m b e r  o f tra ils ,  
th is  s p id e r d id  n o t  re o rie n t un til a fte r th e  lig h t wa s  s witc h e d  o n ,  a n d  th e s e  tria ls  we re  n o t  re c o rd e d .  
In  a ll re s p e c ts  th e s e  d a ta  c o m p a re  with  th o s e  co lle c te d  u n d e r c o n d itio n s  o f c o n tin u o u s  illu m in a tio n ,  
a s  in  (A). It s h o u ld  b e  n o te d  th a t  th e  s p id e rs  always  re o rie n te d  to  th e  c o rre c t s ide  (wh e th e r rig h t o r 
le ft) o f th e  b a r 
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Fig . 4. A Be h a vio r o f a  fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l b a r (Fig . 3C), in  re s p o n s e  to  a  
va ria b le  d ire c tio n  o f p re y p re s e n ta tio n  (va ria b le  0). He re  th e  m e a s u re d  a n g le  o f re o rie n ta tio n  with  
re fe re nce  to  th e  d ire c tio n  o f p u rs u it  (0~) is  p re s e n te d  a s  a  fu n c tio n  o f b o th  th e  in itia l o rie n ta tio n  a n g le  
(0) a n d  th e  c a lc u la te d  (m o ve m e n t  c o m p e n s a te d ) re o rie n ta tio n  a n g le  re q u ire d  to  b rin g  th e  s p id e r to  
fa ce  th e  o rig in a l p re y p o s itio n  d ire c tly (0c). As  in  s u b s e q u e n t figure s , th e  lin e a r re g re s s io n  o f Y o n  X 
is  in d ic a te d  a s  a  dashed line . B Be h a vio r o f a  d iffe re n t fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l ba r.  
As  in  (A), th e s e  d a ta  we re  o b ta in e d  with  th e  a p p a ra tu s  d e s c rib e d  in  F ig . 3C . F o r th e s e  tria ls ,  
h o we ve r,  th e  o ve rh e a d  lig h t wa s  s witc h e d  o ff a s  s o o n  a s  th e  s p id e r tu rn e d  to  ru n  in  p u rs u it.  O n ly 
th o s e  tria ls  in  wh ic h  th e  re o rie n ta tio n  tu rn  h a d  b e e n  e xe c u te d  comple te ly p rio r to  th e  tim e  a t wh ic h  
th e  lig h t wa s  s u b s e q u e n tly tu rn e d  o n  (s e ve ra l s e c o n d s  la te r) a re  s h o wn  he re . In  o n e  o f th e s e  tria ls  th e  
s p id e r wa s  e ve n  p re p a rin g  to  ju m p  in  th e  p re y d ire c tio n  a s  th e  ligh t we n t on .  In  a  n u m b e r  o f tra ils ,  
th is  s p id e r d id  n o t  re o rie n t un til a fte r th e  lig h t wa s  s witc h e d  o n ,  a n d  th e s e  tria ls  we re  n o t  re c o rd e d .  
In  a ll re s p e c ts  th e s e  d a ta  c o m p a re  with  th o s e  co lle c te d  u n d e r c o n d itio n s  o f c o n tin u o u s  illu m in a tio n ,  
a s  in  (A). It s h o u ld  b e  n o te d  th a t  th e  s p id e rs  always  re o rie n te d  to  th e  c o rre c t s ide  (wh e th e r rig h t o r 
le ft) o f th e  b a r 

(D.E. Hill, 1979) 
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A typical example of a round trip is shown in Fig. 2. Cataglyphis 
fortis, for which this foraging trip was recorded (and on which the present 
account mainly concentrates), is a long-distance forager inhabiting the 
exceedingly hostile territories of the Saharan salt pans known as chotts 
and sebkhas. In this habitat the outward and inward routes of individual 
foraging trips were recorded by the aid of an orthogonal system of grid-
lines painted on the hard salty plains. The ant whose round trip is shown 
in Fig. 2 covered 165 m within 468 sec until it found a dead fly at a 
distance of 87 m from the nest. After having grasped the fly with its 
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Fig. 2. -Round trip of an individual 
ant, Cataglyphis fortis. The ant's walk-
ing trajectory has been recorded by 
means of a grid of white lines (mesh 
width 5 m) painted on the floor of a 
North African salt pan. Time marks 
(filled circles) are given every 60 sec. 
The locations of the nest and of the 
insect carcass found by the ant are 
denoted by N and F, respectively. 

mandibles it instantly headed for 
home which it reached after an amaz-
ingly straight run lasting no more than 
162 sec. Given the fact that the ter-
rain over which the ant moved was 
not an ideally flat plain, so that even a 
long-legged fortis ant had to perform 
small up and down as well as sideways 
movements while heading for home, a 
mean speed of 0.54 rn/sec as calculat-
ed for the bee-line distance of 87 m is 
a truly remarkable performance for an 
insect weighing as little as 9 mg (mean 
value). 

Even if amazing in terms of 
speed, distance covered, and precision 
of navigation, the foraging trip depict-
ed in Fig. 2 is by no means exception-
al. In the vast expanses of the Chott 
Merouan and the Chott-el-Djeridj we 
have observed fortis ants which for-
aged at distances of more than 150m 
away from the nest and selected their 
proper homeward courses with what 
still appeared to be unerring precision. 
These are the largest trips ever record-
ed in detail in an invertebrate. 

How do the ants navigate on 
such long-distance trips? A simple ex-
periment shows that they rely on a 
path integration system rather than 
the use of a landmark map. If dis-
placed sideways by only a few metres, 
they do not head for true home, but 

Path integration in desert ants

(R. Wehner, S. Wehner, 1986) 



Head-direction cells in ellipsoid body of Drosophila

Ellipsoid body activity
(calcium imaging)

Decoded vs. actual head dir.

?
Navigation in fruit flies

(Seelig & Jayaraman 2015) 



Entire fly brain connectome (139,355 neurons)
(Dorkenwald et al., 2024)

Nature | Vol 634 | 3 October 2024 | 125

Until now, the closest antecedent to a wiring diagram of the whole 
brain has been the reconstruction of a fly ‘hemibrain’1, a pioneer-
ing resource that has already become indispensable to Drosophila 
researchers. It is estimated to contain around 20,000 neurons that are 
‘uncropped’—that is, minimally truncated by the borders of the imaged 
volume, and 14 million synapses between them. Our reconstruction 
of an entire adult brain contains 139,255 neurons (Fig. 1a and Supple-
mentary Video 1) and 54.5 million synapses between these neurons. To 
aid exploration and analysis, this connectome has been densely anno-
tated by the FlyWire Consortium. In our companion paper, Schlegel 
et al.12 provide a curated brain-wide hierarchy of annotations includ-
ing more than 8,400 distinct cell types, completing the description 
of this resource (and should therefore preferably be cited alongside 
this paper; https://codex.flywire.ai/about_flywire). These and many 
other data products (Fig. 1b and Supplementary Fig. 1) are available 
for download, programmatic access and interactive browsing and 
have been made interoperable with other fly data resources through a 
growing ecosystem of software tools (Fig. 1c). The primary portal to the 
data is the FlyWire Connectome Data Explorer (Codex; https://codex.
flywire.ai/), which makes the information visualizable and queryable.

The wiring diagram from our whole-brain reconstruction is suffi-
ciently complete to be designated a ‘connectome’ (defined in Discus-
sion). It represents substantial progress over neuronal reconstructions 
of Caenorhabditis elegans31,32 (300 neurons, 104 synapses) and the 1st 
instar larva of Drosophila33 (3,000 neurons, 5 × 105 synapses). Our 
connectome advances beyond the hemibrain in several ways. For 
example, it includes the suboesophageal zone (SEZ) of the central 
brain, which is important for diverse functions such as gustation and 
mechanosensation34,35, and contains many of the processes of neurons 
that descend from the brain to the ventral nerve cord to drive motor 

behaviours. Additionally, it includes annotations for descending and 
ascending neurons36 for many sexually dimorphic neurons (analysed by 
Deutsch et al. (manuscript in preparation); available at https://codex.
flywire.ai) and an entire optic lobe11. Our reconstruction of both optic 
lobes goes far beyond existing maps of columnar visual circuitry. Con-
nections between the optic lobes and central brain are included, as 
explored by refs. 37,38. Also included are neurons that extend into the 
brain through the nerves and neck connective, which are essential for 
tracing sensorimotor pathways, as illustrated here and in the accom-
panying studies11,12,34,36–45.

Our reconstruction utilized image acquisition and analysis tech-
niques that are distinct from those used for the hemibrain (Methods 
and Discussion). However, we have built directly on the hemibrain in 
an important way. Schlegel et al.12 used the cell types proposed for the 
hemibrain as a starting point for cell typing neurons in the central brain 
in FlyWire. This approach was enabled by a growing ecosystem of soft-
ware tools serving interoperability between different fly data sources 
(Fig. 1c). Additional annotations in the SEZ and optic lobes, which are 
largely absent from the hemibrain, were contributed by Drosophila 
research groups in the FlyWire Consortium as well as citizen scientists, 
and are described in more detail here and in the accompanying papers. 
Synapse predictions7 and estimates of neurotransmitter identities10 
were also contributed by the community.

After matching, Schlegel et al.12 also compared our wiring diagram 
with the hemibrain where they overlap and showed that cell-type counts 
and strong connections were largely in agreement. This means that the 
combined effects of natural variability across individuals and ‘noise’ 
due to imperfect reconstruction tend to be modest, so our wiring dia-
gram of a single brain should be useful for studying any wild-type Dros-
ophila melanogaster individual. However, there are known differences 
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Fig. 1 | A connectomic reconstruction of a whole fly brain. a, All neuron 
morphologies reconstructed with FlyWire. All neurons in the central brain and 
both optic lobes were segmented and proofread. Note that image and dataset 
are mirror inverted relative to the native fly brain. b, An overview of many of the 
FlyWire resources that are being made available. FlyWire leverages existing 
resources for electron microscopy imagery by Zheng et al.9, synapse predictions 
by Buhmann et al.7 and Heinrich et al.118, and neurotransmitter predictions by 
Eckstein et al.10. Annotations of the FlyWire brain dataset such as hemilineages, 
nerves and hierarchical classes are established in the accompanying paper12.  
c, FlyWire uses CAVE50 for proofreading, data management and analysis back 

end. The data can be accessed programmatically through CAVEclient, navis, 
fafbseg and natverse119, and through the browser in Codex, Catmaid Spaces and 
braincircuits.io. Static exports of the data are also available. d, The Drosophila 
brain can be divided into spatially defined regions based on neuropils80 
(Extended Data Fig. 1). Neuropils for the lamina are not shown. D, dorsal;  
L, lateral; P, posterior. e, Synaptic boutons in the fly brain are often polyadic 
such that there are multiple postsynaptic partners per presynaptic bouton. 
Each link between a pre- and a postsynaptic location is a synapse. f, Neuron 
tracts, trachea, neuropil and cell bodies can be readily identified from the 
electron microscopy data acquired by Zheng et al.9. Scale bar, 10 µm.



Physics of computation



Jumping spider

ca. 100,000 neurons
1 fly/day

nVidia Blackwell GPU

200 billion transistors
1 kW



Functional 
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computing)
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Computational efficiency



(Douglas and Martin, 2007)

Recurrent circuits are pervasive throughout cortex

Cortical microcircuit



Perception as factorization
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Example: MNIST dataset
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We can reformulate this as vector factorization
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Equivariant 
part

Invariant 
part

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

µ

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

Reconstruction error as a function of µ for different values of �

 

 

� = 0.0
� = 0.5
� = 1.0
� = 2.0

Figure 1: Local minima in the error function landscape can be escaped by increasing

the smoothing coefficient �. This plot shows reconstruction error (Equation 3) as a

function of transformation coefficient µ for several values of the smoothing coefficient

�. In this case the target pattern x
(t+1) has been translated in one dimension relative to

an initial white noise pattern x
(t), and the operator A is the one-dimensional translation

operator.

captured by the model form in Equation 8, though the choice of coefficient values µk

for a transformation may depend on the order of terms in the product.

2.4 Regularization via Manifold Distance

In order to encourage the learned operators to act independently of each other, and

to learn to transform between patches in the most direct way possible, we penalize

the distance through which the transformations move the image through pixel space.

Since this penalty consists of a sum of the distances traversed by each operator, it acts

similarly to an L1 penalty in sparse coding, and encourages travel between two points

to occur via a path described by a single transformation, rather than by a longer path

described by multiple transformations.

The distance traversed by the transformations can be expressed as

dmulti =
X

k

dk (µk,yk(0)) (10)

where yk(0) =
Q

m<k Tm (µm, �m)x(0) is the image patch prior to application of trans-

8
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Representing position with complex-valued vectors

• Base vector:

• Value  is represented as:x

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2022).  Computing on Functions Using Randomized Vector 
Representations (in brief). In: Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference.

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2021).  Computing on Functions Using Randomized Vector 
Representations.  arXiv:2109.03429



Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2022). Computing on Functions Using Randomized Vector 
Representations (in brief). In: Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference.

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2021).  Computing on Functions Using Randomized Vector 
Representations.  arXiv:2109.03429

Similarity kernel
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Vector multiplication corresponds to variable addition
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z(x)� z(y) = z(x+ y)

Representing position with complex-valued vectors



Attractor dynamics

See:  Noest (1987). Phasor neural networks.  NIPS proceedings.



Attractor dynamics for factorization

Given

“resonator network”

Frady EP, Kent S, Olshausen BA & Sommer FT (2020)  Resonator Networks for factoring distributed 
representations of data structures.  Neural Computation (in press)  https://arxiv.org/abs/2007.03748

Kent S, Frady EP, Sommer FT & Olshausen BA (2020)  Resonator Networks outperform optimization methods at 
solving high-dimensional vector factorization.  Neural Computation (in press)  https://arxiv.org/abs/1906.11684

https://arxiv.org/abs/2007.03748
https://arxiv.org/abs/1906.11684


Visual scene analysis via vector factorization

7 colors x 26 letters x 50 vertical x 50 horizontal = 455,000 combinations per object


Complexity of representation and computation is 7 + 26 + 50 + 50

Renner, et al.  (2024). Neuromorphic visual scene understanding with resonator networks. 
Nature Machine Intelligence.



Equivariant representation



Recording of several neurons reveals multiple 
scales of encoding

High-capacity, error-correcting representation of 
spatial position

Grid cell 
responses
(entorhinal cortex)

Autocorrelogram



Computing with Residue Numbers in 
High-Dimensional Representation.  
arXiv:2311.04872. (Neural Computation, to appear)

Chris Kymn

• Key idea: Represent an integer in terms of its remainder relative to 
a set of pairwise co-prime integers

Example: 41 = {2, 1, 6} (mod 3, 5, 7)

• Chinese remainder theorem:  Residue numbers are unique for all 
values of , , with  .

• Arithmetic operations are element-wise:  (no carry)
Example:    

{m1, m2…mk}

x 0 ≤ x ≤ M − 1 M = m1 × m2 × … × mk

41 {2 1 6}
26 {2 1 5}
67 {1 2 4}

+

https://arxiv.org/abs/2311.04872


How to represent residue numbers with HD vectors?
(Kymn C, et al. 2023, arXiv:2311.04872)
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When phasor distribution is discrete
(sampled from th roots of unity)n Similarity kernel is modulo n



• Choose base vectors with phasors drawn from m-th roots 
of unity to represent numbers modulo m.

• A residue number representation of  can then be 
represented by binding together the vector representation 
of  for each of the moduli.

• For example, for the {3,5,7} RNS we have:

x

x

How to represent residue numbers with HD vectors?
(Kymn C, et al. 2023, arXiv:2311.04872)

mod 105 mod 7 mod 5 mod 3



Given , how to compute its RNS components , , ?p z1 z2 z3

Factorize via



Coding range scales exponentially 
with number of moduli

Figure 2: Residue number systems, combined with a modular attractor network (resonator
network), result in a new kind of attractor neural network with favorable scaling for a large
combinatorial range. A) Number of encoding states, M , grows rapidly in the number of modules,
up to a maximum established by Landau’s function (black dots). B) Coefficient of coding range, M,
scales roughly as O(D↵K ), depending on the number of moduli, K, but with ↵K > 1. C) Estimation
of scaling from slopes of linear regression (fit to log-log scale). Higher values of K require a higher
dimension to achieve a particular coding range; empirical values are close to ↵K = K

K�1 .

3.2 The modular attractor network has superlinear coding range157

The exponential scaling of the coding range of the RNS representation is a prerequisite to obtain a large158

coding range with the attractor network that has to perform computations on this representation, such159

as input denoising, working memory, and path integration. To estimate the scaling of the coding range160

in the proposed attractor network Eq. (6), we study the critical dimension for which the grid modules161

converge with high probability. Specifically, we empirically estimate the minimum dimension162

required to retrieve an arbitrary RNS representation with high probability, given a maximum number163

of iterations (Figure 2B). Remarkably, we find that the number of component patterns n that can be164

stored is superlinear in the pattern dimension D; empirically O(D↵) for some ↵ � 1. For 2, 3, and 4165

moduli, ↵ ⇡ 2.05, 1.45 and 1.23, respectively (Figure 2C).166

These empirical scaling laws are consistent with a simple information-theoretic calculation (Ap-167

pendix A.2). The minimal amount of bits to be stored for the entire RNS vector encoding scheme is168

of order O(M log M), and the number of synapses in the attractor network is O(D K
p
M). If one169

makes the cautious assumption of a capacity per synapse of O(1), the leading order for the coding170

range M is O(D↵), with ↵ = K
K�1 .171

Note that while superlinear scaling of the coding range increases with the number of moduli for the172

RNS representation, it decreases for the modular attractor network, reaching maximum superlinearity173

at the smallest value K = 2. This reversal is caused by the fact that increasing K decreases the174

number of synapses, i.e., the memory resource in the attractor network.175

3.3 Robust error correction176

Figure 3: Recovery of encoded positions is robust to various sources of noise. A) Visualization
of the von Mises weight distribution. Note that the magnitude of the noise is inversely proportional
to , and that the variance of the phase perturbation is much larger than the distance between the
discrete states of phasors B-D) Visualizations of accuracy as a function of coding range and  for
three separate cases: input noise (B), update noise (C), and codebook noise (D). Cases are shown in
order of increasing difficulty. The resonator network maintains perfect accuracy up to a point, after
which accuracy decays at an earlier point than the noiseless dynamics (black curve).
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Coding range scales super-linearly 
with vector dimension



Performance is robust to noise

Figure 2: Residue number systems, combined with a modular attractor network (resonator
network), result in a new kind of attractor neural network with favorable scaling for a large
combinatorial range. A) Number of encoding states, M , grows rapidly in the number of modules,
up to a maximum established by Landau’s function (black dots). B) Coefficient of coding range, M,
scales roughly as O(D↵K ), depending on the number of moduli, K, but with ↵K > 1. C) Estimation
of scaling from slopes of linear regression (fit to log-log scale). Higher values of K require a higher
dimension to achieve a particular coding range; empirical values are close to ↵K = K

K�1 .
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of the von Mises weight distribution. Note that the magnitude of the noise is inversely proportional
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von Mises noise



‘Mercedes Benz’ 
frame

Representing 2D position in the ‘Mercedes Benz’ frame

Phase distribution

Similarity kernel
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Figure 5: Hexagonal coding improves spa-
tial resolution. A) Voronoi tessellation for
m = 5. Each distinct color corresponds to
a unique codeword in CD. Black arrows
show the coordinate axes of the triangular
‘Mercedes-Benz’ frame in 2D. B) Hexago-
nal lattices have higher entropy than square
lattices, allowing each state to carry higher
resolution in its spatial output.

We resolve this issue by showing how to implement a211

version of vector binding of multiple coordinates in a tri-212

angular ‘Mercedes-Benz’ frame that enables carry-free213

hexagonal coding. Furthermore, we provide a combina-214

toric argument for the optimality of triangular frames215

for R2
. (A frame is a spanning set for a vector space216

in which the basis vectors need not be linearly inde-217

pendent.) Our argument relies on the combinatorics of218

residue numbers, and so for the first time gives an expla-219

nation of why the coexistence of RNS and hexagonal220

codes is optimal.221

To form a hexagonal tiling of 2D position requires222

two steps: first, projection into a 3-coordinate frame,223

and second, choosing phases such that simultaneous,224

equal movements along all three frames cancel out (Ap-225

pendix A.3). The resulting Voronoi tessellation for226

different states is pictured in Figure 5A. This encoding227

enables higher spatial resolution in terms of the number of discrete states (or higher entropy) for228

a periodic frame of space (Figure 5B). It also results in both a periodic hexagonal kernel and the229

individual grid units having hexagonal shapes (Figure 6C).230

Prior models achieved hexagonal lattices either by circularly symmetric receptive fields (e.g., [30,231

31]) arranged on a periodic rectangular sheet or by distorting a square lattice into an oblique one232

(e.g., [32, 33]). Importantly, these constructions share properties with the square grid and, unlike the233

construction described above, they do not achieve the same level of spatial resolution (Figure 5B).234

4 Testing functionalities of the model235

4.1 Robust path integration236

Figure 6: Velocity shift mechanism enables robust path integration A) Example of path integration
of a 2D trajectory in the case of intrinsic input noise on the place cell representation. The grid cell
modules correct the noise that would otherwise induce a drift after a short time. B) Path integration
results averaged over multiple trajectories in the case of intrinsic input noise on the place cell
representation. Grid cell modules limit noise accumulation along the trajectory. Solid lines report
the median error over 100 trials, with intervals reporting 25th and 75th percentile. C) Simulated
trajectory along which are represented the similarity between the gi of different modules and
vectors representing each position in the environment. We see hexagonal response fields, similar to
those obtained from single unit recordings of MEC. D) Sensory patterns (symbolized by red dots),
representing visual cues, are associated to positions in the environment. Presentation of visual cues
helps correct drifted positions due to extrinsic noise.
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