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Animal intelligence



Jumping spider

1T mm

(Bair & Olshausen, 1991)

(Wayne Maddison)



Orientation by Jumping Spiders During the Pursuit of Prey

o
o
1

8

Observed Reorientation Angle (6,)

o 3 60 " 90
Compensated Reorientation Angle (8,)

(D.E. Hill; 1979)



Path integration in desert ants

(R. Wehner, S. Wehner, 1986)



Navigation in fruit flies

Head-direction cells in ellipsoid body of Drosophila

< Ellipsoid body activity
(calcium imaging)

Decoded vs. actual head dir.
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Entire fly brain connectome (139,355 neurons
Dorkenwald et al., 2024

Left optic lobe Central brain Right optic lobe



Physics of computation



nVidia Blackwell GPU Jumping spider

200 billion transistors ca. 100,000 neurons
1 kW 1 fly/day
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Jumping spider

Functional
competence

Loihi 8.0

Current models (Neuromorphic
computing)
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Computational efficiency



Recurrent circuits are pervasive throughout cortex

Cortical microcircuit
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Perception as factorization



x(2t) = e x(0)

X = AX
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We can reformulate this as vector factorization

Equivariant Invariant
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Representing position with complex-valued vectors

« Base vector:

- Value x Is represented as:
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Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2022). Computing on Functions Using Randomized Vector
Representations (in brief). In: Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference.

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2021). Computing on Functions Using Randomized Vector

Representations. arXiv:2109.03429



Representing position with complex-valued vectors

z(x) - z(x + Ax)

Similarity kernel

Vector multiplication corresponds to variable addition
z(x) ©z(y) = z(z +y)

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2022). Computing on Functions Using Randomized Vector
Representations (in brief). In: Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference.

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2021). Computing on Functions Using Randomized Vector
Representations. arXiv:2109.03429



Attractor dynamics

See: Noest (1987). Phasor neural networks. NIPS proceedings.



Attractor dynamics for factorization

“resonator network”

Frady EP, Kent S, Olshausen BA & Sommer FT (2020) Resonator Networks for factoring distributed
representations of data structures. Neural Computation (in press) https://arxiv.org/abs/2007.03748

Kent S, Frady EP, Sommer FT & Olshausen BA (2020) Resonator Networks outperform optimization methods at
solving high-dimensional vector factorization. Neural Computation (in press) https://arxiv.org/abs/1906.11684



https://arxiv.org/abs/2007.03748
https://arxiv.org/abs/1906.11684

Visual scene analysis via vector factorization

Color Letter Vertical Horizontal

e [

blue cyan red adg jmpsvy 0 1020304050 0 10 20 30 40 50

7/ colors x 26 letters x 50 vertical x 50 horizontal = 455,000 combinations per object

Complexity of representation and computation is 7 + 26 + 50 + 50

Renner, et al. (2024). Neuromorphic visual scene understanding with resonator networks.
Nature Machine Intelligence.



Equivariant representation



High-capacity, error-correcting representation of
spatial position

Grid cell
responses

(entorhinal cortex)

Autocorrelogram *

Recording of several neurons reveals multiple
scales of encoding



Computing with Residue Numbers in

High-Dimensional Representation.
arXiv:2311.04872. (Neural Computation, to appear)

Chris Kymn

* Key idea: Represent an integer in terms of its remainder relative to
a set of pairwise co-prime integers{m;, m,...n,}

Example: 41 ={2, 1, 6} (mod 3, 5, 7)

* Chinese remainder theorem: Residue numbers are unique for all
valuesof x, 0 <x <M — 1, with M =m; Xm, X ... Xm,.

* Arithmetic operations are element-wise: (no carry)

Example: 41 (216}
+26 {215)

67 {124)



https://arxiv.org/abs/2311.04872

How to represent residue numbers with HD vectors?
(Kymn C, et al. 2023, arXiv:2311.04872)

When phasor distribution is discrete

(sampled from nth roots of unity) o Similarity kernel is modulo n
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How to represent residue numbers with HD vectors?
(Kymn C, et al. 2023, arXiv:2311.04872)

e Choose base vectors with phasors drawn from m-th roots
of unity to represent numbers modulo m.

e Aresidue number representation of x can then be

represented by binding together the vector representation
of x for each of the moduli.

e For example for the {3,5,7} RNS we have:

= z1(x) ® z22(x) © z3(@

el

mod 105 mod 7 mod 5 mod 3



Given p, how to compute its RNS components z,, Z,, 257

Factorize via




Coding range scales exponentially
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Representing 2D position in the ‘Mercedes Benz’ frame

Phase distribution

Joint phase distribution
constrained so that

W E
N <
/Qo
:
// [
e
foo
e
..r¢\’4 B . . .
& o0 o 2.0 o o 0 ¢ o ¢
O ¢ 2.0 ¢ 2.0 o ¢ .0 »
{ e o 0 o 2.0 ¢ 2.0 o o ¢
w..JW MQ l.m_u. U=
oo
N K,
/AQ
- // [
...‘-. =
‘...Q
... [ -4
. DOOOOOO0O0O0O000000000¢4
A
™
R —_—
o
< &
©
—
-

‘Mercedes Benz’

(mod 5) (mod 15)
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Triangular coding improves spatial resolution

Voronoi tessellation for m=5

Triangular frame conveys more spatial
information than rectangular frames
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Path integration is accomplished by binding
to instantaneous velocity

2t +1) = ai(ve) © o Z:Z] (b(ze) D (1)) Vi

JF0

P(zis1) = () 2i(t +1)

1=1

Robustness to noise
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