Strong generalization from small brains

Bruno Olshausen

Helen Wills Neuroscience Institute, School of Optometry Redwood Center for Theoretical Neuroscience UC Berkeley

Main points

- Animal intelligence
- Physics of computation
- Perception as factorization
- Equivariant representation

Animal intelligence

Jumping spider

(Bair & Olshausen, 1991)

Orientation by Jumping Spiders During the Pursuit of Prey

(D.E. Hill, 1979)

Path integration in desert ants

(R. Wehner, S. Wehner, 1986)

Entire fly brain connectome (139,355 neurons) (Dorkenwald et al., 2024)

Physics of computation

200 billion transistors 1 kW

Jumping spider

ca. 100,000 neurons 1 fly/day

Computational efficiency

Recurrent circuits are pervasive throughout cortex

Cortical microcircuit

(Douglas and Martin, 2007)

Perception as factorization

Example: MNIST dataset

$$\mathbf{T}(s) = e^{\mathbf{A}\,s}$$

 $\mathbf{I}(s,\alpha) = \mathbf{T}(s) \mathbf{O}(\alpha)$

 $\mathbf{O}(\alpha)$

We can reformulate this as vector factorization

$$\mathbf{I} = \mathbf{T}(s) \mathbf{O}(\alpha)$$

$$\mathbf{I} = \mathbf{W} \mathbf{R}(s) \mathbf{W}^{\top} \mathbf{\Phi} \alpha \qquad \mathbf{R}(s) = \begin{bmatrix} e^{i\omega_{1}s} & e^{i\omega_{2}s} & & \\ & \ddots & \\ & & e^{i\omega_{D/2}s} \end{bmatrix}$$

$$\mathbf{W}^{\top} \mathbf{I} = \mathbf{R}(s) \mathbf{W}^{\top} \mathbf{\Phi} \alpha$$

$$\tilde{\mathbf{I}} = \mathbf{R}(s) \mathbf{\tilde{\Phi}} \alpha$$

$$\tilde{\mathbf{I}} = \mathbf{Z}(s) \mathbf{\tilde{O}}(\alpha)$$
Equivariant Invariant part Invariant part

Representing position with complex-valued vectors

• Base vector:

$$\mathbf{z} = \begin{bmatrix} e^{j\omega_1} \\ e^{j\omega_2} \\ \vdots \\ e^{j\omega_N} \end{bmatrix}$$

• Value *x* is represented as:

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2022). Computing on Functions Using Randomized Vector Representations (in brief). In: *Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference.*

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2021). Computing on Functions Using Randomized Vector Representations. *arXiv:2109.03429*

Representing position with complex-valued vectors

Vector multiplication corresponds to variable addition

$$\mathbf{z}(x) \odot \mathbf{z}(y) = \mathbf{z}(x+y)$$

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2022). Computing on Functions Using Randomized Vector Representations (in brief). In: *Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference.*

Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT (2021). Computing on Functions Using Randomized Vector Representations. *arXiv:2109.03429*

Attractor dynamics

$$\hat{\mathbf{z}}_{t+1} = \sigma(\mathbf{Z}\mathbf{Z}^{\dagger}\hat{\mathbf{z}}_{t})$$
 $\hat{\mathbf{O}}_{t+1} = \sigma(\tilde{\mathbf{\Phi}}\tilde{\mathbf{\Phi}}^{\dagger}\hat{\mathbf{O}}_{t})$

See: Noest (1987). Phasor neural networks. NIPS proceedings.

Attractor dynamics for factorization

Given
$$\tilde{\mathbf{I}} = \mathbf{z}(s) \odot \tilde{\mathbf{O}}_n$$

$$\hat{\mathbf{z}}_{t+1} = \sigma(\mathbf{Z}\mathbf{Z}^{\dagger}\,\tilde{\mathbf{I}}\odot\hat{\mathbf{O}}_{t}^{\dagger})$$
$$\hat{\mathbf{O}}_{t+1} = \sigma(\tilde{\mathbf{\Phi}}\tilde{\mathbf{\Phi}}^{\dagger}\,\tilde{\mathbf{I}}\odot\hat{\mathbf{z}}_{t}^{\dagger})$$

"resonator network"

Frady EP, Kent S, Olshausen BA & Sommer FT (2020) Resonator Networks for factoring distributed representations of data structures. *Neural Computation* (in press) <u>https://arxiv.org/abs/2007.03748</u>

Kent S, Frady EP, Sommer FT & Olshausen BA (2020) Resonator Networks outperform optimization methods at solving high-dimensional vector factorization. *Neural Computation* (in press) <u>https://arxiv.org/abs/1906.11684</u>

Visual scene analysis via vector factorization

7 colors x 26 letters x 50 vertical x 50 horizontal = 455,000 combinations per object

Complexity of representation and computation is 7 + 26 + 50 + 50

Renner, et al. (2024). Neuromorphic visual scene understanding with resonator networks. *Nature Machine Intelligence*.

Equivariant representation

High-capacity, error-correcting representation of spatial position

Recording of several neurons reveals multiple scales of encoding

Autocorrelogram

Computing with Residue Numbers in High-Dimensional Representation. arXiv:2311.04872. (Neural Computation, to appear)

• Key idea: Represent an integer in terms of its <u>remainder</u> relative to a set of pairwise co-prime integers $\{m_1, m_2...m_k\}$

Example: $41 = \{2, 1, 6\} \pmod{3}, 5, 7$

- Chinese remainder theorem: Residue numbers are unique for all values of $x, 0 \le x \le M 1$, with $M = m_1 \times m_2 \times \ldots \times m_k$.
- Arithmetic operations are element-wise: (no carry)

Example: $41 \quad \{216\} \\ + 26 \quad \{215\} \\ \hline 67 \quad \{124\}$

How to represent residue numbers with HD vectors? (Kymn C, et al. 2023, arXiv:2311.04872)

How to represent residue numbers with HD vectors? (Kymn C, et al. 2023, arXiv:2311.04872)

- Choose base vectors with phasors drawn from *m*-th roots of unity to represent numbers modulo *m*.
- A residue number representation of x can then be represented by *binding together* the vector representation of x for each of the moduli.
- For example, for the {3,5,7} RNS we have:

 $\mathbf{p}(x) = \mathbf{z}_1(x) \odot \mathbf{z}_2(x) \odot \mathbf{z}_3(x)$ $(x) = \mathbf{z}_1(x) \odot \mathbf{z}_2(x) \odot \mathbf{z}_3(x)$

Given \mathbf{p} , how to compute its RNS components \mathbf{z}_1 , \mathbf{z}_2 , \mathbf{z}_3 ?

Factorize via

$$\hat{\mathbf{z}}_{i}(t+1) = \sigma \Big(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\dagger} (\mathbf{p} \bigotimes_{j \neq i}^{K} \hat{\mathbf{z}}_{j}^{\dagger}(t)) \Big) \quad \forall \ i$$

$$\mathbf{Z}_{i} = \begin{bmatrix} | & | & | & | \\ \mathbf{z}_{i}(0) & \mathbf{z}_{i}(1) & \dots & \mathbf{z}_{i}(m_{i}-1) \\ | & | & | & | \end{bmatrix}$$

Coding range scales super-linearly with vector dimension

Performance is robust to noise

Representing 2D position in the 'Mercedes Benz' frame

Phase distribution

Joint phase distribution constrained so that

$$\phi_1 + \phi_2 + \phi_3 = 0$$

'Mercedes Benz' frame

Triangular coding improves spatial resolution

Voronoi tessellation for m=5

Path integration is accomplished by binding to instantaneous velocity

$$\hat{\mathbf{z}}_{i}(t+1) = \mathbf{q}_{i}(v_{t}) \odot \sigma \left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\dagger}(\tilde{\mathbf{p}}(x_{t}) \bigotimes_{j \neq i}^{K} \hat{\mathbf{z}}_{j}^{\dagger}(t)) \right) \quad \forall \ i$$
$$\tilde{\mathbf{p}}(x_{t+1}) = \bigotimes_{i=1}^{K} \hat{\mathbf{z}}_{i}(t+1)$$

Robustness to noise

Main points

- Animal intelligence
- Physics of computation
- Perception as factorization
- Equivariant representation