Using Algorithms to Understand Transformers (and Using Transformers to Understand Algorithms)

Vatsal Sharan (USC)

Image source: Simons program on "Computational Complexity of Statistical Inference"

- How can we use understanding of computational and information theoretic landscape to understand Transformers?
- How can we use Transformers to understand and discover algorithms and data structures?

How do Transformers do linear regression?

Deqing Fu (USC) Tianqi Chen (USC) Robin Jia (USC)

Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models, Neurips 2024

Transformers excel at in-context learning

vs.

examples

prompt

In-context learning

Source: GPT3 paper, OpenAI **Source: GPT3** paper, OpenAI

How do Transformers do in-context learning?

The case of linear models $(y_i = w^{*T} x_i)$:

 $x_1 = (3, 5)$, $y_1 = 4$ $x_2 = (-2, 2)$, $y_2 = 8$ $x_3 = (-7, -2), y_3 = 10$ $x_4 = (4, -1), y_4 = ?$

References: Garg-Tsipras-Liang-Valiant 2022, Akyurek-Schuurmans-Andreas-Ma-Zhou 2022

References: von Oswald et al. 2022, 2023, Ahn et al. 2023, Dai et al. 2023

This work: Transformers do in-context learning via an iterative second-order method

How should we understand how Transformers solve a problem?

How should we understand how Transformers solve a problem?

Inspect weights to invert mechanism?

How should we understand how Transformers solve a problem?

Issue: Space of possible solutions can be too large and complex

How should we understand how Transformers solve a problem?

One Solution: Using understanding of information and computation can refine search

For linear regression:

- We know information-theoretic lower bounds on rates achievable by any first-order method
- We understand settings where gap between first and second-order methods is largest

Can we use this understanding, combined with empirical investigations, to uncover Transformer mechanisms?

The Setup

Data distribution

For each sequence of n examples $\{x_i, y_i\}_{i=1}^n$

Sample $w^* \sim N(0,I)$ Sample data covariance Σ (for now, let $\Sigma = I$) For each $i \in [n]$, $x_i \sim N(0, \Sigma)$, $y_i = w^{*T} x_i$

Some algorithms for linear regression

For any time step t, let X be matrix of datapoints, y be vector of labels

Ordinary Least Squares: Minimum norm solution to sum of squares objective

 $W_{OLS} = (X^T X)^{\dagger} X^T y$

Gradient descent on sum of squares objective:

 $w_{GD}^{(k+1)} = w_{GD}^{(k)} - \eta * (\text{Gradient at } w_{GD}^{(k)})$ $O(log(\frac{1}{2}))$ $(\frac{1}{\epsilon})$) iterations to find ϵ accurate solution

Iterative Newton's: Iterative 2nd order method to find inverse (\approx matrix Taylor series)

Let $S = X^T X$

$$
M_0 = \alpha S, M_{k+1} = 2M_k - M_k SM_k
$$

$$
W_{Newton}^{(k)} = M_k X^T y
$$

 $O(\log \log(\frac{1}{2}))$ $(\frac{1}{\epsilon})$) iterations to find ϵ accurate solution

Transformers for linear regression

Transformers for linear regression

Transformers as an iterative algorithm: probing layers

Transformers as an iterative algorithm: probing layers

Transformers as an iterative algorithm: probing layers

In-Context Examples

Metric: Similarity of errors

Algorithm A Algorithm B Algorithm A residuals Algorithm B residuals y_1^A , y_2^A , y_3^A , ..., y_n^A , y_1^B , y_2^B , y_3^B , ..., y_n^B , x_1 , y_1 , x_2 , y_2 , x_3 , y_3 , ..., x_n , y_n , $(y_1-y_1^A)$, $(y_2-y_2^A)$, $(y_3-y_3^A)$, ..., $(y_n-y_n^A)$, $(y_1-y_1^B)$, $(y_2-y_2^B, (y_3-y_3^B)$, ..., $(y_n-y_n^B)$,

> Similarity of errors on $\{x_i, y_i\}_{i=1}^n$ between Algorithm A, Algorithm B = Cosine similarity between residuals of A , B

Overall similarity of errors (Algorithm A, Algorithm B) = $\mathbb{E}_{\{x_i, y_i\}}$ [Cosine similarity between residuals of A, B]

Transformers utilize higher-order information for linear regression: Evidence

Claim 1: Transformers improve across layers

In-Context Examples

Claim 2: Transformers are more similar to Iterative Newton than to GD

Claim 2: Transformers are more similar to Iterative Newton than to GD

Claim 2: Transformers are more similar to Iterative Newton than to GD

Claim 3: Transformers are still able to match Newton on harder distributions

What is a setting where the gap between $1st$ and $2nd$ order methods is especially large?

On **ill-conditioned instances**, gradient descent (or its variants) get $poly(\kappa)$ dependence on the condition number of the linear system κ , 2nd order methods get $polylog(\kappa)$ dependence.

Claim 3: Transformers are still able to match Newton on harder distributions

What is a setting where the gap between $1st$ and $2nd$ order methods is especially large?

On **ill-conditioned instances**, gradient descent (or its variants) get $poly(\kappa)$ dependence on the condition number of the linear system κ , 2nd order methods get $polylog(\kappa)$ dependence.

Conjecture (Sharan-Sidford-Valiant'19): No first-order (linear memory method) can avoid a $poly(\kappa)$ dependence on κ in general.

Hard distribution: Sample Σ with $d/2$ eigenvalues at 100, $d/2$ eigenvalues at 1, uniformly random eigenbasis.

Claim 3: Transformers are still able to match Newton on ill-conditioned data

Claim 3: Transformers are still able to match Newton on ill-conditioned data

Theoretical justification

Can Transformers efficiently implement Iterative Newton's?

Informal Theorem: Transformers can match predictions of k steps of Iterative Newton's with $(k + 8)$ layers, $O(d)$ hidden units per layer.

Construction uses ideas from Akyurek-Schuurmans-Andreas-Ma-Zhou'2022, and is similar to a matrix inverse construction by Giannou-Rajput-Sohn-Lee-Lee-Papailiopoulos'2023

Some more related work

Ahn-Cheng-Daneshmand-Sra'2023, Zhang-Frei-Bartlett'2023 & Mahankali-Hashimoto-Ma'2024 analyze dynamics of trained one-layer Transformers

Vladymyrov-von Oswald-Sandler-Ge'2024 show that a second-order variant of GD can mimic Iterative Newton by implicitly approximating inverse

Giannou-Yang-Wang-Papailiopoulos-Lee'2024 show that Transformers can do Iterative Newton beyond linear regression
What makes Transformers suitable for utilizing 2nd order information?

LSTMs as an iterative algorithm: probing layers

What do LSTMs implement?

LSTMs seem similar to online gradient descent

Like OGD, LSTMs 'forget' previous examples

Error when input from t time steps ago is given as query point

Hypothesis: The additional memory available to Transformers (since they have access to entire past sequence) versus recurrent architectures enables it to learn more efficient algorithm

Recent line of theoretical work suggests that the available memory determines the best possible convergence rate, is gap between architectures an instantiation of this?

What is the role of pre-training? *How do LLMs add?*

Tianyi Zhou (USC) **Deqing Fu (USC)** Robin Jia (USC)

Pre-trained LLMs Use Fourier Features to Compute Addition, Neurips 2024

How do pre-trained Transformers do addition?

Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108 - What is the sum of 24 and 171? 195

…

How do pre-trained Transformers do addition?

Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108 - What is the sum of 24 and 171? 195

…

Each number is its own token

How do pre-trained Transformers do addition?

Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108 - What is the sum of 24 and 171? 195 …

Model gets $\approx 100\%$ test accuracy.

What mechanisms does the model use?

Understanding mechanisms: Logit Lens

Each Attention/MLP component makes additive contribution to residual stream

Understanding mechanisms: Logit Lens

Can use prediction head to understand predictions at any stage

Model improves across layers

Model finds answer within a ± 2 and ± 10 range early on, and finds exact match later

Examining the contribution of each MLP & Attention layer

Input: What is the sum of 15 and 93?

Examining the contribution of each MLP & Attention layer

Input: What is the sum of 15 and 93?

Examining the contribution of each MLP & Attention layer

Input: What is the sum of 15 and 93?

On average across all examples, logits are sparse in Fourier space

Fourier features: Sparse representations in Fourier space

Low frequency components **approximate** magnitude of answer

High frequency components do **classification**: compute sum modulo p for $p \in \{2,5,10,etc.\}$

Fourier features: Sparse representations in Fourier space

Input: What is the sum of 15 and 93?

Low frequency components **approximate** magnitude of answer

High frequency components do **classification**: compute sum modulo p for $p \in \{2,5,10,etc.\}$

: High-pass filter to remove all low-frequency components in logit space

: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space

: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space

: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space

MLP: mainly low-frequency, Attn: mainly high-frequency

Appear to arise due to token embeddings from pre-training

Number Embedding in Fourier Space: Pre-trained GPT-2-XL

Also see similar behavior for other pre-trained models (Phi-2, RoBERTa).

Model trained from scratch does not exhibit Fourier features

Token embeddings of model trained from scratch do not have Fourier features either

Number Embedding in Fourier Space: GPT-2 Trained From Scratch

Training model from scratch but with token embeddings from pre-trained models (a) improves training (b) leads to Fourier features

Training model from scratch, but with token Related work: Fourier features in modular addition **models improves training Nanda-Chan-Lieberum-Smith-Steinhardt'2023 shows Fourier features are used in modular
arithmetic** arithmetic Morwani-Edelman-Oncescu-Zhao-Kakade'2023 proves margin maximization leads to Fourier features for certain NNs **ATTN Outputs in Fourier Space for Each Layer** Mallinar-Beaglehole-Zhu-Radhakrishnan-Pandit-Belkin'2024 shows that these features also arise with recursive kernels Period: 2.0 250 ഥറ This work: • Fourier features emerge for usual addition • Pre-training leads to embeddings with Fourier features 100 **Universality of Fourier features?**Period: 10.00

What classes of functions do Transformers prefer to learn?

Bhavya Vasudeva (USC) Deqing Fu (USC) Tianyi Zhou (USC) Elliot Kau (USC) You-Qi Huang (USC)

Simplicity Bias of Transformers to Learn Low Sensitivity Functions, arXiv, 2024

Sensitivity from Boolean function analysis

Consider some function f defined on the Boolean hypercube H_d

$$
Sensitivity(f) = \mathbb{E}_{x \sim H_d} \left[\frac{1}{d} \sum_{i=1}^{d} \mathbf{1}(f(x) \neq f(x^{\oplus i})) \right]
$$

Does flipping the i -th coordinate change the function?

Related to measures such as degree, noise stability etc.

Bhattimishra-Patel-Kanade-Blunsom'23 shows that Transformers prefer to learn low-sensitivity Boolean functions

Sensitivity beyond Boolean data

If model's predictions change, model is **sensitive** to that token

Evaluate model on original input **EVALUATION CONTENT CONTENT** Evaluate model on perturbation to random token

Observations: Transformers learn lower sensitivity functions

- **Image** (Fashion MNIST, CIFAR-10, SVHN, ImageNet-1k)
	- For same accuracy, Transformers learn solutions with lower sensitivity than MLPs, CNN, and also other patch-based architectures such as ConvMixer
- **Language** (Paraphrasing tasks: MRPC, QQP)
	- For same accuracy, Transformers learn solutions with lower sensitivity than LSTMs
	- LSTMs are more sensitive to recent tokens, Transformers have more uniform sensitivity across context
- **Advantages of low sensitivity**
	- Adding sensitivity as a regularizer improves robustness
	- Adding sensitivity as a regularizer also leads to flatter minima

Sensitivity as a measure to understand inductive bias?

Can we use Transformers to discover data structures from scratch?

Omar Salemohamed (Universite de Montreal/MILA)

Laurent Charlin (HEC Montreal/MILA)

Shivam Garg (MSR NYC)

Greg Valiant (Stanford)

Discovering Data Structures: Nearest Neighbor Search and Beyond, ongoing

Data structures (think nearest neighbor lookup in 1D)

We will focus on:

- No. of lookups
- Space usage

Recent work has tried to augment data structures with ML

Recent work has tried to augment data structures with ML

Input Data

What if we learn everything end to end with ML, with no algorithmic priors?

What if we learn everything end to end with ML, with no algorithmic priors?

Uniform distribution in 1D

Model trained on this distribution:

- **Learns to sort, with small error**
- **Does better than binary search**

Model outperforms binary search

Query model begins search not far from nearest neighbor

 -1.0

 -0.8

 -0.6

 -0.4

 -0.2

 0.0

Harder 1D distribution where quantiles don't concentrate

1D Hard Distribution Average Lookup Position

Model learns binary search!

Uniform distribution in 2D: What is the right permutation?

Uniform distribution in 2D: Outperforms kd-trees

Model learns to index nearby points together

Hard distribution in 2D: Matches kd-trees

Can see that the model is essentially recovering a kd-tree!

Can see that the model is essentially recovering a kd-tree!

Can see that the model is essentially recovering a kd-tree!

Uniform distribution in 30D: Matches LSH

- In high dimensions (even 30), we don't understand optimal data structures, even for the uniform distribution!
- Kd-trees suffer from curse of dimensionality
- LSH is a popular alternative

Model learns to do a projection, like LSH

Query model mainly considers projection of query onto this 2-dimensional subspace to decide where to look

Model can learn underlying metric space

Query: Images of numbers uniformly drawn from [0,200]

 x_q

- Train on cross-entropy loss of prediction
- Model gets no access to the labelling of the image as a number

Summary: Claims & Thoughts

We can train models end to end to learn data structures

- Model also learns to use extra space
- We also show we can learn data structures for frequency estimation in a data stream, recovering/outperforming count-sketch

Models outperform data-independent baselines

• Also consider settings with power-law distributions etc.

Learned models can be interpreted and understood, providing insights for data-structure design

• *Can we use these to understand tradeoffs in theory, build better strategies for high-dimensional NN search and other data structure problems?*

Deqing Fu Tianqi Chen Robin Jia

Tianyi Zhou

Bhavya Vasudeva **Elliot Kau** You-Qi Huang

Omar Salemohamed

Laurent Charlin Shivam Garg Greg Valiant

Thanks!

- How can we use understanding of computational and information theoretic landscape to understand Transformers?
- How can we use Transformers to understand and discover algorithms and data structures?
- **Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models** Deqing Fu, Tianqi Chen, Robin Jia, Vatsal Sharan
- **Pre-trained LLMs Use Fourier Features to Compute Addition** Tianyi Zhou, Deqing Fu, Vatsal Sharan, Robin Jia
- **Simplicity Bias of Transformers to Learn Low Sensitivity Functions** Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliot Kau, You-Qi Huang, Vatsal Sharan
- **Discovering Data Structures: Nearest Neighbor Search and Beyond** Omar Salemohamed, Laurent Charlin, Shivam Garg, Vatsal Sharan, Gregory Valiant