Using Algorithms to Understand Transformers (and Using Transformers to Understand Algorithms)

Vatsal Sharan (USC)



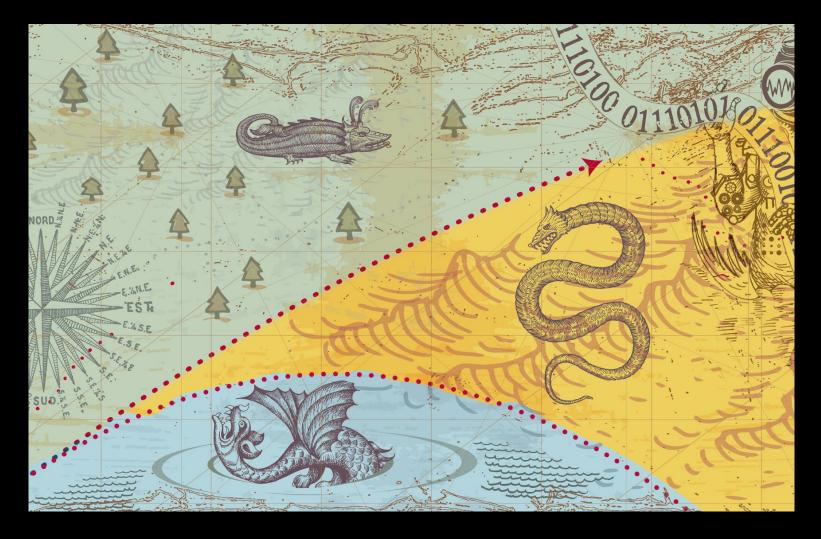


Image source: Simons program on "Computational Complexity of Statistical Inference"

- How can we use understanding of computational and information theoretic landscape to understand Transformers?
- How can we use Transformers to understand and discover algorithms and data structures?

## How do Transformers do linear regression?



Deqing Fu (USC)



Tianqi Chen (USC)



Robin Jia (USC)

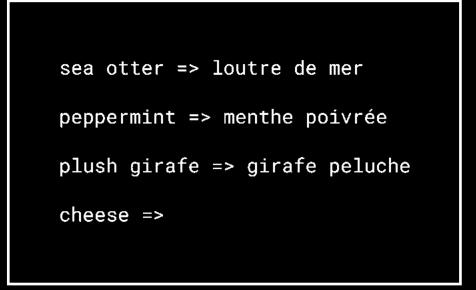
Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models, Neurips 2024

### **Transformers excel at in-context learning**

VS.

examples

prompt



In-context learning



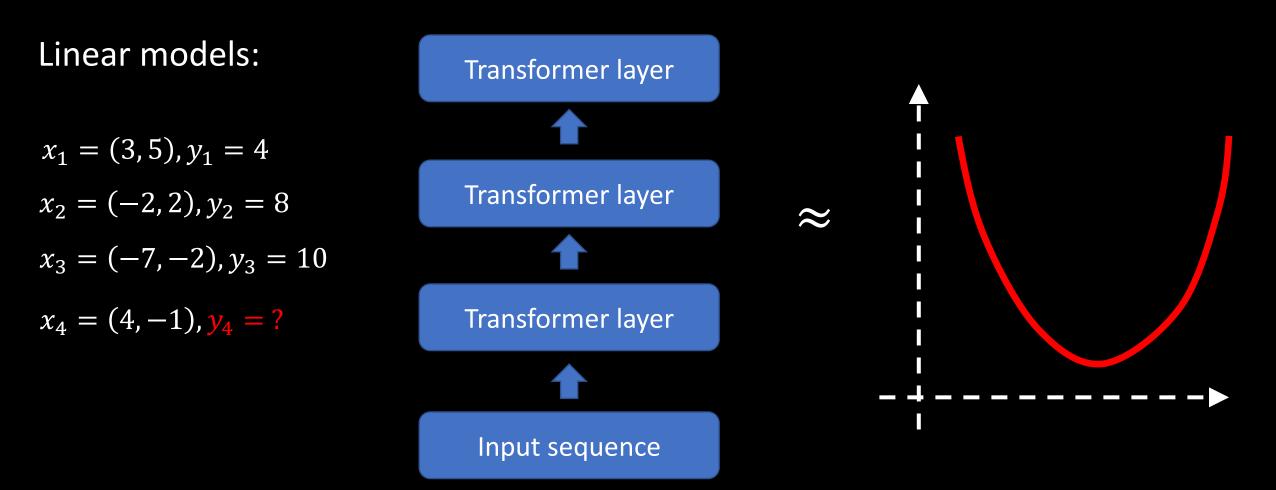
#### Usual fine-tuning

Source: GPT3 paper, OpenAl

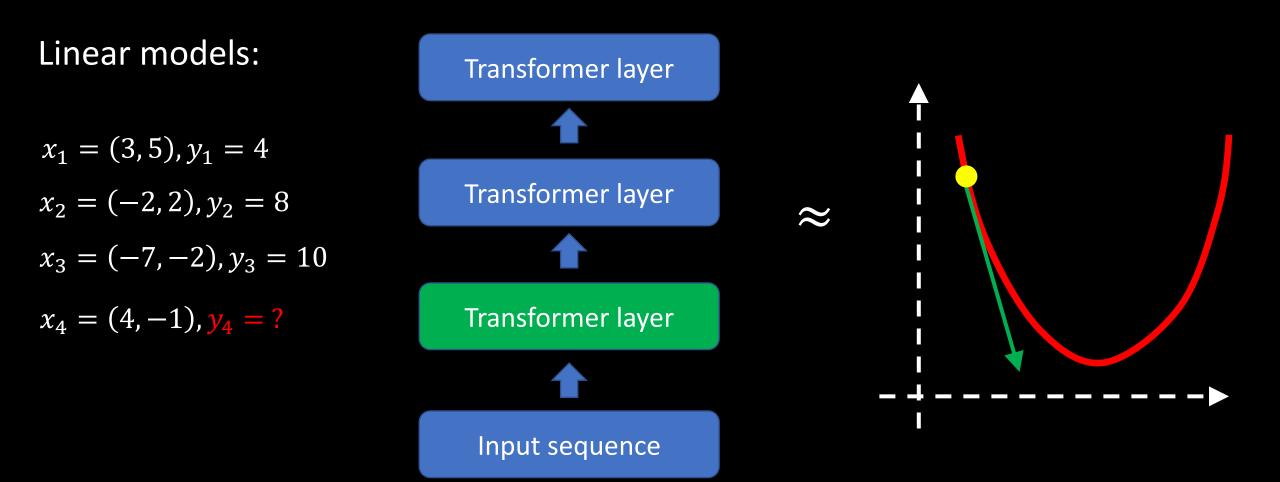
#### How do Transformers do in-context learning?

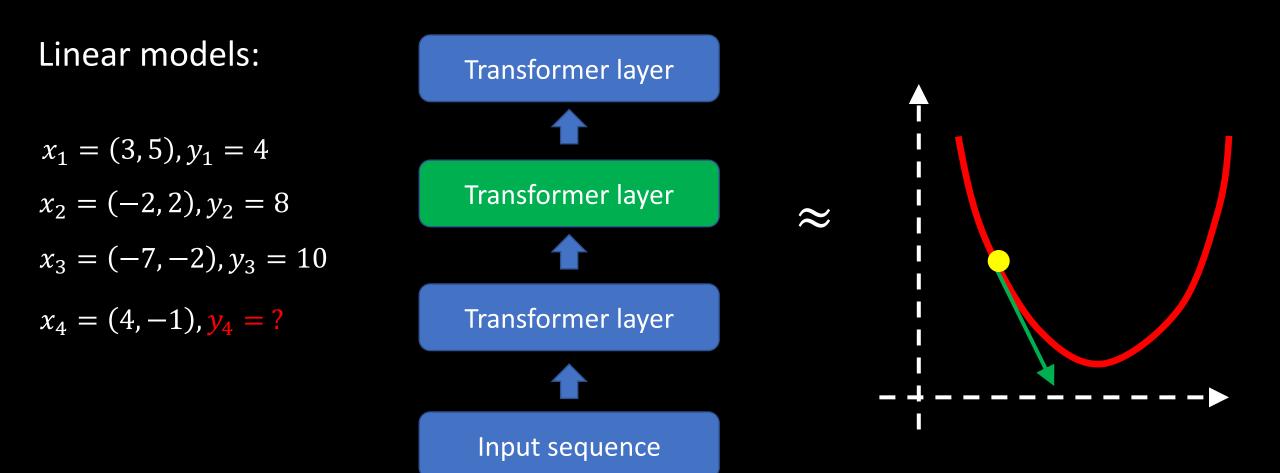
The case of linear models  $(y_i = w^{*T} x_i)$ :  $x_1 = (3, 5), y_1 = 4$   $x_2 = (-2, 2), y_2 = 8$   $x_3 = (-7, -2), y_3 = 10$  $x_4 = (4, -1), y_4 = ?$ 

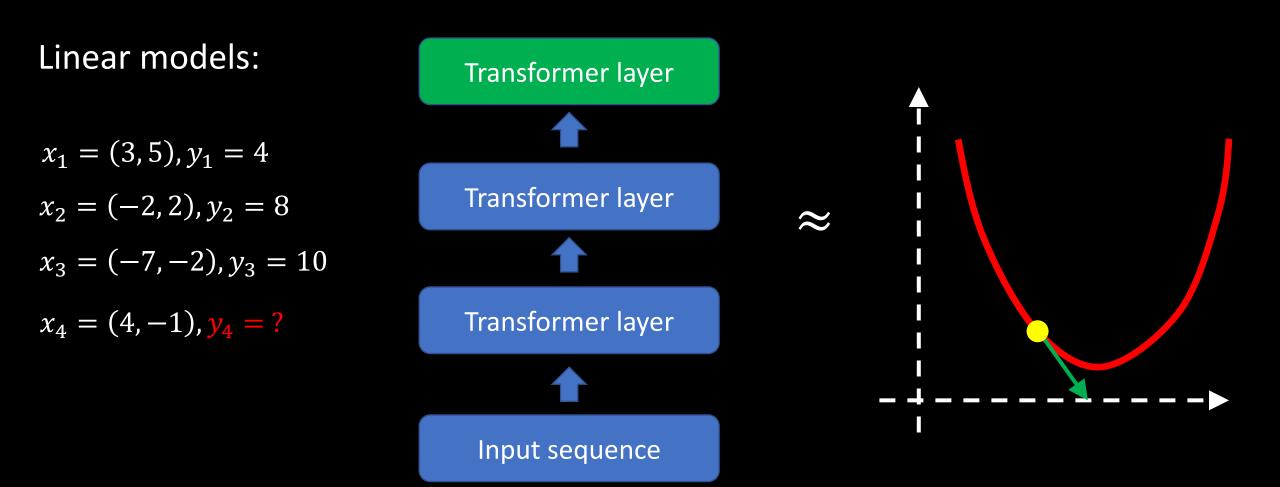
References: Garg-Tsipras-Liang-Valiant 2022, Akyurek-Schuurmans-Andreas-Ma-Zhou 2022



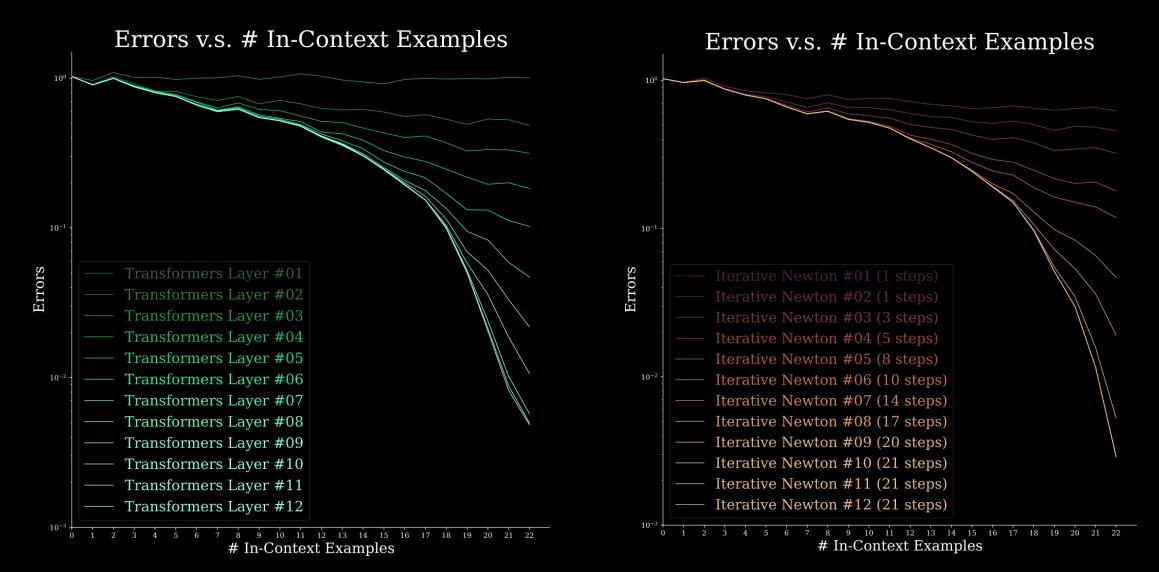
References: von Oswald et al. 2022, 2023, Ahn et al. 2023, Dai et al. 2023

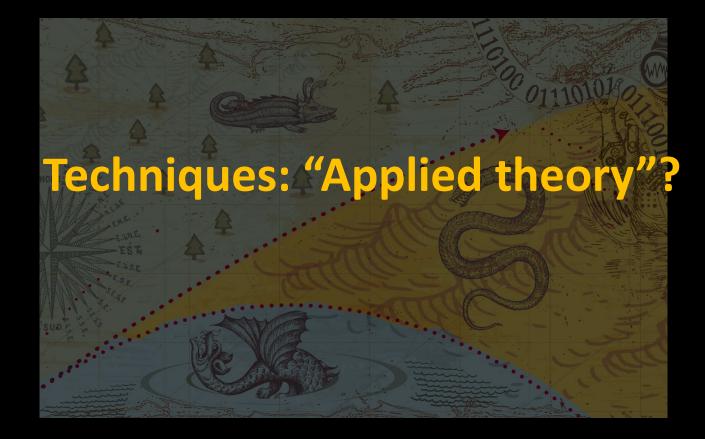




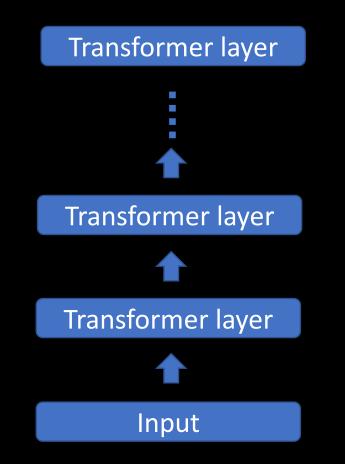


# This work: Transformers do in-context learning via an iterative second-order method

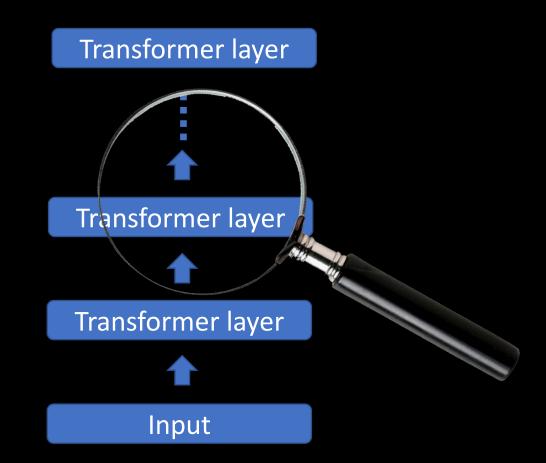




How should we understand how Transformers solve a problem?

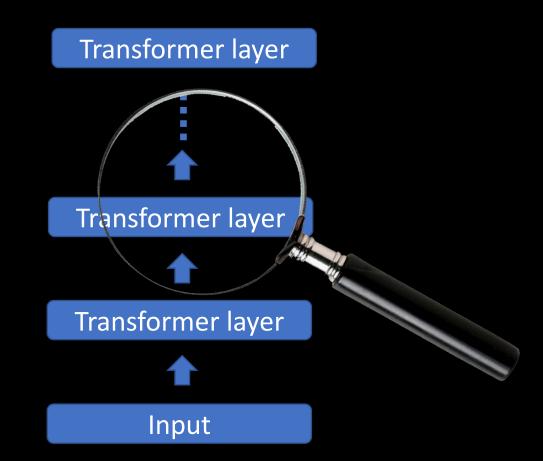


How should we understand how Transformers solve a problem?



Inspect weights to invert mechanism?

How should we understand how Transformers solve a problem?



Issue: Space of possible solutions can be too large and complex

#### How should we understand how Transformers solve a problem?

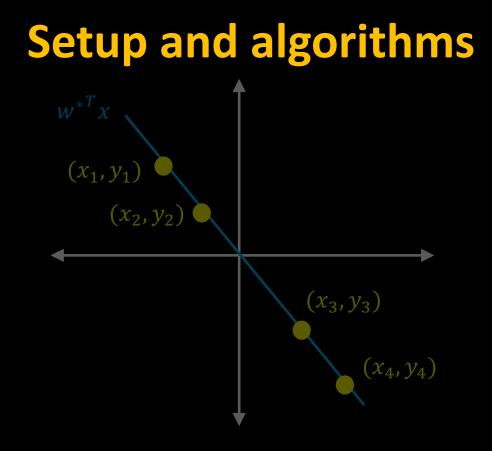


One Solution: Using understanding of information and computation can refine search

For linear regression:

- We know information-theoretic lower bounds on rates achievable by any first-order method
- We understand settings where gap between first and second-order methods is largest

Can we use this understanding, combined with empirical investigations, to uncover Transformer mechanisms?

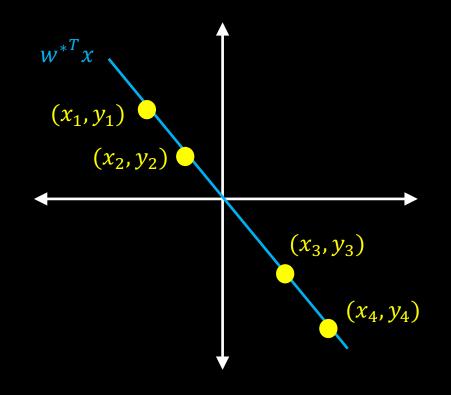


## **The Setup**

#### Data distribution

For each sequence of n examples  $\{x_i, y_i\}_{i=1}^n$ 

Sample  $w^* \sim N(0, I)$ Sample data covariance  $\Sigma$  (for now, let  $\Sigma = I$ ) For each  $i \in [n], x_i \sim N(0, \Sigma), y_i = w^{*T} x_i$ 



## Some algorithms for linear regression

For any time step *t*, let *X* be matrix of datapoints, *y* be vector of labels

Ordinary Least Squares: Minimum norm solution to sum of squares objective

 $w_{OLS} = (X^T X)^{\dagger} X^T y$ 

Gradient descent on sum of squares objective:

 $w_{GD}^{(k+1)} = w_{GD}^{(k)} - \eta * (\text{Gradient at } w_{GD}^{(k)}) \qquad \qquad O(\log(\frac{1}{\epsilon})) \text{ iterations to find } \epsilon \text{ accurate solution}$ 

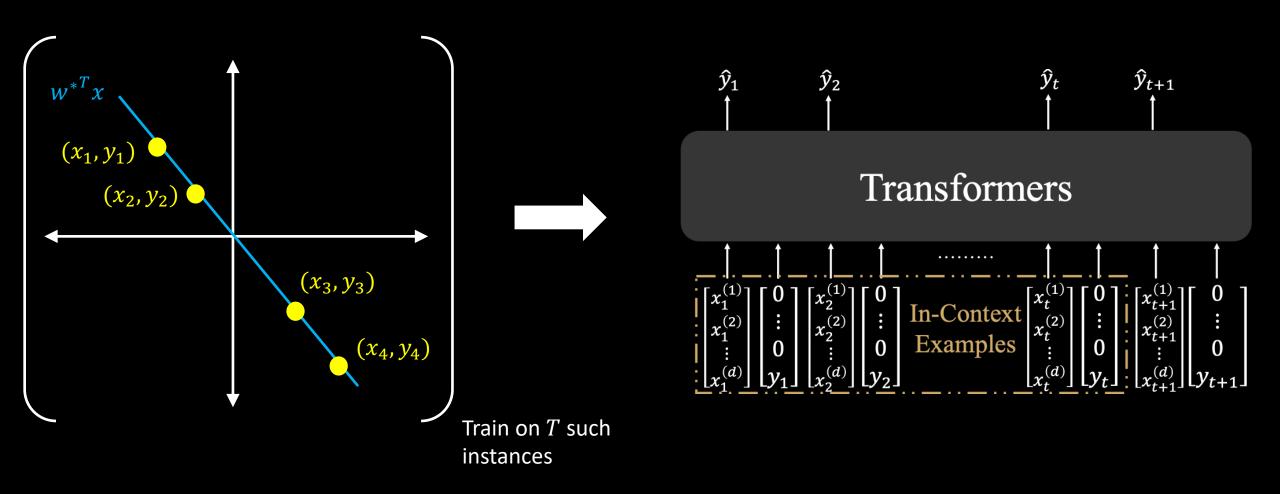
Iterative Newton's: Iterative 2<sup>nd</sup> order method to find inverse (~ matrix Taylor series)

Let  $S = X^T X$ 

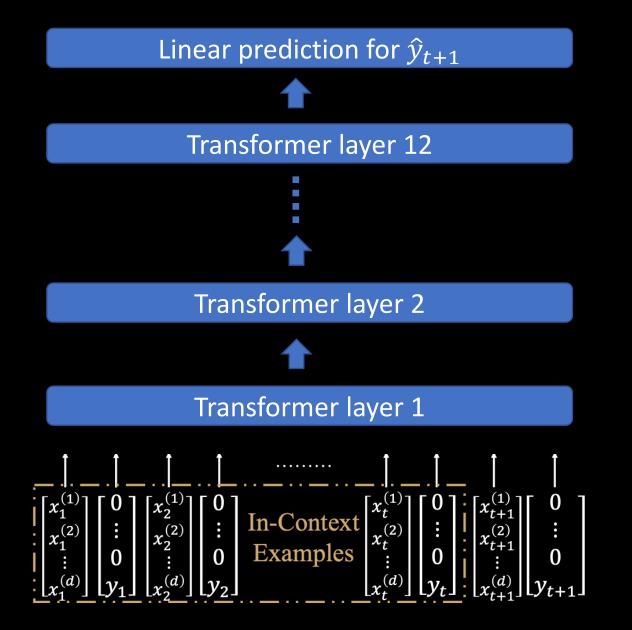
$$M_0 = \alpha S, M_{k+1} = 2M_k - M_k SM_k$$
$$w_{Newton}^{(k)} = M_k X^T y$$

 $O(\log \log(\frac{1}{\epsilon}))$  iterations to find  $\epsilon$  accurate solution

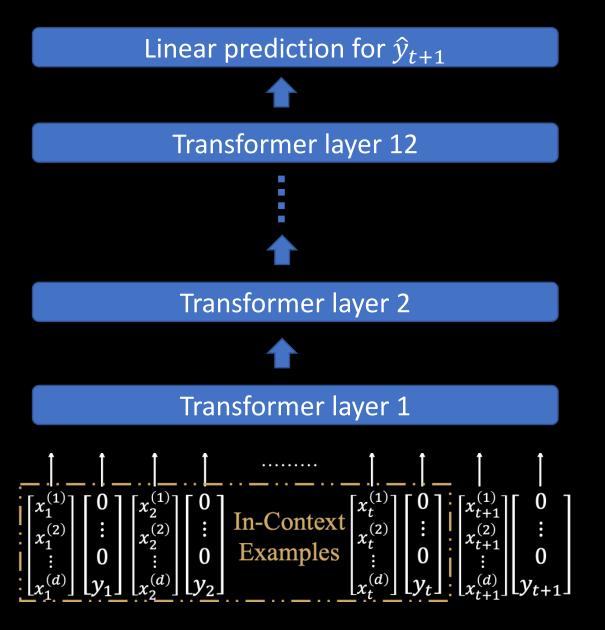
## **Transformers for linear regression**



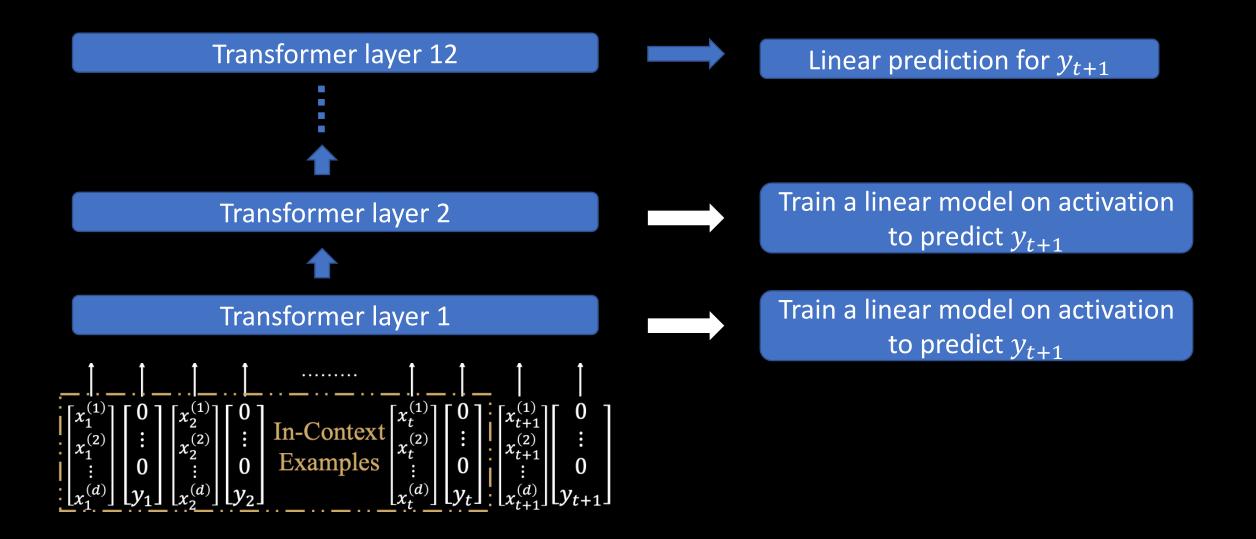
## **Transformers for linear regression**



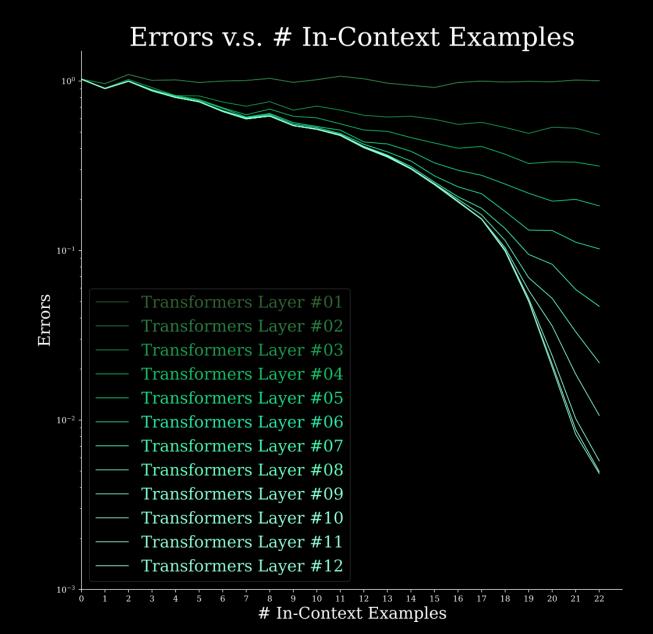
#### **Transformers as an iterative algorithm: probing layers**



#### **Transformers as an iterative algorithm: probing layers**



#### **Transformers as an iterative algorithm: probing layers**



#### **Metric: Similarity of errors**

 $x_1, y_1, x_2, y_2, x_3, y_3, \dots, x_n, y_n,$ Algorithm A $y_1^A, y_2^A, y_3^A, \dots, y_n^A,$ Algorithm B $y_1^B, y_2^B, y_3^B, \dots, y_n^B,$ Algorithm A residuals $(y_1 - y_1^A), (y_2 - y_2^A), (y_3 - y_3^A), \dots, (y_n - y_n^A),$ Algorithm B residuals $(y_1 - y_1^B), (y_2 - y_2^B, (y_3 - y_3^B), \dots, (y_n - y_n^B),$ 

Similarity of errors on  $\{x_i, y_i\}_{i=1}^n$  between Algorithm A, Algorithm B = Cosine similarity between residuals of A, B

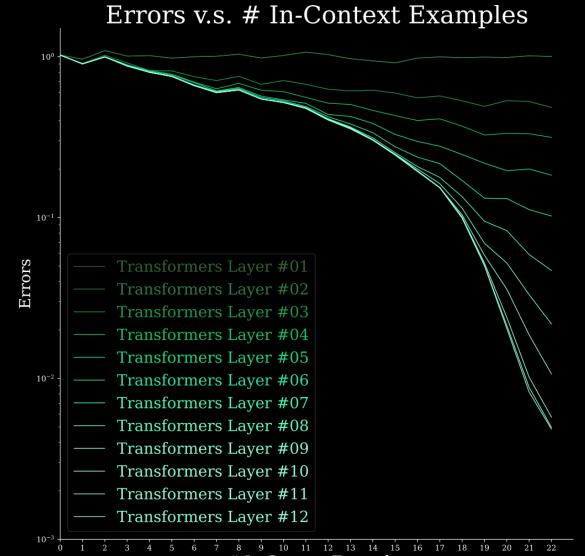
Overall similarity of errors (Algorithm A, Algorithm B) =  $\mathbb{E}_{\{x_i, y_i\}}$  [Cosine similarity between residuals of A, B]



## Transformers utilize higher-order information for linear regression: Evidence

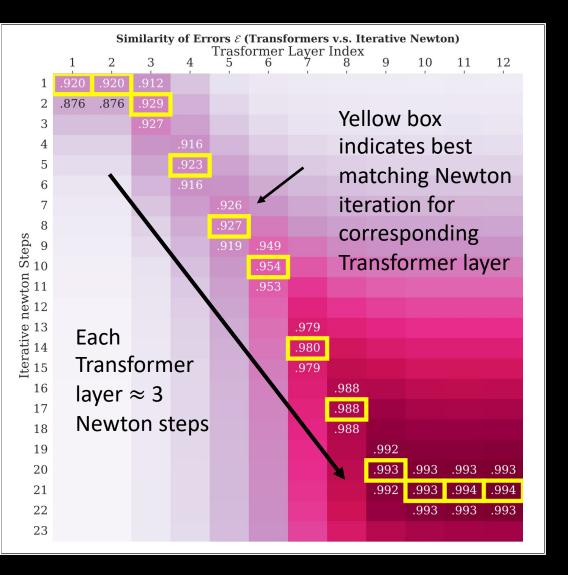
| 14       .980         14       .980         15       .979         16       .988         17       .988         18       .988         19       .993       .993         20       .993       .993         21       .993       .993         23       .993       .993 |                     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|
| 16       .988         17       .988         18       .988         19       .992         20       .993       .993         21       .993       .993       .993         22       .993       .993       .993                                                        | <sup>11</sup><br>14 |  |  |  |  |  |
| 16       .988         17       .988         18       .988         19       .992         20       .993       .993       .993         21       .993       .993       .993       .993         22       .993       .993       .993       .993                       |                     |  |  |  |  |  |
| 18                                                                                                                                                                                                                                                              | 16                  |  |  |  |  |  |
| 19       .992         20       .993       .993       .993         21       .993       .994       .994         22       .993       .993       .993                                                                                                               | 17                  |  |  |  |  |  |
| 20.993.993.993.99321.993.994.994.99422.993.993.993.993                                                                                                                                                                                                          |                     |  |  |  |  |  |
| 21     .993     .994     .993       22     .993     .993     .993     .993                                                                                                                                                                                      | 19                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                 |                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                 | 21                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                 |                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                 |                     |  |  |  |  |  |

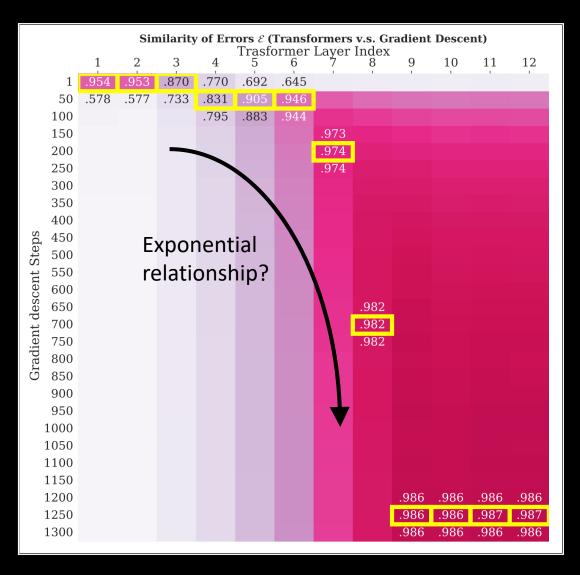
#### **Claim 1: Transformers improve across layers**



# In-Context Examples

#### Claim 2: Transformers are more similar to Iterative Newton than to GD

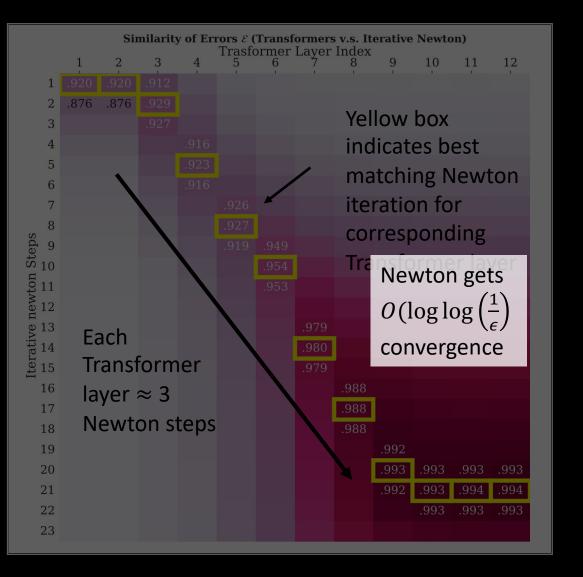


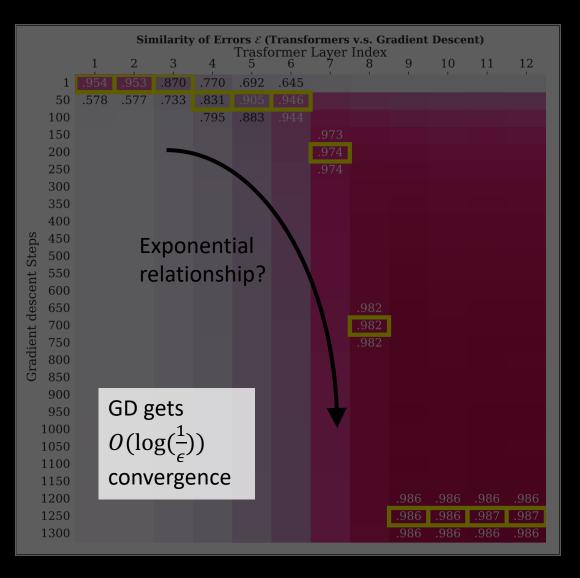


Transformers vs Newton

Transformers vs Gradient Descent

#### Claim 2: Transformers are more similar to Iterative Newton than to GD

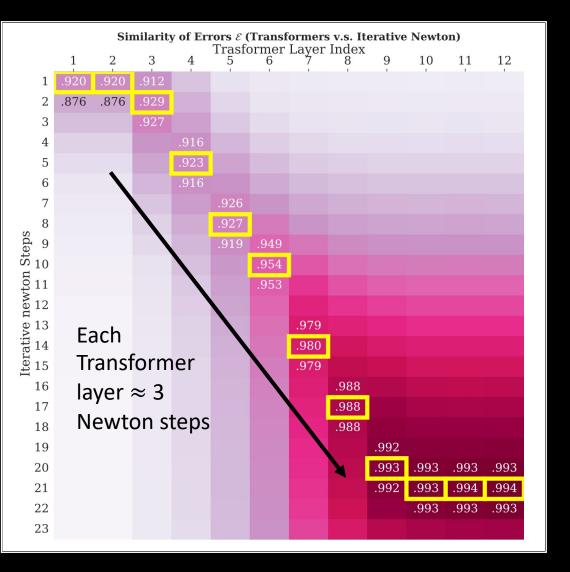




Transformers vs Newton

Transformers vs Gradient Descent

#### Claim 2: Transformers are more similar to Iterative Newton than to GD



|                        | Similarity of Errors $\mathcal{E}$ (Transformers v.s. Gradient Descent)<br>Trasformer Layer Index |      |      |      |      |                              |      |            |      |      |      |      |      |
|------------------------|---------------------------------------------------------------------------------------------------|------|------|------|------|------------------------------|------|------------|------|------|------|------|------|
|                        |                                                                                                   | 1    | 2    | 3    | 4    | 5                            | 6    | Layer<br>7 | 8    | 9    | 10   | 11   | 12   |
|                        | 1                                                                                                 | .953 | .953 | .870 | .771 | .692                         | .645 | .620       | .609 | .605 | .599 | .606 | .602 |
|                        | 2                                                                                                 | .910 | .910 | .903 | .826 | .750                         | .703 | .676       | .665 | .660 | .655 | .661 | .657 |
|                        | 4                                                                                                 | .842 | .841 | .913 | .878 | .816                         | .773 | .746       | .733 | .728 | .724 | .728 | .725 |
|                        | 8                                                                                                 | .759 | .759 | .886 | .905 | .876                         | .846 | .820       | .807 | .801 | .798 | .801 | .799 |
| eps                    | 16                                                                                                | .678 | .677 | .831 | .895 | .910                         | .903 | .886       | .873 | .867 | .865 | .867 | .865 |
| ent St                 | 32                                                                                                | .610 | .610 | .768 | .858 | .914                         | .938 | .934       | .924 | .918 | .916 | .917 | .916 |
| desc                   | 64                                                                                                | .563 | .563 | .717 |      | .897                         | .947 | .961       | .954 | .950 | .948 | .948 | .947 |
| Gradient descent Steps | 128                                                                                               | .536 | .535 | ° C  |      | .875<br>.875<br>.875<br>.847 | 941  | .972       | .971 | .968 | .966 | .967 | .966 |
| Gra                    | 256                                                                                               | .521 | .521 | .666 | Sal  | 876<br>0                     | .932 | .973       | .979 | .978 | .977 | .977 | .977 |
|                        | 512                                                                                               | .513 | .513 | .656 | .755 | .847                         | .923 | .971       | .982 | .984 | .982 | .983 | .983 |
|                        | 1024                                                                                              | .509 | .509 | .652 | .749 | .840                         | .917 | .967       | .982 | .986 | .985 | .986 | .986 |
|                        | 2048                                                                                              | .507 | .507 | .648 | .745 | .836                         | .913 | .964       | .980 | .986 | .986 | .987 | .987 |
|                        | 4096                                                                                              | .506 | .505 | .646 | .744 | .834                         | .911 | .962       | .979 | .985 | .987 | .988 | .988 |

Transformers vs Newton

Transformers vs Gradient Descent

#### **Claim 3: Transformers are still able to match Newton on harder distributions**

What is a setting where the gap between 1<sup>st</sup> and 2<sup>nd</sup> order methods is especially large?

On **ill-conditioned instances**, gradient descent (or its variants) get  $poly(\kappa)$  dependence on the condition number of the linear system  $\kappa$ , 2<sup>nd</sup> order methods get  $polylog(\kappa)$  dependence.

#### Claim 3: Transformers are still able to match Newton on harder distributions

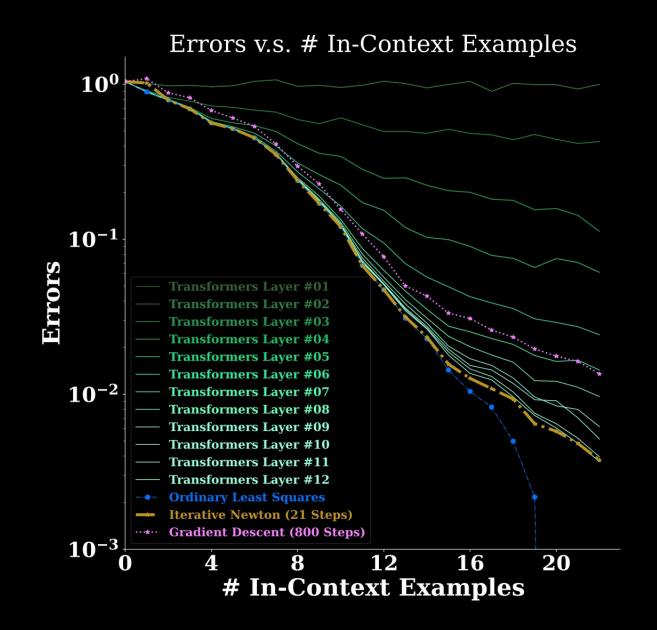
What is a setting where the gap between 1<sup>st</sup> and 2<sup>nd</sup> order methods is especially large?

On ill-conditioned instances, gradient descent (or its variants) get  $poly(\kappa)$  dependence on the condition number of the linear system  $\kappa$ , 2<sup>nd</sup> order methods get  $polylog(\kappa)$  dependence.

Conjecture (Sharan-Sidford-Valiant'19): No first-order (linear memory method) can avoid a  $poly(\kappa)$  dependence on  $\kappa$  in general.

Hard distribution: Sample  $\Sigma$  with d/2 eigenvalues at 100, d/2 eigenvalues at 1, uniformly random eigenbasis.

#### Claim 3: Transformers are still able to match Newton on ill-conditioned data



#### **Claim 3: Transformers are still able to match Newton on ill-conditioned data**

| Similarity of Errors $\mathcal{E}$ (Transformers v.s. Iterative Newton)<br>Trasformer Layer Index |      |      |      |      |      |       |            |      |      |      |      |      |
|---------------------------------------------------------------------------------------------------|------|------|------|------|------|-------|------------|------|------|------|------|------|
|                                                                                                   | 1    | 2    | 3    | 4    | 5    | 6     | Layer<br>7 | 8    | 9    | 10   | 11   | 12   |
| 1                                                                                                 | .885 | .886 | .829 | .713 | .598 | .557  | .535       | .529 | .528 | .530 | .532 | .529 |
| 2                                                                                                 | .814 | .814 | .848 | .780 | .662 | .615  | .593       | .587 | .585 | .587 | .589 | .586 |
| 3                                                                                                 | .736 | .736 | .842 | .838 | .733 | .679  | .656       | .650 | .649 | .650 | .652 | .650 |
| 4                                                                                                 | .661 | .662 | .811 | .878 | .805 | .745  | .722       | .716 | .714 | .715 | .716 | .715 |
| 5                                                                                                 | .593 | .593 | 765  | .893 | .867 | .808. | .783       | .777 | .775 | .775 | .777 | .775 |
| 6                                                                                                 | .536 | .537 | .715 | .887 | .913 | .862  | .834       | .828 | .825 | .826 | .827 | .826 |
| 7                                                                                                 | .493 | .494 | .67  | .868 | .940 | .903  | .873       | .866 | .864 | .864 | .865 | .864 |
| 8                                                                                                 | .464 | .464 | .640 | .847 | .951 | .933  | .902       | .894 | .892 | .893 | .894 | .893 |
| Steps<br>10                                                                                       | .444 | .445 | .617 | 828  | .953 | .953  | .923       | .915 | .913 | .913 | .914 | .913 |
|                                                                                                   | .431 | .432 | .601 | .812 | .948 | .966  | .938       | .930 | .928 | .928 | .929 | .928 |
| newton<br>15                                                                                      | .422 | .423 | .590 | .800 | .942 | .973  | .949       | .940 | .939 | .939 | .939 | .939 |
| e 12                                                                                              | .416 | .416 | .582 | .791 | .935 | .976  | .958       | .949 | .947 | .947 | .948 | .948 |
| e 13                                                                                              | .411 | .412 | .576 | .784 | 928  | .977  | .965       | .956 | .954 | .954 | .955 | .956 |
| 12<br>12<br>12<br>12                                                                              | .407 | .408 | .572 | .778 | .923 | .976  | .971       | .963 | .961 | .962 | .962 | .963 |
| Ite<br>15                                                                                         | .404 | .404 | .567 | .772 | .915 | .973  | .976       | .970 | .968 | .968 | .969 | .970 |
| 16                                                                                                | .400 | .400 | .563 | .766 | .910 | .970  | .980       | .975 | .974 | .974 | .975 | .976 |
| 17                                                                                                | .397 | .397 | .559 | .760 | .904 | 966   | .981       | .979 | .978 | .979 | .979 | .980 |
| 18                                                                                                | .394 | .394 | .555 | .756 | .898 | .962  | .982       | .983 | .982 | .982 | .983 | .984 |
| 19                                                                                                | .392 | .392 | .552 | .752 | .894 | .953  | .981       | .985 | .984 | .985 | .986 | .986 |
| 20                                                                                                | .390 | .390 | .549 | .748 | .890 | .954  | .979       | .985 | .985 | .986 | .987 | .988 |
| 21                                                                                                | .389 | .389 | .548 | .746 | .887 | .951  | 977        | .985 | .985 | .986 | .987 | .988 |
| 22                                                                                                | .387 | .388 | .545 | .743 | .883 | .947  | .973       | .983 | .983 | .984 | .985 | .986 |
| 23                                                                                                | .384 | .385 | .538 | .733 | .872 | .935  | .962       | .972 | .972 | .973 | .974 | .975 |

| Similarity of Errors $\mathcal{E}$ (Transformers v.s. Gradient Descent)<br>Trasformer Layer Index |      |      |      |      |             |            |            |         |      |      |      |      |
|---------------------------------------------------------------------------------------------------|------|------|------|------|-------------|------------|------------|---------|------|------|------|------|
|                                                                                                   | 1    | 2    | 3    | 4    | Trasto<br>5 | ormer<br>6 | Layer<br>7 | Index 8 | 9    | 10   | 11   | 12   |
| 1                                                                                                 | .990 | .990 | .709 | .548 | .469        | .440       | .420       | .413    | .413 | .416 | .418 | .413 |
| 100                                                                                               | .502 | .503 | .686 | .870 | .941        | .921       | .896       | .889    | .886 | .887 | .887 | .886 |
| 200                                                                                               | .451 | .451 | .633 | .839 | .953        | .958       | .936       | .929    | .927 | .927 | .927 | .926 |
| 300                                                                                               | 422  | .433 | .612 | .821 | .950        | .970       | .952       | .945    | .943 | .943 | .943 | .943 |
| 400                                                                                               | .422 | .423 | .600 | .809 | .945        | .975       | .960       | .954    | .952 | .952 | .952 | .952 |
| 500                                                                                               | .417 | .418 | .593 | .802 | .941        | .977       | .966       | .960    | .958 | .958 | .958 | .958 |
| 600                                                                                               | .413 | .413 | .588 | .796 | .937        | .978       | .970       | .964    | .962 | .962 | .962 | .962 |
| 700                                                                                               | .410 | .410 | .584 | 791  | .933        | .978       | .973       | .967    | .965 | .965 | .966 | .966 |
| 800                                                                                               | .408 | .408 | .581 | .708 | .930        | .978       | .975       | .970    | .968 | .968 | .968 | .968 |
| 900                                                                                               | .405 | .406 | .578 | .785 | .927        | .977       | .977       | .972    | .970 | .970 | .970 | .971 |
| დ 1000                                                                                            | .404 | .405 | .576 | .782 | .925        | .977       | .978       | .974    | .972 | .972 | .972 | .972 |
| di 1100<br>S 1200                                                                                 | .402 | .403 | .574 | .780 | 923         | .976       | .979       | .975    | .974 | .974 | .974 | .974 |
|                                                                                                   | .401 | .402 | .573 | .778 | .921        | .975       | .980       | .976    | .975 | .975 | .975 | .976 |
| ti 1300<br>0 1400                                                                                 | .400 | .400 | .572 | .776 | .919        | .975       | .981       | .977    | .976 | .976 | .976 | .977 |
| မ္မီ 1400                                                                                         | .399 | .400 | .571 | .775 | .918        | .974       | .981       | .978    | .977 | .977 | .977 | .978 |
| <u>8</u> 1500                                                                                     | .399 | .400 | .570 | .774 | .917        | .974       | .982       | .980    | .978 | .979 | .979 | .979 |
| 1600 t                                                                                            | .398 | .398 | .569 | .772 | .915        | .973       | .982       | .980    | .979 | .979 | .979 | .980 |
| <mark>日</mark> 1700                                                                               | .397 | .398 | .568 | .771 | .913        | .972       | .982       | .981    | .979 | .980 | .980 | .980 |
| ig 1800                                                                                           | .397 | .397 | .567 | .770 | .913        | 971        | .983       | .982    | .980 | .981 | .981 | .981 |
| 1700<br>1800<br>1900                                                                              | .396 | .396 | .567 | .769 | .912        | .971       | .983       | .982    | .981 | .981 | .981 | .982 |
| 2000                                                                                              | .395 | .396 | .566 | .768 | .910        | . 70       | .983       | .982    | .981 | .982 | .982 | .982 |
| 2100                                                                                              | .395 | .395 | .565 | .767 | .909        | .970       | .983       | .983    | .982 | .982 | .982 | .983 |
| 2200                                                                                              | .394 | .394 | .564 | .766 | .908        | .969       | .983       | .983    | .982 | .982 | .983 | .983 |
| 2300                                                                                              | .394 | .395 | .564 | .766 | .908        | .959       | .984       | .984    | .982 | .983 | .983 | .984 |
| 2400                                                                                              | .393 | .393 | .563 | .765 | .907        | 17         | .983       | .984    | .983 | .983 | .983 | .984 |
| 2500                                                                                              | .393 | .394 | .563 | .765 | .907        | .978       | .984       | .985    | .984 | .984 | .984 | .985 |
| 2600                                                                                              | .393 | .394 | .563 | .764 | .905        | .967       | .984       | .985    | .984 | .984 | .984 | .985 |
| 2700                                                                                              | .393 | .394 | .562 | .763 | .905        | .967       | .984       | .985    | .984 | .984 | .984 | .985 |
| 2800                                                                                              | .392 | .392 | .562 | .763 | .904        | .966       | .983       | .985    | .984 | .984 | .984 | .985 |
| 2900                                                                                              | .392 | .392 | .561 | .762 | .903        | .965       | .983       | .985    | .984 | .984 | .985 | .985 |
| 3000                                                                                              | .391 | .392 | .561 | .762 | .903        | .965       | .984       | .985    | .984 | .985 | .985 | .986 |

Transformers vs Gradient Descent

Transformers vs Newton

## **Theoretical justification**

Can Transformers efficiently implement Iterative Newton's?

Informal Theorem: Transformers can match predictions of k steps of Iterative Newton's with (k + 8) layers, O(d) hidden units per layer.

Construction uses ideas from Akyurek-Schuurmans-Andreas-Ma-Zhou'2022, and is similar to a matrix inverse construction by Giannou-Rajput-Sohn-Lee-Lee-Papailiopoulos'2023

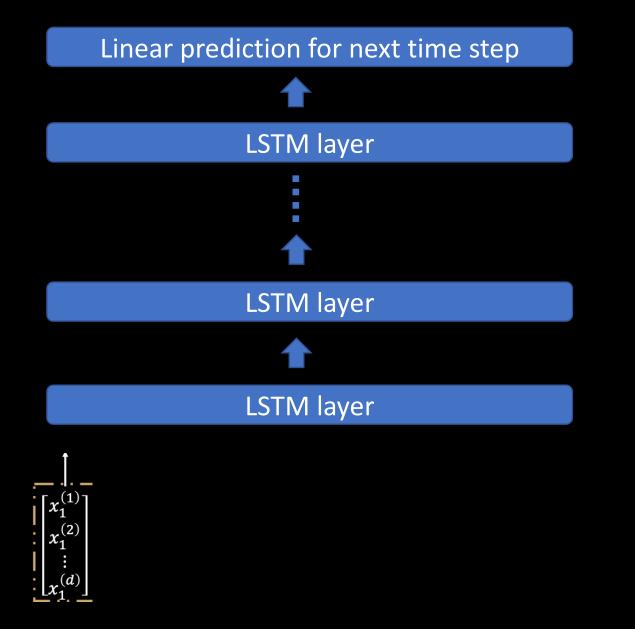
#### Some more related work

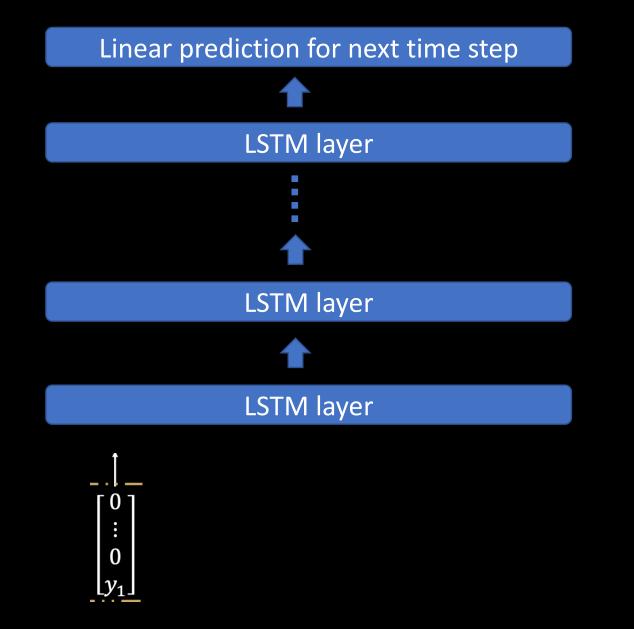
Ahn-Cheng-Daneshmand-Sra'2023, Zhang-Frei-Bartlett'2023 & Mahankali-Hashimoto-Ma'2024 analyze dynamics of trained one-layer Transformers

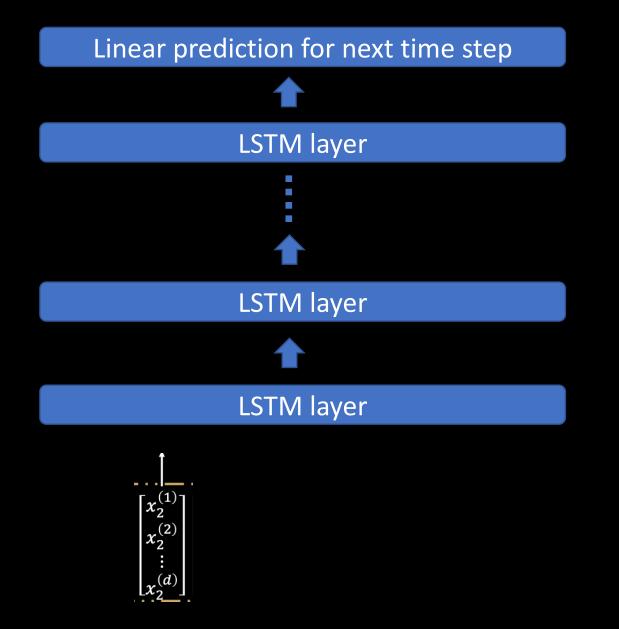
Vladymyrov-von Oswald-Sandler-Ge'2024 show that a second-order variant of GD can mimic Iterative Newton by implicitly approximating inverse

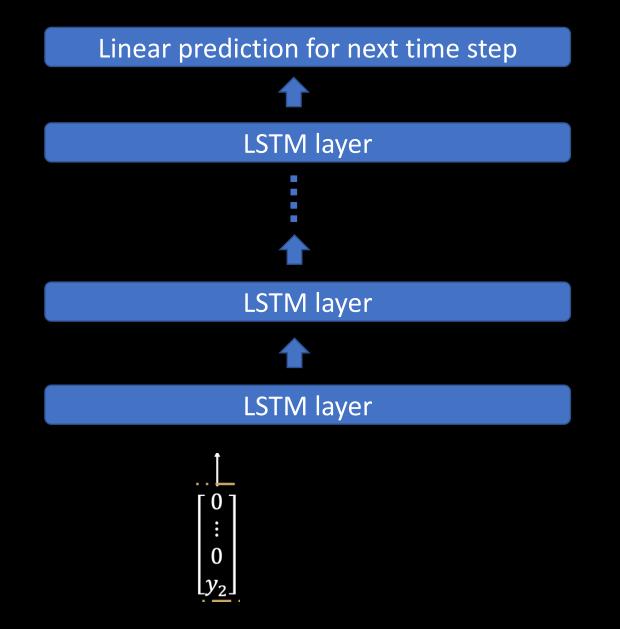
Giannou-Yang-Wang-Papailiopoulos-Lee'2024 show that Transformers can do Iterative Newton beyond linear regression

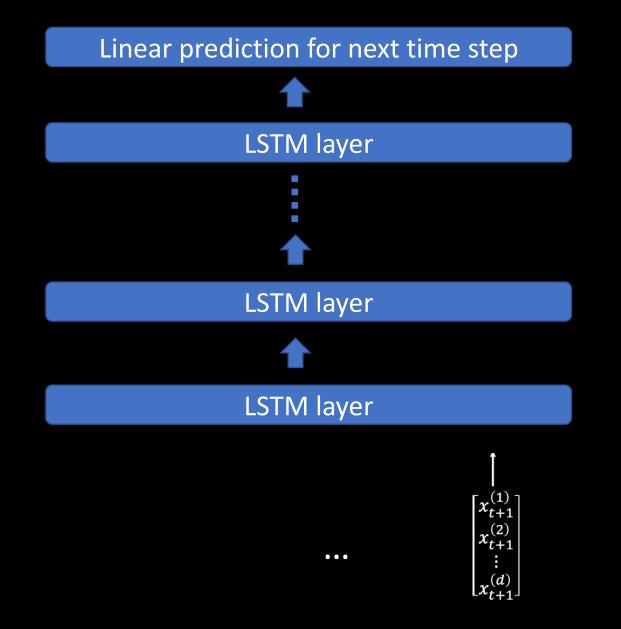
# What makes Transformers suitable for utilizing 2<sup>nd</sup> order information?



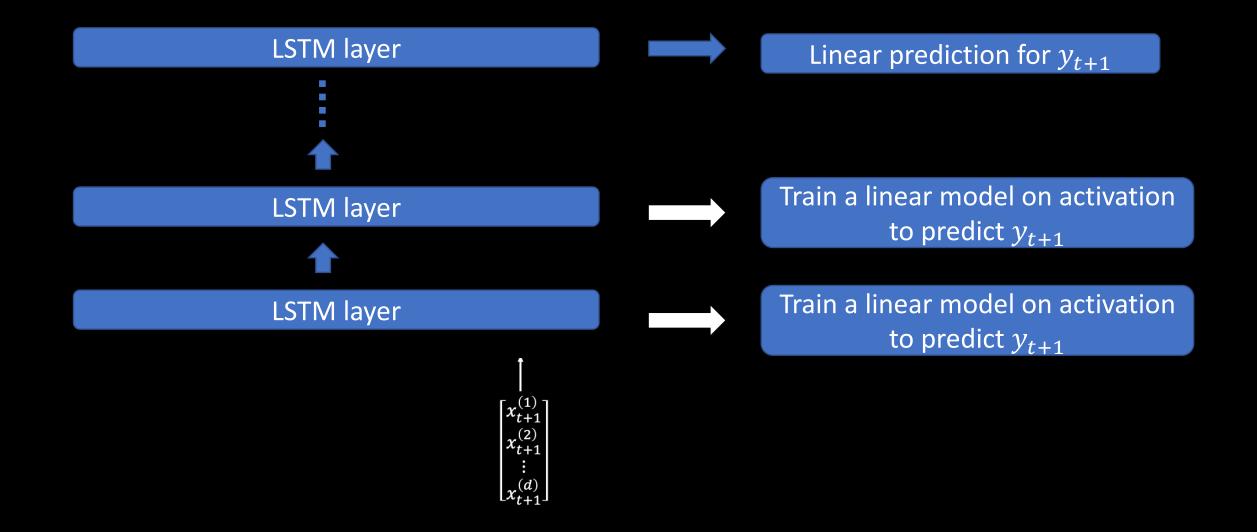




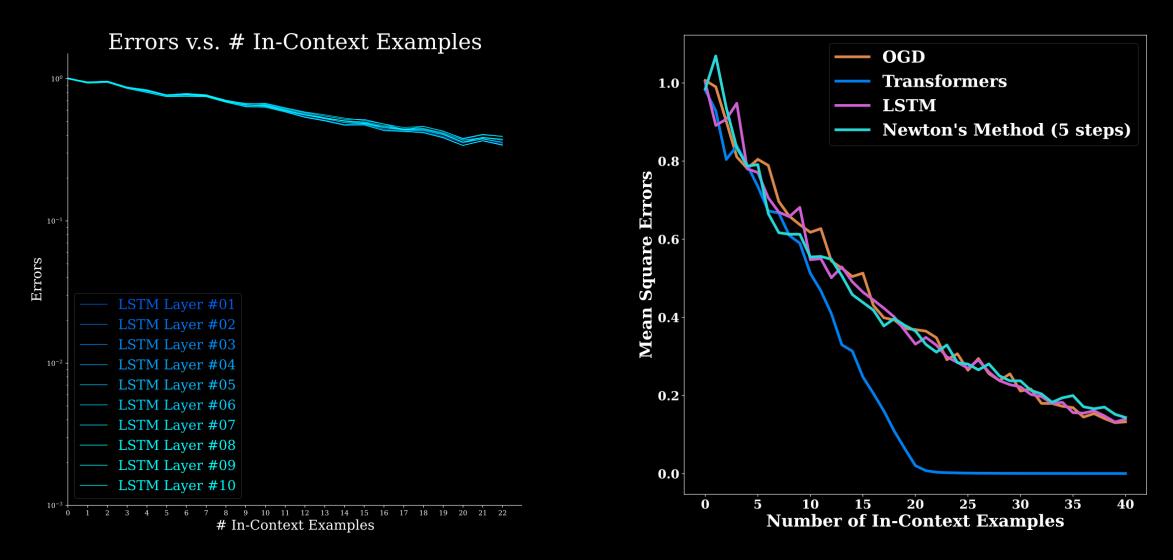




### LSTMs as an iterative algorithm: probing layers

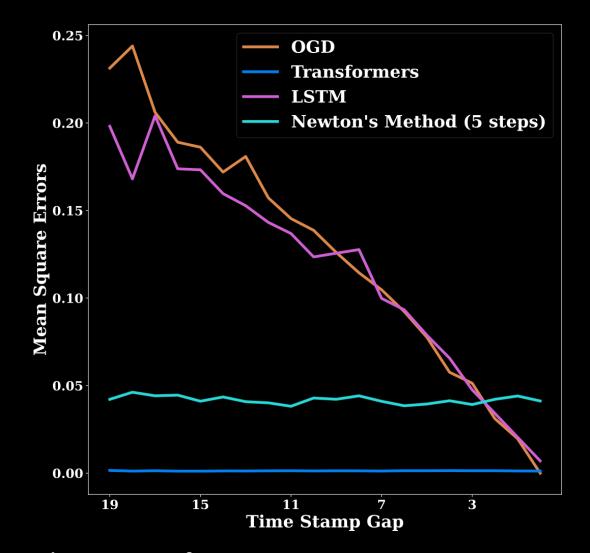


### What do LSTMs implement?



LSTMs seem similar to online gradient descent

### Like OGD, LSTMs 'forget' previous examples



Error when input from t time steps ago is given as query point

Hypothesis: The additional memory available to Transformers (since they have access to entire past sequence) versus recurrent architectures enables it to learn more efficient algorithm

Recent line of theoretical work suggests that the available memory determines the best possible convergence rate, is gap between architectures an instantiation of this?

## What is the role of pre-training? How do LLMs add?







#### Tianyi Zhou (USC)

Deqing Fu (USC)

Robin Jia (USC)

Pre-trained LLMs Use Fourier Features to Compute Addition, Neurips 2024

### How do pre-trained Transformers do addition?

Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108 - What is the sum of 24 and 171? 195

• • •

### How do pre-trained Transformers do addition?

Fine-tune GPT-2XL on addition dataset:

What is the sum of 15 and 93? 108
What is the sum of 24 and 171? 195

...

Each number is its own token

### How do pre-trained Transformers do addition?

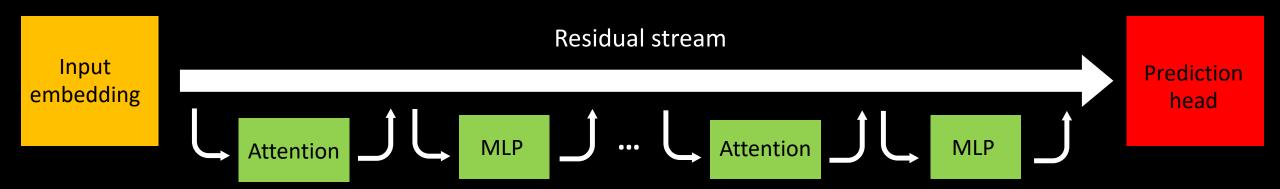
Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108 - What is the sum of 24 and 171? 195 ...

Model gets  $\approx 100\%$  test accuracy.

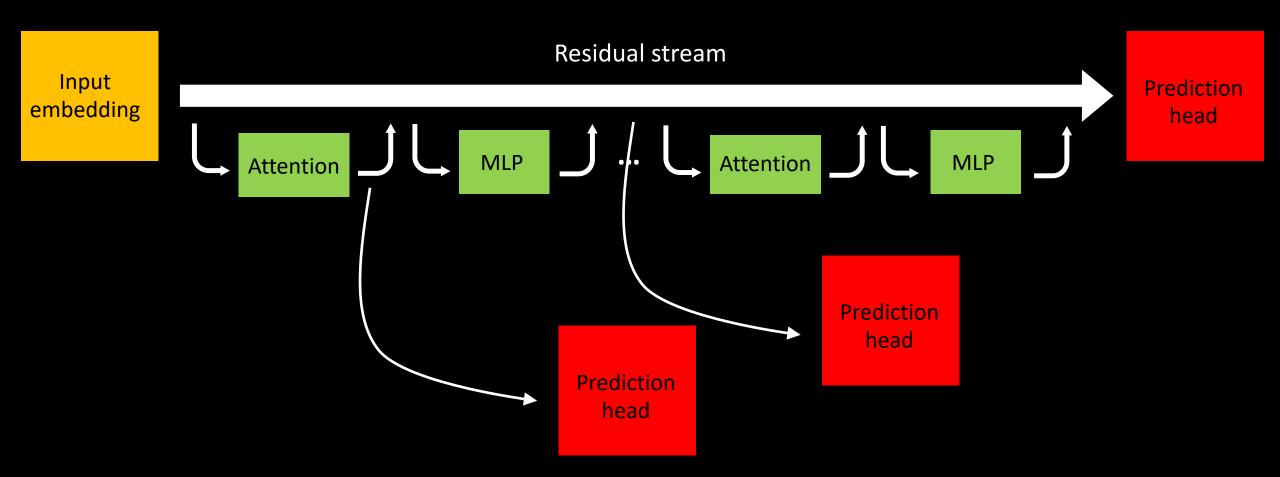
What mechanisms does the model use?

### **Understanding mechanisms: Logit Lens**

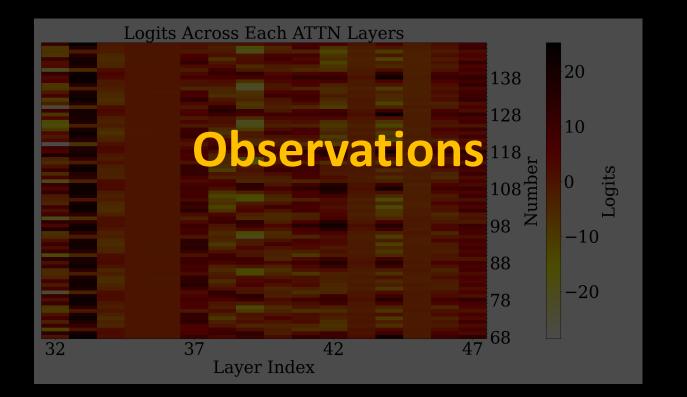


#### Each Attention/MLP component makes additive contribution to residual stream

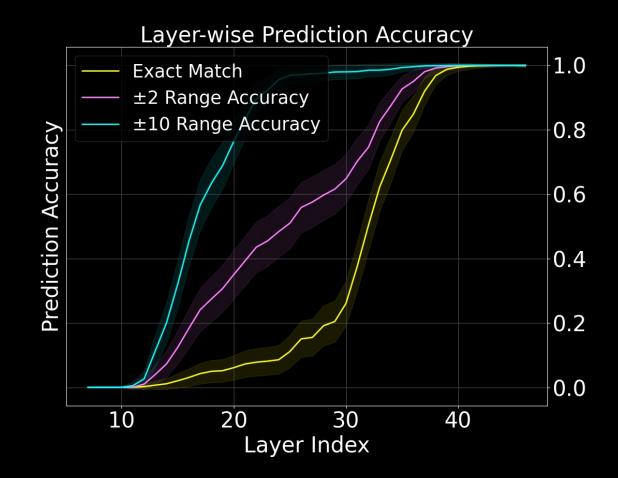
### **Understanding mechanisms: Logit Lens**



Can use prediction head to understand predictions at any stage



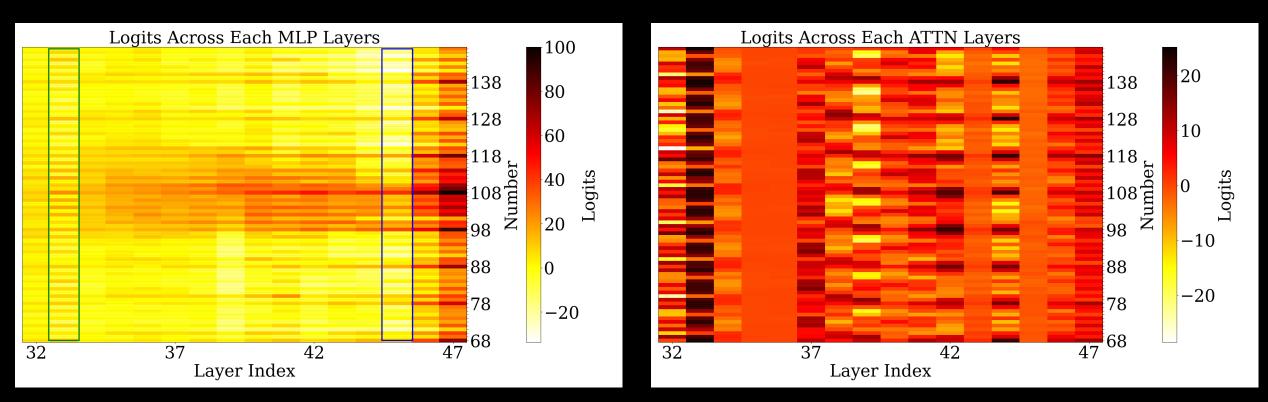
### **Model improves across layers**



Model finds answer within a  $\pm 2$  and  $\pm 10$  range early on, and finds exact match later

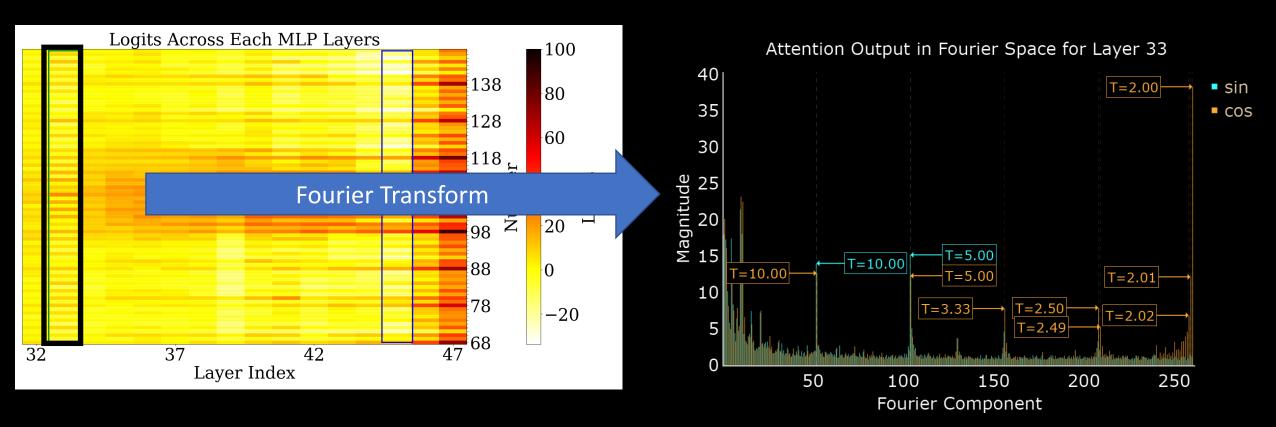
### Examining the contribution of each MLP & Attention layer

Input: What is the sum of 15 and 93?



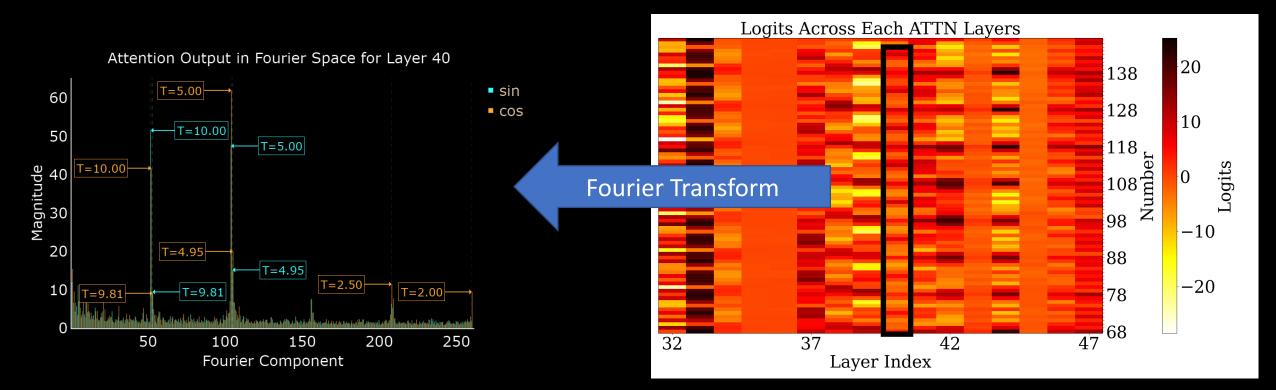
# Examining the contribution of each MLP & Attention layer

Input: What is the sum of 15 and 93?

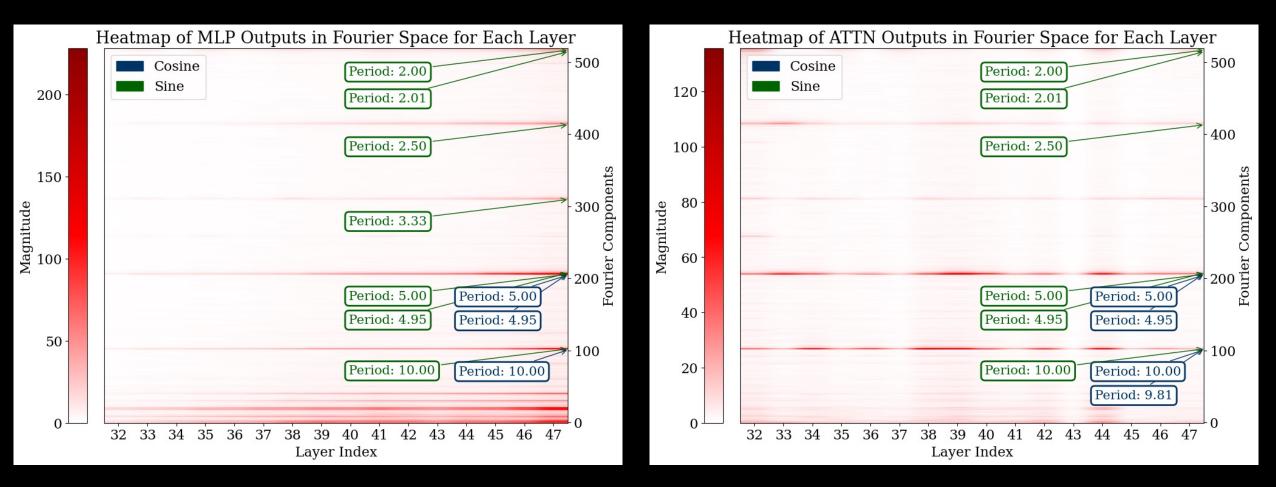


# Examining the contribution of each MLP & Attention layer

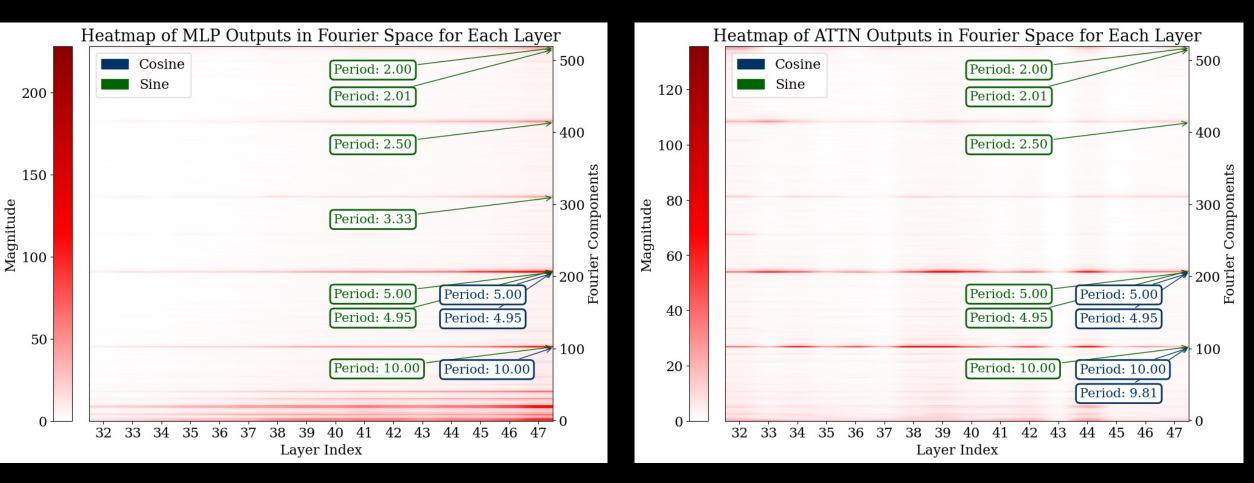
Input: What is the sum of 15 and 93?



### On average across all examples, logits are sparse in Fourier space



### Fourier features: Sparse representations in Fourier space

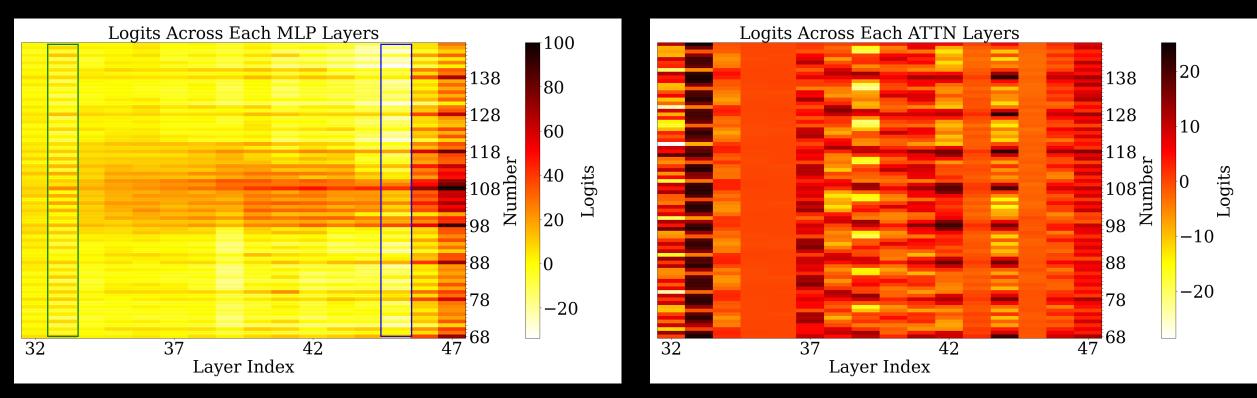


### Low frequency components approximate magnitude of answer

High frequency components do classification: compute sum modulo p for  $p \in \{2,5,10, etc.\}$ 

### Fourier features: Sparse representations in Fourier space

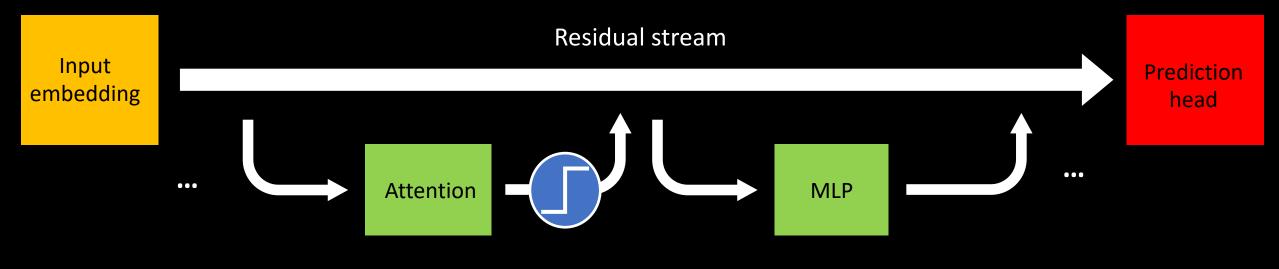
### Input: What is the sum of 15 and 93?



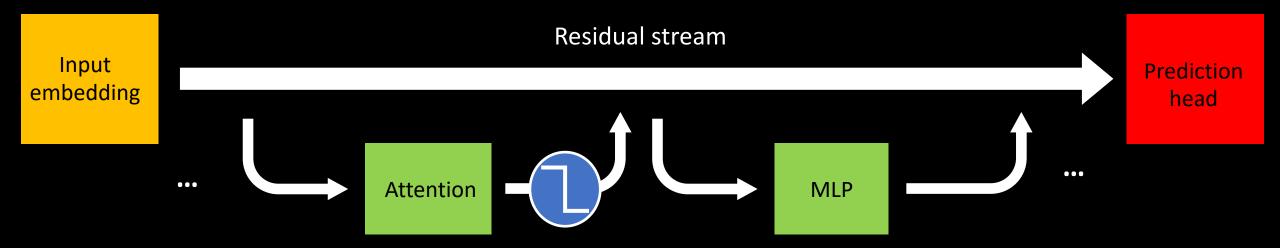
# Low frequency components **approximate** magnitude of answer

High frequency components do classification: compute sum modulo p for  $p \in \{2,5,10, etc.\}$ 



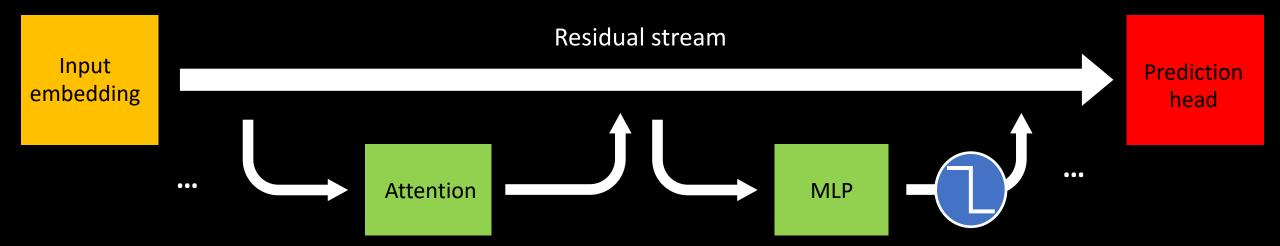


: High-pass filter to remove all low-frequency components in logit space



: High-pass filter to remove all low-frequency components in logit space

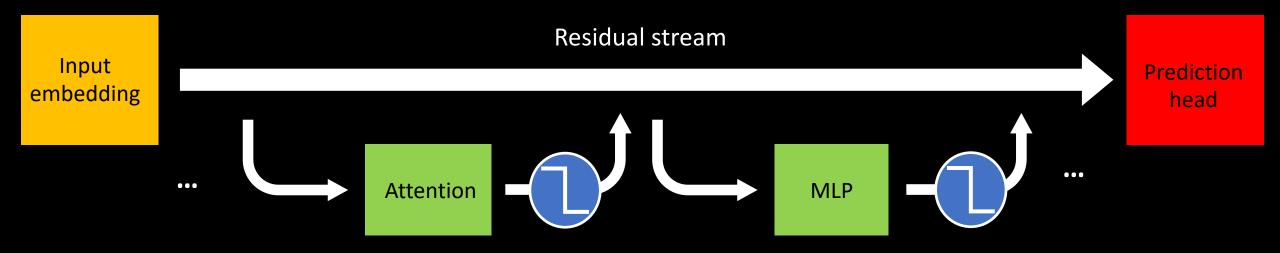
: Low-pass filter to remove all high-frequency components in logit space





: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space



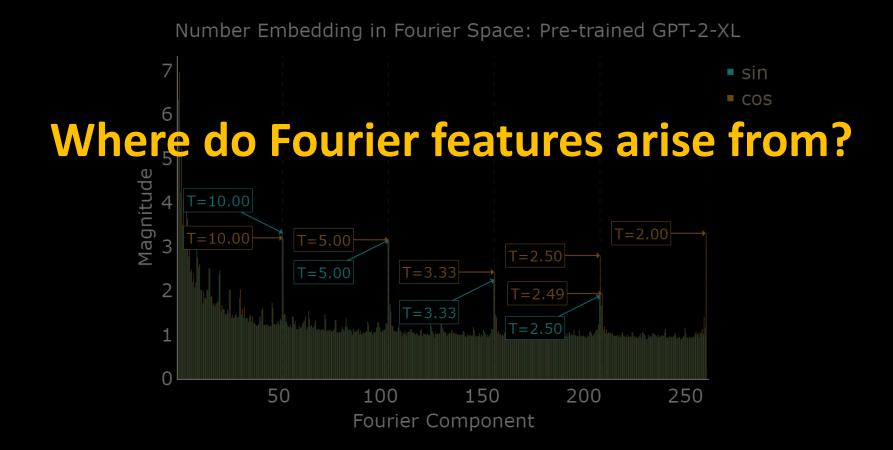
: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space

| Module     | Fourier Component Removed | Accuracy |
|------------|---------------------------|----------|
| None       | No filtering              | 99.74%   |
| Attn & MLP | Low frequency             | 5.94%    |
| Attn       | Low frequency             | 99.12%   |
| MLP        | Low frequency             | 35.89%   |
| Attn & MLP | High frequency            | 27.08%   |
| Attn       | High frequency            | 78.36%   |
| MLP        | High frequency            | 98.10%   |

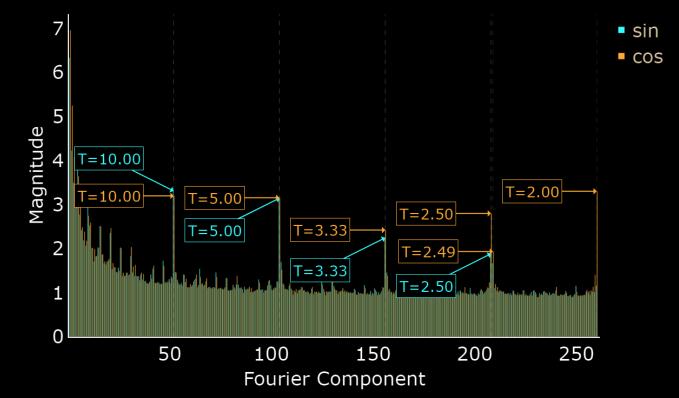
### MLP: mainly low-frequency, Attn: mainly high-frequency

| Module     | Fourier Component Removed | Accuracy |
|------------|---------------------------|----------|
| None       | No filtering              | 99.74%   |
| Attn & MLP | Low frequency             | 5.94%    |
| Attn       | Low frequency             | 99.12%   |
| MLP        | Low frequency             | 35.89%   |
| Attn & MLP | High frequency            | 27.08%   |
| Attn       | High frequency            | 78.36%   |
| MLP        | High frequency            | 98.10%   |



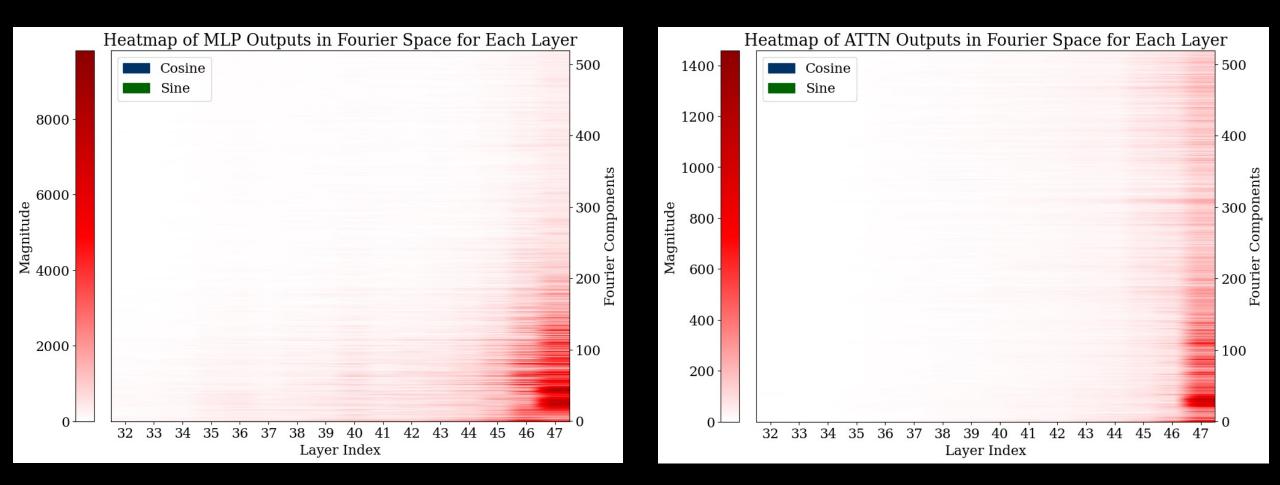
### Appear to arise due to token embeddings from pre-training

Number Embedding in Fourier Space: Pre-trained GPT-2-XL



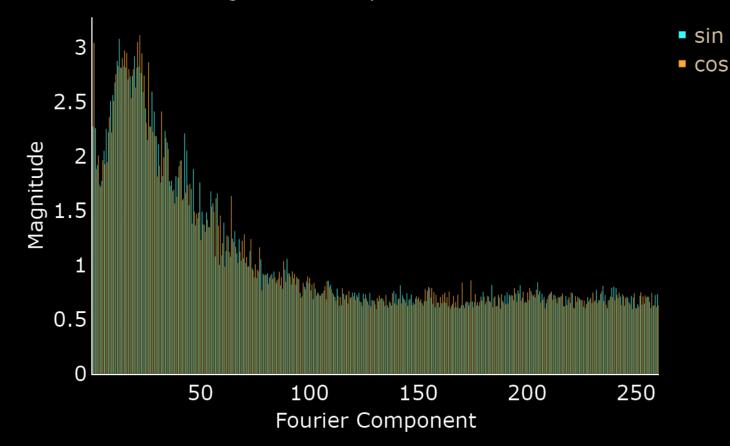
Also see similar behavior for other pre-trained models (Phi-2, RoBERTa).

### Model trained from scratch does not exhibit Fourier features

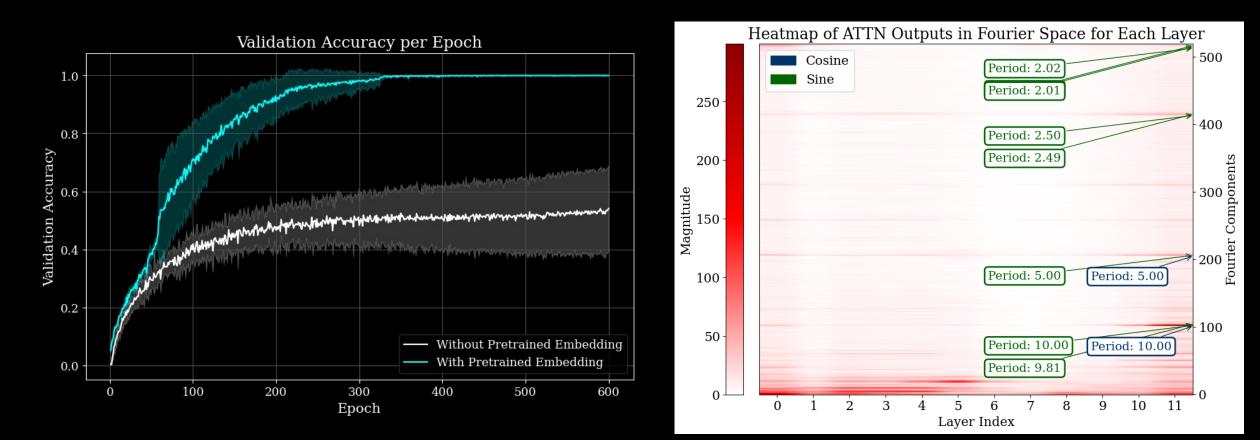


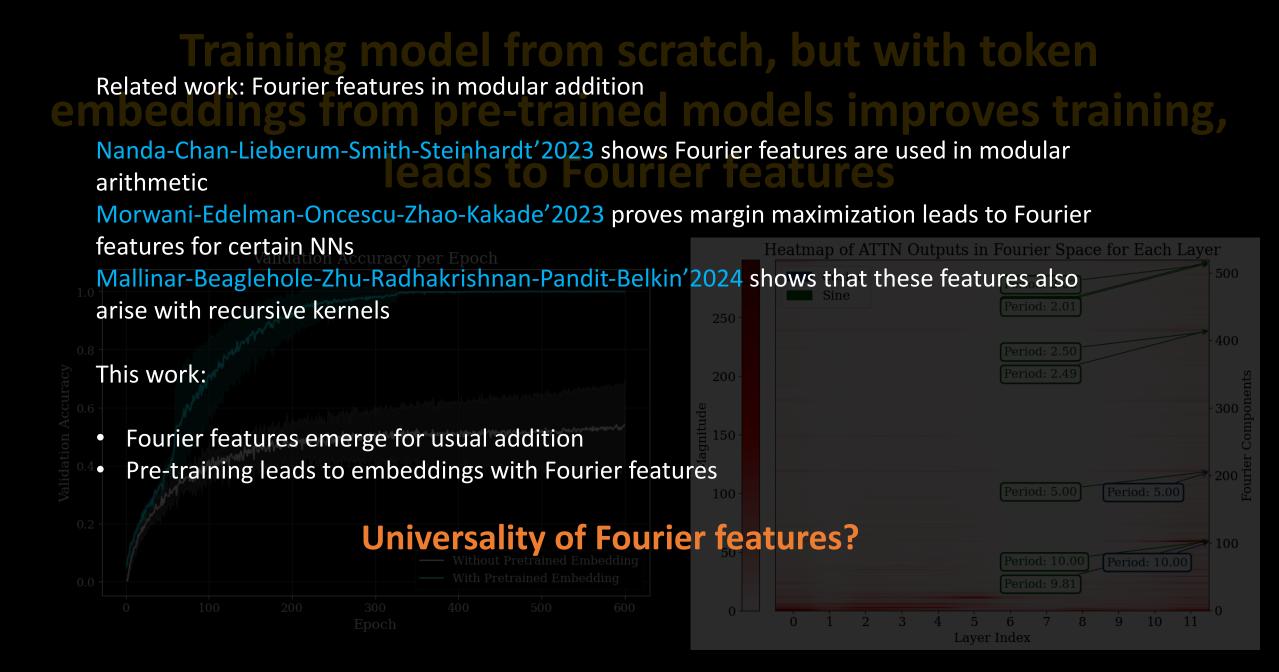
### Token embeddings of model trained from scratch do not have Fourier features either

Number Embedding in Fourier Space: GPT-2 Trained From Scratch



### Training model from scratch but with token embeddings from pre-trained models (a) improves training (b) leads to Fourier features





## What classes of functions do Transformers prefer to learn?



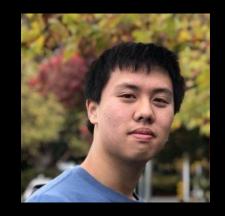
Bhavya Vasudeva (USC)



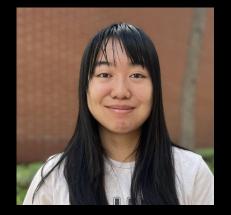
Deqing Fu (USC)



Tianyi Zhou (USC)



Elliot Kau (USC)



You-Qi Huang (USC)

Simplicity Bias of Transformers to Learn Low Sensitivity Functions, arXiv, 2024

#### **Sensitivity from Boolean function analysis**

Consider some function f defined on the Boolean hypercube  $H_d$ 

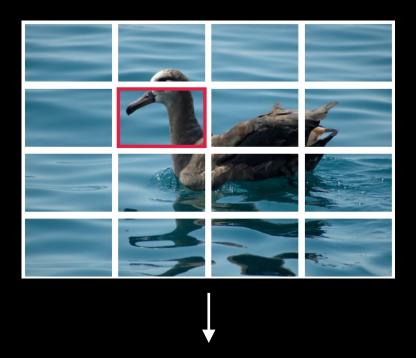
$$Sensitivity(f) = \mathbb{E}_{x \sim H_d} \left[ \frac{1}{d} \sum_{i=1}^d \mathbf{1}(f(x) \neq f(x^{\oplus i})) \right]$$

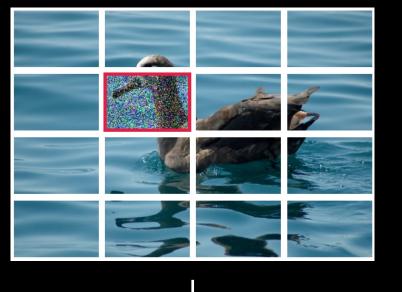
Does flipping the *i*-th coordinate change the function?

Related to measures such as degree, noise stability etc.

Bhattimishra-Patel-Kanade-Blunsom'23 shows that Transformers prefer to learn low-sensitivity Boolean functions

## Sensitivity beyond Boolean data





If model's predictions change, model is **sensitive** to that token

Evaluate model on original input

Evaluate model on perturbation to random token

#### **Observations: Transformers learn lower sensitivity functions**

- Image (Fashion MNIST, CIFAR-10, SVHN, ImageNet-1k)
  - For same accuracy, Transformers learn solutions with lower sensitivity than MLPs, CNN, and also other patch-based architectures such as ConvMixer
- Language (Paraphrasing tasks: MRPC, QQP)
  - For same accuracy, Transformers learn solutions with lower sensitivity than LSTMs
  - LSTMs are more sensitive to recent tokens, Transformers have more uniform sensitivity across context
- Advantages of low sensitivity
  - Adding sensitivity as a regularizer improves robustness
  - Adding sensitivity as a regularizer also leads to flatter minima

#### Sensitivity as a measure to understand inductive bias?

# Can we use Transformers to discover data structures from scratch?



Omar Salemohamed (Universite de Montreal/MILA)



Laurent Charlin (HEC Montreal/MILA)

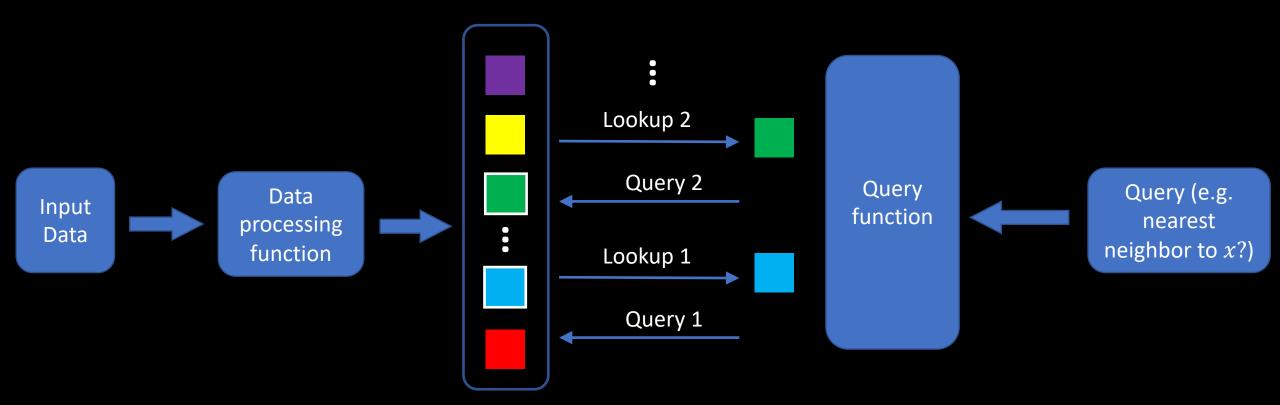
Shivam Garg (MSR NYC)



Greg Valiant (Stanford)

Discovering Data Structures: Nearest Neighbor Search and Beyond, ongoing

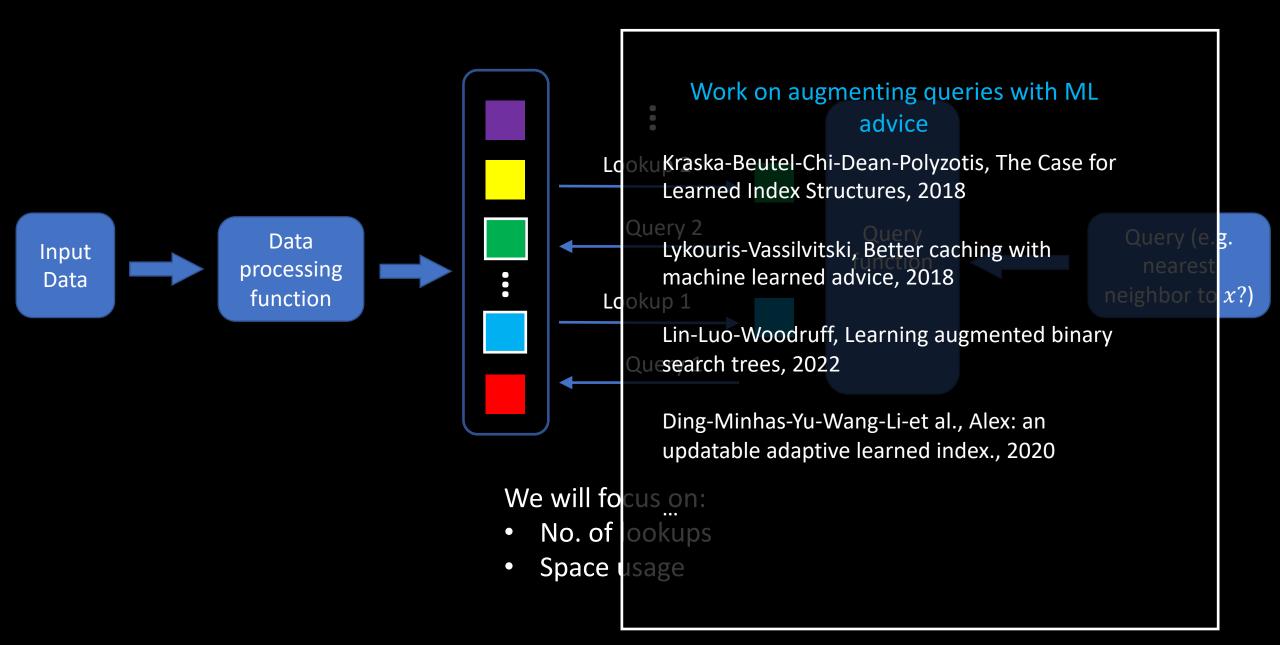
## Data structures (think nearest neighbor lookup in 1D)



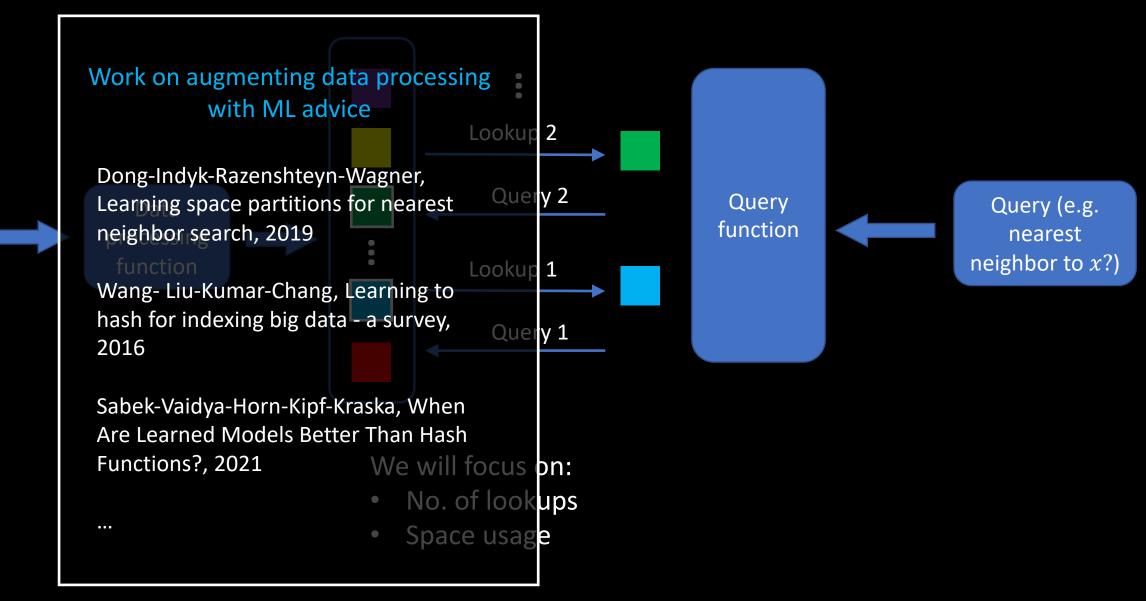
#### We will focus on:

- No. of lookups
- Space usage

#### Recent work has tried to augment data structures with ML



#### Recent work has tried to augment data structures with ML

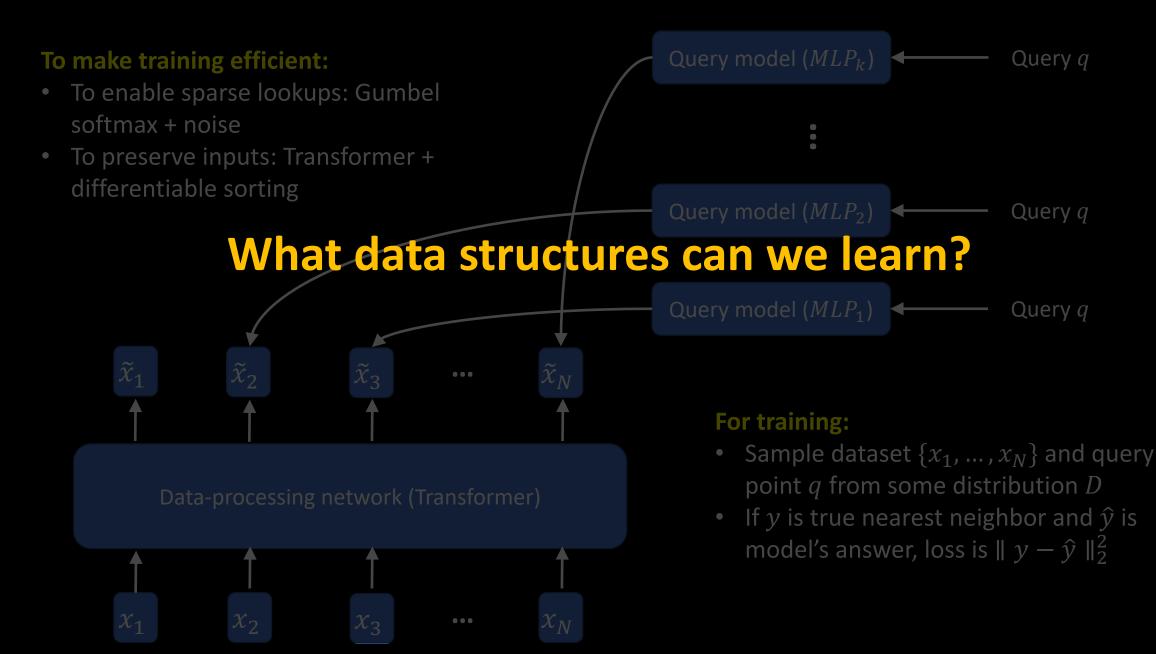


#### Input Data

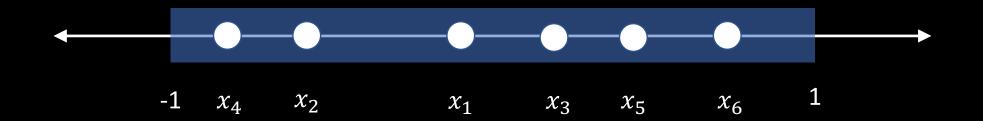
#### What if we learn everything end to end with ML, with no algorithmic priors?



#### What if we learn everything end to end with ML, with no algorithmic priors?



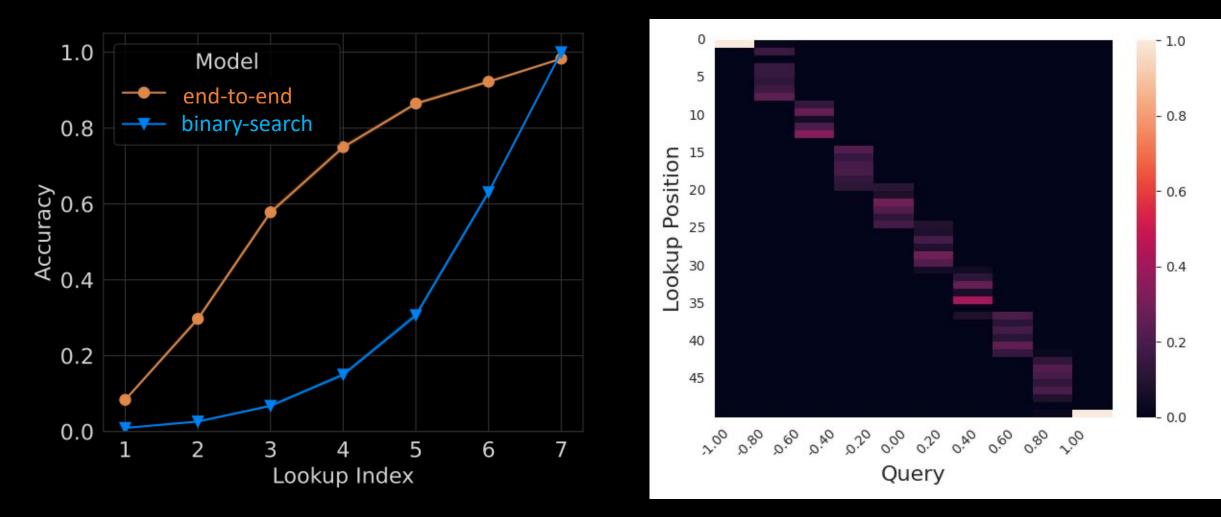
#### **Uniform distribution in 1D**



Model trained on this distribution:

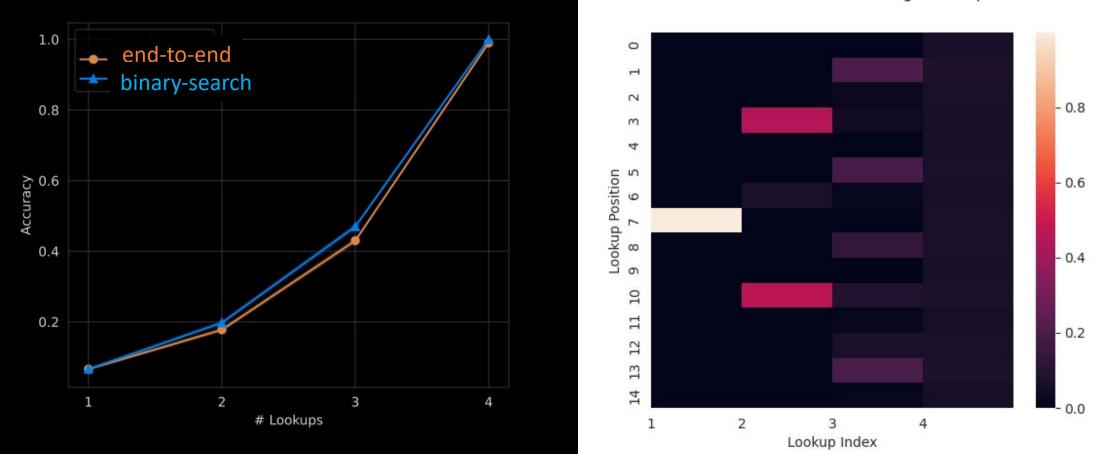
- Learns to sort, with small error
- Does better than binary search

#### **Model outperforms binary search**



Query model begins search not far from nearest neighbor

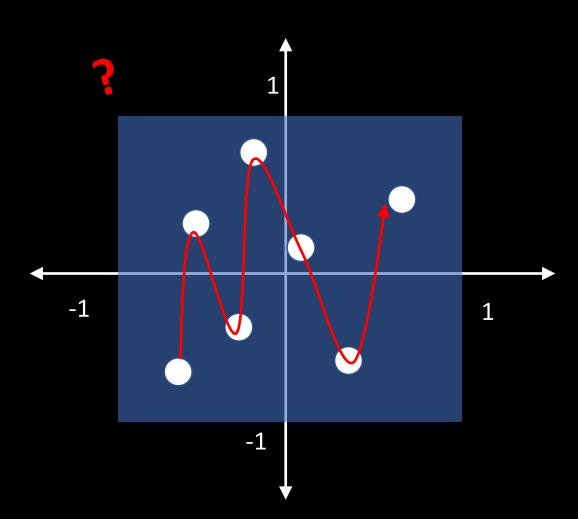
#### Harder 1D distribution where quantiles don't concentrate



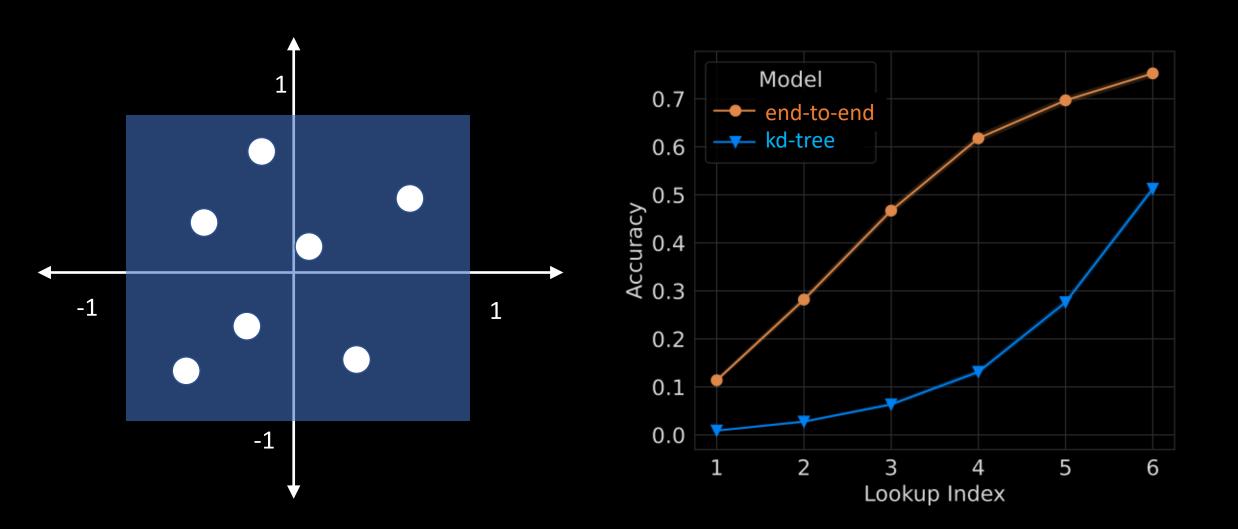
1D Hard Distribution Average Lookup Position

Model learns binary search!

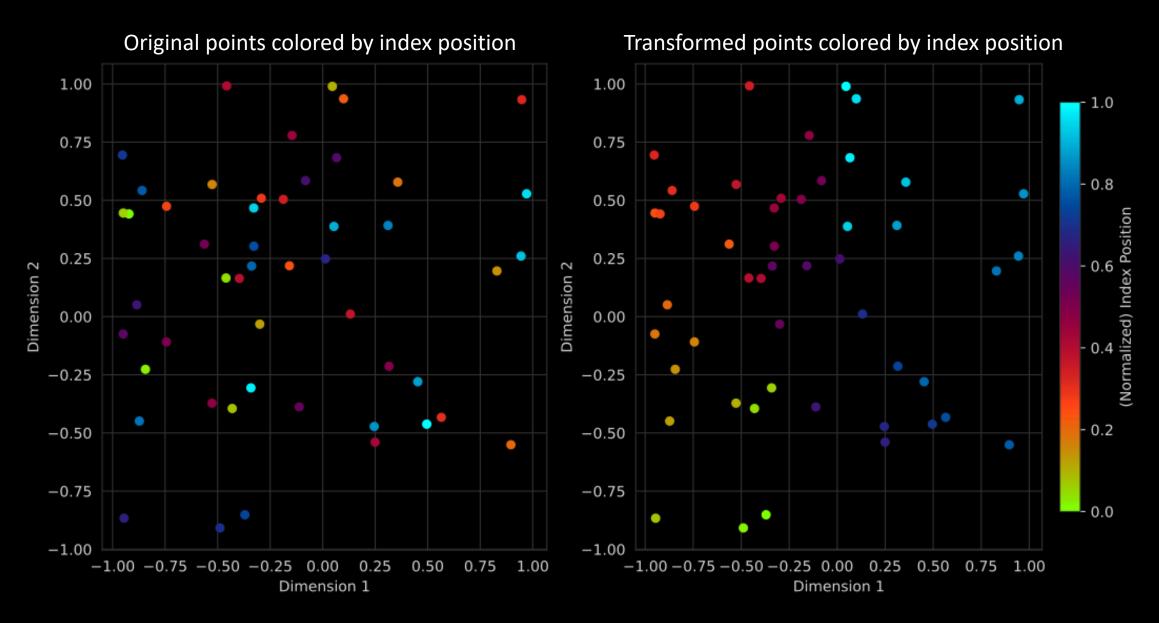
#### **Uniform distribution in 2D: What is the right permutation?**



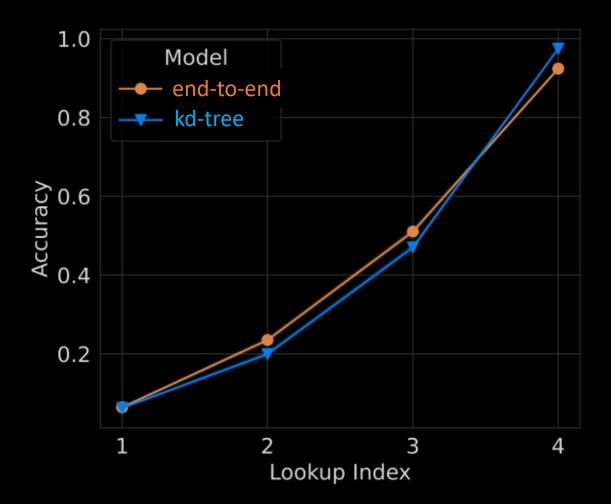
### **Uniform distribution in 2D: Outperforms kd-trees**



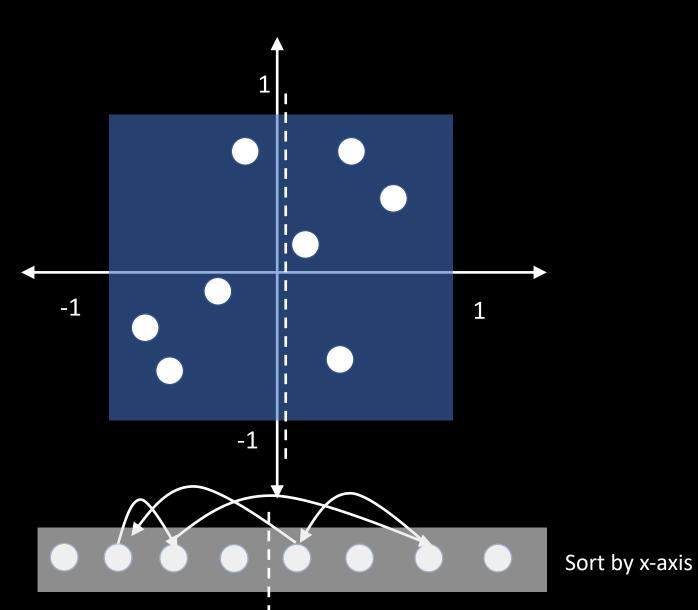
#### Model learns to index nearby points together



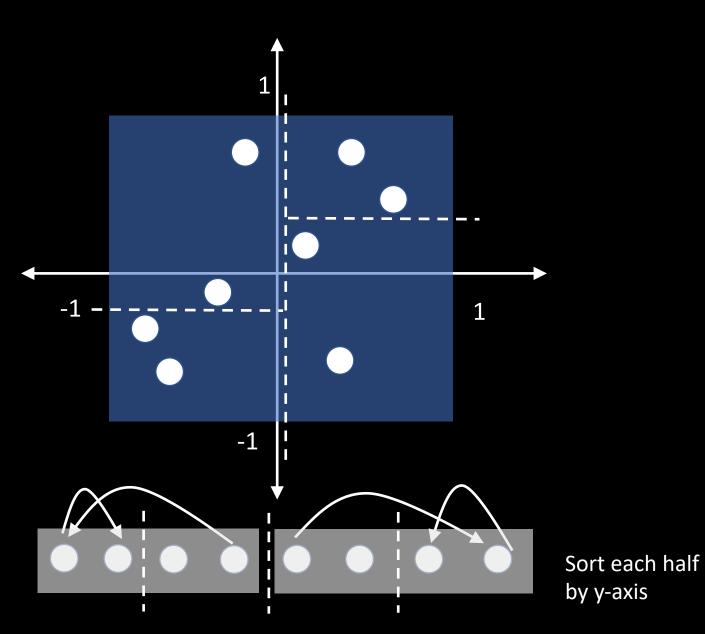
### Hard distribution in 2D: Matches kd-trees



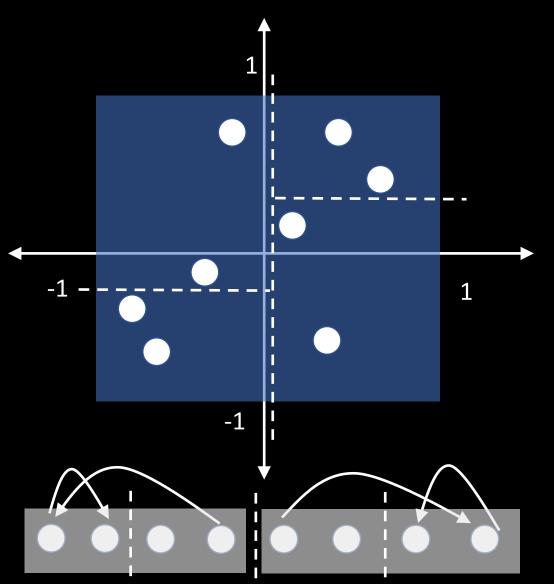
#### Can see that the model is essentially recovering a kd-tree!

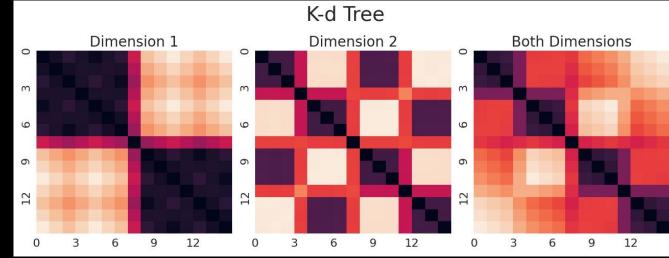


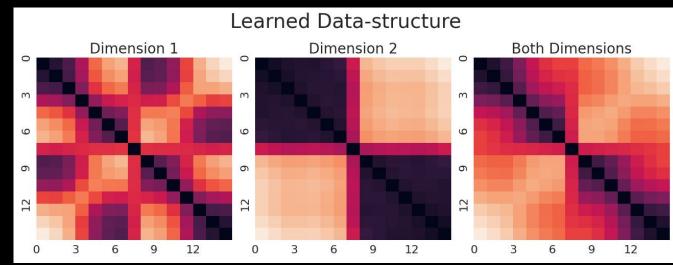
#### Can see that the model is essentially recovering a kd-tree!



#### Can see that the model is essentially recovering a kd-tree!

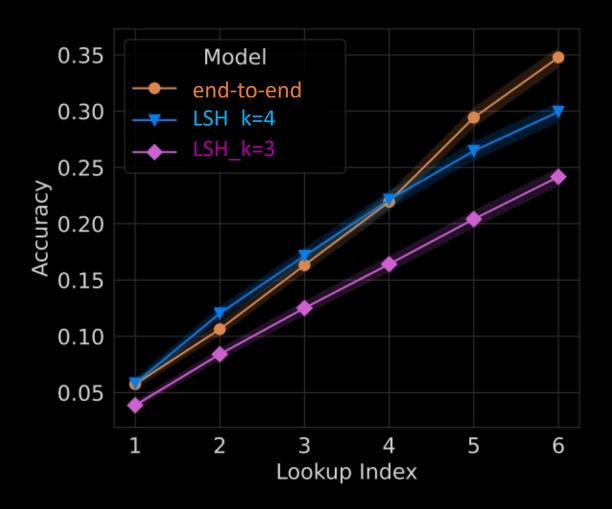




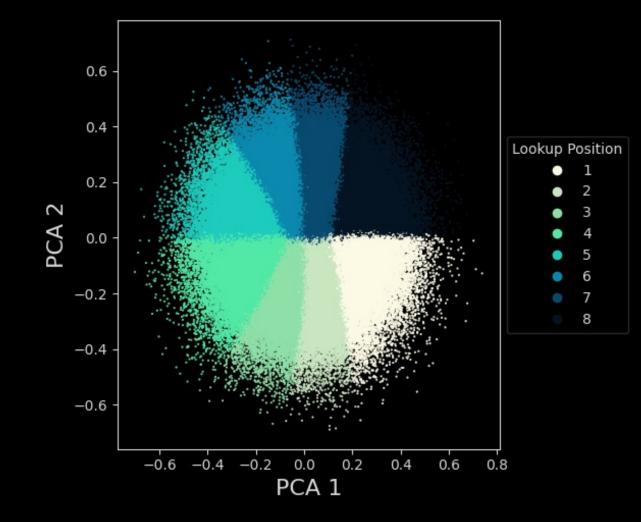


#### **Uniform distribution in 30D: Matches LSH**

- In high dimensions (even 30), we don't understand optimal data structures, even for the uniform distribution!
- Kd-trees suffer from curse of dimensionality
- LSH is a popular alternative

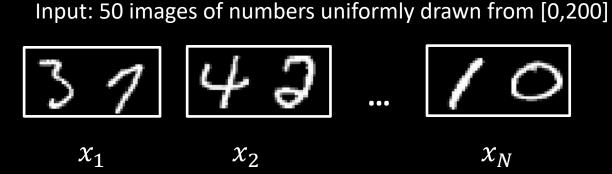


#### Model learns to do a projection, like LSH



Query model mainly considers projection of query onto this 2-dimensional subspace to decide where to look

## Model can learn underlying metric space



Query: Images of numbers uniformly drawn from [0,200]



 $x_q$ 

- Train on cross-entropy loss of prediction
- Model gets no access to the labelling of the image as a number



## **Summary: Claims & Thoughts**

#### We can train models end to end to learn data structures

- Model also learns to use extra space
- We also show we can learn data structures for frequency estimation in a data stream, recovering/outperforming count-sketch

#### Models outperform data-independent baselines

• Also consider settings with power-law distributions etc.

Learned models can be interpreted and understood, providing insights for data-structure design

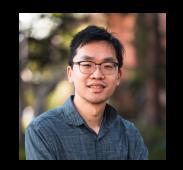
• Can we use these to understand tradeoffs in theory, build better strategies for high-dimensional NN search and other data structure problems?



Deqing Fu



Tianqi Chen



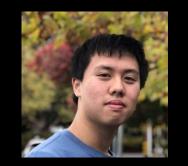
Robin Jia



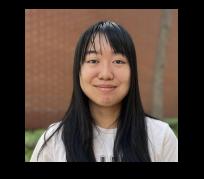
Tianyi Zhou



Bhavya Vasudeva



Elliot Kau



You-Qi Huang



Omar Salemohamed



Laurent Charlin



Shivam Garg



Greg Valiant

## Thanks!



- How can we use understanding of computational and information theoretic landscape to understand Transformers?
- How can we use Transformers to understand and discover algorithms and data structures?

- Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models Deqing Fu, Tianqi Chen, Robin Jia, Vatsal Sharan
- Pre-trained LLMs Use Fourier Features to Compute Addition Tianyi Zhou, Deqing Fu, Vatsal Sharan, Robin Jia
- Simplicity Bias of Transformers to Learn Low Sensitivity Functions
   Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliot Kau, You-Qi Huang, Vatsal Sharan
- Discovering Data Structures: Nearest Neighbor Search and Beyond Omar Salemohamed, Laurent Charlin, Shivam Garg, Vatsal Sharan, Gregory Valiant