
Using Algorithms to
Understand Transformers

(and Using Transformers to
Understand Algorithms)

Vatsal Sharan (USC)

Image source: Simons
program on “Computational

Complexity of Statistical
Inference”

• How can we use understanding of computational and
information theoretic landscape to understand Transformers?

• How can we use Transformers to understand and discover
algorithms and data structures?

How do Transformers do linear regression?

Deqing Fu (USC) Tianqi Chen (USC) Robin Jia (USC)

Transformers Learn Higher-Order Optimization Methods for In-
Context Learning: A Study with Linear Models, Neurips 2024

Transformers excel at in-context learning

vs.

In-context learning

Usual fine-tuningSource: GPT3 paper, OpenAI

How do Transformers do in-context learning?

The case of linear models (𝑦! = 𝑤∗#𝑥!):

𝑥! = 3, 5 , 𝑦! = 4

𝑥" = −2, 2 , 𝑦" = 8

𝑥# = −7,−2 , 𝑦# = 10

𝑥$ = 4,−1 , 𝑦$ = ?

References: Garg-Tsipras-Liang-Valiant 2022, Akyurek-Schuurmans-Andreas-Ma-Zhou 2022

A prevailing hypothesis: Transformers do in-
context learning via gradient descent

Linear models:

𝑥! = 3, 5 , 𝑦! = 4

𝑥" = −2, 2 , 𝑦" = 8

𝑥# = −7,−2 , 𝑦# = 10

𝑥$ = 4,−1 , 𝑦$ = ? Transformer layer

Input sequence

Transformer layer

Transformer layer

≈

References: von Oswald et al. 2022, 2023, Ahn et al. 2023, Dai et al. 2023

A prevailing hypothesis: Transformers do in-
context learning via gradient descent

Linear models:

𝑥! = 3, 5 , 𝑦! = 4

𝑥" = −2, 2 , 𝑦" = 8

𝑥# = −7,−2 , 𝑦# = 10

𝑥$ = 4,−1 , 𝑦$ = ? Transformer layer

Transformer layer

Transformer layer

≈

Input sequence

A prevailing hypothesis: Transformers do in-
context learning via gradient descent

Linear models:

𝑥! = 3, 5 , 𝑦! = 4

𝑥" = −2, 2 , 𝑦" = 8

𝑥# = −7,−2 , 𝑦# = 10

𝑥$ = 4,−1 , 𝑦$ = ? Transformer layer

Transformer layer

Transformer layer

≈

Input sequence

A prevailing hypothesis: Transformers do in-
context learning via gradient descent

Linear models:

𝑥! = 3, 5 , 𝑦! = 4

𝑥" = −2, 2 , 𝑦" = 8

𝑥# = −7,−2 , 𝑦# = 10

𝑥$ = 4,−1 , 𝑦$ = ? Transformer layer

Transformer layer

Transformer layer

≈

Input sequence

This work: Transformers do in-context learning
via an iterative second-order method

Techniques: “Applied theory”?

Techniques: “Applied theory”?

Transformer layer

Input

Transformer layer

Transformer layer

How should we understand how Transformers solve a problem?

Transformer layer

Input

Transformer layer

Transformer layer

How should we understand how Transformers solve a problem?

Inspect weights to invert mechanism?

Techniques: “Applied theory”?

Transformer layer

Input

Transformer layer

Transformer layer

How should we understand how Transformers solve a problem?

Issue: Space of possible solutions can be too large and complex

Techniques: “Applied theory”?

How should we understand how Transformers solve a problem?

One Solution: Using understanding of information and
computation can refine search

Techniques: “Applied theory”?

For linear regression:

• We know information-theoretic lower bounds on rates
achievable by any first-order method

• We understand settings where gap between first and
second-order methods is largest

Can we use this understanding, combined with empirical
investigations, to uncover Transformer mechanisms?

Techniques: “Applied theory”?

(𝑥!, 𝑦!)

(𝑥", 𝑦")

(𝑥#, 𝑦#)

(𝑥$, 𝑦$)

𝑤∗&𝑥

Setup and algorithms

Data distribution

For each sequence of 𝑛 examples 𝑥', 𝑦' '()*

Sample 𝑤∗ ∼ 𝑁(0, 𝐼)
Sample data covariance Σ (for now, let Σ = 𝐼)
For each 𝑖 ∈ 𝑛 , 𝑥' ∼ 𝑁 0, Σ , 𝑦' = 𝑤∗,𝑥'

(𝑥!, 𝑦!)

(𝑥", 𝑦")

(𝑥#, 𝑦#)

(𝑥$, 𝑦$)

𝑤∗&𝑥

The Setup

Some algorithms for linear regression

Ordinary Least Squares: Minimum norm solution to sum of squares objective

𝑤%&' = 𝑋(𝑋)𝑋(𝑦

For any time step 𝑡, let 𝑋 be matrix of datapoints, 𝑦 be vector of labels

Gradient descent on sum of squares objective:

𝑤*+
(-.!) = 𝑤*+

(-) − 𝜂 ∗ (Gradient at 𝑤*+
-)

Iterative Newton’s: Iterative 2nd order method to find inverse (≈ matrix Taylor series)

Let 𝑆 = 𝑋(𝑋

𝑀0 = 𝛼𝑆,𝑀-.! = 2𝑀- −𝑀-𝑆𝑀-

𝑤123456
(-) = 𝑀-𝑋(𝑦

𝑂(log(!
'
)) iterations to find 𝜖 accurate solution

𝑂(log log(!
'
)) iterations to find 𝜖 accurate solution

Transformers for linear regression

(𝑥!, 𝑦!)

(𝑥", 𝑦")

(𝑥#, 𝑦#)

(𝑥$, 𝑦$)

𝑤∗&𝑥

Train on 𝑇 such
instances

Transformers for linear regression

Transformer layer 1

Transformer layer 2

Transformer layer 12

Linear prediction for B𝑦4.!

Transformers as an iterative algorithm: probing layers

Transformer layer 1

Transformer layer 2

Transformer layer 12

Linear prediction for B𝑦4.!

Transformers as an iterative algorithm: probing layers

Linear prediction for 𝑦4.!

Train a linear model on activation
to predict 𝑦4.!

Train a linear model on activation
to predict 𝑦4.!

Transformer layer 1

Transformer layer 2

Transformer layer 12

Transformers as an iterative algorithm: probing layers

Metric: Similarity of errors

Algorithm A

Algorithm B

Algorithm A residuals

Algorithm B residuals

Similarity of errors on 𝑥7 , 𝑦7 78!6 between Algorithm A, Algorithm B
= Cosine similarity between residuals of A , B

Overall similarity of errors (Algorithm A, Algorithm B)
= 𝔼{:(,<(} [Cosine similarity between residuals of A , B]

𝑦)3, 𝑦43, 𝑦53, …, 𝑦*3,

𝑦)6, 𝑦46, 𝑦56, …, 𝑦*6,

𝑥), 𝑦4,𝑦), 𝑥4, 𝑦5,𝑥5, 𝑦*,…, 𝑥*,

(𝑦)−𝑦)3), (𝑦4−𝑦43), (𝑦5−𝑦5
3), …, (𝑦*−𝑦*3),

(𝑦)−𝑦)6), (𝑦4−𝑦46, (𝑦5−𝑦5
6), …, (𝑦*−𝑦*6),

Transformers utilize higher-order information for
linear regression: Evidence

Claim 1: Transformers improve across layers

Claim 2: Transformers are more similar to Iterative Newton than to GD

Each
Transformer
layer ≈ 3
Newton steps

Exponential
relationship?

Transformers vs Newton Transformers vs Gradient Descent

Yellow box
indicates best
matching Newton
iteration for
corresponding
Transformer layer

Claim 2: Transformers are more similar to Iterative Newton than to GD

Each
Transformer
layer ≈ 3
Newton steps

Exponential
relationship?

Transformers vs Newton Transformers vs Gradient Descent

Yellow box
indicates best
matching Newton
iteration for
corresponding
Transformer layerNewton gets

𝑂(log log !
'

convergence

GD gets
𝑂(log(!

'
))

convergence

Claim 2: Transformers are more similar to Iterative Newton than to GD

Each
Transformer
layer ≈ 3
Newton steps

Yes, linear on

a log scale!

Transformers vs Newton Transformers vs Gradient Descent

Claim 3: Transformers are still able to match Newton on harder distributions

What is a setting where the gap between 1st and 2nd order methods is especially large?

On ill-conditioned instances, gradient descent (or its variants) get 𝑝𝑜𝑙𝑦 𝜅 dependence
on the condition number of the linear system 𝜅, 2nd order methods get 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝜅
dependence.

Claim 3: Transformers are still able to match Newton on harder distributions

What is a setting where the gap between 1st and 2nd order methods is especially large?

On ill-conditioned instances, gradient descent (or its variants) get 𝑝𝑜𝑙𝑦 𝜅 dependence
on the condition number of the linear system 𝜅, 2nd order methods get 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝜅
dependence.

Conjecture (Sharan-Sidford-Valiant’19): No first-order (linear memory method) can
avoid a 𝑝𝑜𝑙𝑦 𝜅 dependence on 𝜅 in general.

Hard distribution: Sample Σ with 𝑑/2 eigenvalues at 100, 𝑑/2 eigenvalues at 1,
uniformly random eigenbasis.

Claim 3: Transformers are still able to match Newton on ill-conditioned data

Claim 3: Transformers are still able to match Newton on ill-conditioned data

Transformers vs Newton Transformers vs Gradient Descent

Theoretical justification

Can Transformers efficiently implement Iterative Newton’s?

Informal Theorem:
Transformers can match predictions of 𝑘 steps of Iterative Newton’s with (𝑘 + 8) layers,
𝑂 𝑑 hidden units per layer.

Construction uses ideas from Akyurek-Schuurmans-Andreas-Ma-Zhou’2022,
and is similar to a matrix inverse construction by Giannou-Rajput-Sohn-Lee-Lee-Papailiopoulos’2023

Some more related work

Ahn-Cheng-Daneshmand-Sra’2023, Zhang-Frei-Bartlett’2023 & Mahankali-Hashimoto-
Ma’2024 analyze dynamics of trained one-layer Transformers

Vladymyrov-von Oswald-Sandler-Ge’2024 show that a second-order variant of GD can
mimic Iterative Newton by implicitly approximating inverse

Giannou-Yang-Wang-Papailiopoulos-Lee’2024 show that Transformers can do Iterative
Newton beyond linear regression

What makes Transformers suitable for utilizing
2nd order information?

LSTMs for linear regression

LSTM layer

LSTM layer

LSTM layer

Linear prediction for next time step

LSTMs for linear regression

LSTM layer

LSTM layer

LSTM layer

Linear prediction for next time step

LSTMs for linear regression

LSTM layer

LSTM layer

LSTM layer

Linear prediction for next time step

LSTMs for linear regression

LSTM layer

LSTM layer

LSTM layer

Linear prediction for next time step

LSTMs for linear regression

LSTM layer

LSTM layer

LSTM layer

Linear prediction for next time step

…

LSTMs as an iterative algorithm: probing layers

Linear prediction for 𝑦4.!

Train a linear model on activation
to predict 𝑦4.!

Train a linear model on activation
to predict 𝑦4.!

LSTM layer

LSTM layer

LSTM layer

LSTMs seem similar to online gradient descent

What do LSTMs implement?

Like OGD, LSTMs ‘forget’ previous examples

Error when input from 𝑡 time steps ago is given as query point

Hypothesis: The additional memory available to
Transformers (since they have access to entire
past sequence) versus recurrent architectures

enables it to learn more efficient algorithm

Recent line of theoretical work suggests that the available memory determines
the best possible convergence rate, is gap between architectures an
instantiation of this?

What is the role of pre-training?
How do LLMs add?

Deqing Fu (USC) Robin Jia (USC)Tianyi Zhou (USC)

Pre-trained LLMs Use Fourier Features to Compute Addition,
Neurips 2024

How do pre-trained Transformers do addition?

Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108
- What is the sum of 24 and 171? 195
…

How do pre-trained Transformers do addition?

Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108
- What is the sum of 24 and 171? 195
…

Each number is its own token

How do pre-trained Transformers do addition?

Model gets ≈ 100% test accuracy.

What mechanisms does the model use?

Fine-tune GPT-2XL on addition dataset:

- What is the sum of 15 and 93? 108
- What is the sum of 24 and 171? 195
…

Understanding mechanisms: Logit Lens

Input
embedding

Attention

Prediction
head

MLP Attention MLP…

Residual stream

Each Attention/MLP component makes additive contribution to residual stream

Understanding mechanisms: Logit Lens

Input
embedding

Attention

Prediction
head

MLP Attention MLP…

Residual stream

Prediction
head

Prediction
head

Can use prediction head to understand predictions at any stage

Observations

Model improves across layers

Model finds answer within a ±2 and ±10 range early on, and finds exact match later

Examining the contribution of
each MLP & Attention layer

Input: What is the sum of 15 and 93?

Examining the contribution of
each MLP & Attention layer

Input: What is the sum of 15 and 93?

Fourier Transform

Examining the contribution of
each MLP & Attention layer

Input: What is the sum of 15 and 93?

Fourier Transform

On average across all examples,
logits are sparse in Fourier space

Fourier features: Sparse
representations in Fourier space

Low frequency components
approximate magnitude of answer

High frequency components do classification:
compute sum modulo p for p ∈ {2,5,10, 𝑒𝑡𝑐. }

Fourier features: Sparse
representations in Fourier space

Low frequency components
approximate magnitude of answer

High frequency components do classification:
compute sum modulo p for p ∈ {2,5,10, 𝑒𝑡𝑐. }

Input: What is the sum of 15 and 93?

Input
embedding

Attention

Prediction
head

Residual stream

… MLP
…Are all frequencies necessary for prediction?

Do Attention and MLP layers have similar roles?

Applying filters to understand role of components

Input
embedding

Attention

Prediction
head

Residual stream

… MLP
…

: High-pass filter to remove all low-frequency components in logit space

Applying filters to understand role of components

Input
embedding

Attention

Prediction
head

… MLP
…

: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space

Residual stream

Applying filters to understand role of components

Input
embedding

Attention

Prediction
head

… MLP
…

: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space

Residual stream

Applying filters to understand role of components

Input
embedding

Attention

Prediction
head

… MLP
…

: High-pass filter to remove all low-frequency components in logit space

: Low-pass filter to remove all high-frequency components in logit space

Residual stream

Applying filters to understand role of components

Module Fourier Component Removed Accuracy

None No filtering 99.74%

Attn & MLP Low frequency 5.94%

Attn Low frequency 99.12%

MLP Low frequency 35.89%

Attn & MLP High frequency 27.08%

Attn High frequency 78.36%

MLP High frequency 98.10%

MLP: mainly low-frequency, Attn: mainly high-frequency

Module Fourier Component Removed Accuracy

None No filtering 99.74%

Attn & MLP Low frequency 5.94%

Attn Low frequency 99.12%

MLP Low frequency 35.89%

Attn & MLP High frequency 27.08%

Attn High frequency 78.36%

MLP High frequency 98.10%

Where do Fourier features arise from?

Appear to arise due to token embeddings from
pre-training

Also see similar behavior for other pre-trained models (Phi-2, RoBERTa).

Model trained from scratch does not exhibit
Fourier features

Token embeddings of model trained from scratch
do not have Fourier features either

Training model from scratch but with token embeddings
from pre-trained models (a) improves training (b) leads

to Fourier features

Training model from scratch, but with token
embeddings from pre-trained models improves training,

leads to Fourier features

Related work: Fourier features in modular addition

Nanda-Chan-Lieberum-Smith-Steinhardt’2023 shows Fourier features are used in modular
arithmetic
Morwani-Edelman-Oncescu-Zhao-Kakade’2023 proves margin maximization leads to Fourier
features for certain NNs
Mallinar-Beaglehole-Zhu-Radhakrishnan-Pandit-Belkin’2024 shows that these features also
arise with recursive kernels

This work:

• Fourier features emerge for usual addition
• Pre-training leads to embeddings with Fourier features

Universality of Fourier features?

What classes of functions do
Transformers prefer to learn?

Simplicity Bias of Transformers to Learn Low
Sensitivity Functions, arXiv, 2024

Deqing Fu (USC) Tianyi Zhou (USC) Elliot Kau (USC) You-Qi Huang (USC)Bhavya Vasudeva (USC)

Sensitivity from Boolean function analysis

Consider some function 𝑓 defined on the Boolean hypercube 𝐻!

Does flipping the 𝑖-th coordinate change the function?

Related to measures such as degree, noise stability etc.

Bhattimishra-Patel-Kanade-Blunsom’23 shows that
Transformers prefer to learn low-sensitivity Boolean functions

Evaluate model on original input Evaluate model on perturbation to random token

If model’s predictions
change, model is sensitive to

that token

Sensitivity beyond Boolean data

Observations: Transformers learn lower sensitivity functions

• Image (Fashion MNIST, CIFAR-10, SVHN, ImageNet-1k)
• For same accuracy, Transformers learn solutions with lower sensitivity than MLPs, CNN, and also

other patch-based architectures such as ConvMixer

• Language (Paraphrasing tasks: MRPC, QQP)
• For same accuracy, Transformers learn solutions with lower sensitivity than LSTMs
• LSTMs are more sensitive to recent tokens, Transformers have more uniform sensitivity across

context

• Advantages of low sensitivity
• Adding sensitivity as a regularizer improves robustness
• Adding sensitivity as a regularizer also leads to flatter minima

Sensitivity as a measure to understand inductive bias?

Can we use Transformers to discover
data structures from scratch?

Discovering Data Structures: Nearest Neighbor Search and Beyond, ongoing

Greg Valiant

(Stanford)
Laurent Charlin

(HEC Montreal/MILA)
Omar Salemohamed

(Universite de Montreal/MILA)

Shivam Garg

(MSR NYC)

Data structures (think nearest neighbor lookup in 1D)

Input
Data

Query 1

…

Query
function

Lookup 1

…

Query 2

Lookup 2

Data
processing

function

We will focus on:
• No. of lookups
• Space usage

Query (e.g.
nearest

neighbor to 𝑥?)

Input
Data

Query 1

…

Query
function

Lookup 1

…

Query 2

Lookup 2

Data
processing

function

We will focus on:
• No. of lookups
• Space usage

Query (e.g.
nearest

neighbor to 𝑥?)

Kraska-Beutel-Chi-Dean-Polyzotis, The Case for
Learned Index Structures, 2018

Lykouris-Vassilvitski, Better caching with
machine learned advice, 2018

Lin-Luo-Woodruff, Learning augmented binary
search trees, 2022

Ding-Minhas-Yu-Wang-Li-et al., Alex: an
updatable adaptive learned index., 2020

…

Work on augmenting queries with ML
advice

Recent work has tried to augment data structures with ML

Input
Data

Query 1

…

Query
function

Lookup 1

…

Query 2

Lookup 2

Data
processing

function

We will focus on:
• No. of lookups
• Space usage

Query (e.g.
nearest

neighbor to 𝑥?)

Recent work has tried to augment data structures with ML

Dong-Indyk-Razenshteyn-Wagner,
Learning space partitions for nearest
neighbor search, 2019

Wang- Liu-Kumar-Chang, Learning to
hash for indexing big data - a survey,
2016

Sabek-Vaidya-Horn-Kipf-Kraska, When
Are Learned Models Better Than Hash
Functions?, 2021

…

Work on augmenting data processing
with ML advice

𝑥!

Data-processing network (Transformer)

𝑥" 𝑥# 𝑥1…

E𝑥! …

Query model (𝑀𝐿𝑃!) Query 𝑞

Query model (𝑀𝐿𝑃") Query 𝑞,
query & lookup of 𝑀𝐿𝑃!

…

Query model (𝑀𝐿𝑃)) Query 𝑞,
all previous queries
& lookups

What if we learn everything end to end with ML, with no algorithmic priors?

E𝑥" E𝑥# E𝑥1
For training:
• Sample dataset {𝑥", … , 𝑥#} and query

point 𝑞 from some distribution 𝐷
• If 𝑦 is true nearest neighbor and 8𝑦 is

model’s answer, loss is ∥ 𝑦 − 8𝑦 ∥$$

𝑥!

Data-processing network (Transformer)

𝑥" 𝑥# 𝑥1…

E𝑥! …

Query model (𝑀𝐿𝑃!) Query 𝑞

Query model (𝑀𝐿𝑃") Query 𝑞

…

Query model (𝑀𝐿𝑃)) Query 𝑞

What if we learn everything end to end with ML, with no algorithmic priors?

E𝑥" E𝑥# E𝑥1
For training:
• Sample dataset {𝑥", … , 𝑥#} and query

point 𝑞 from some distribution 𝐷
• If 𝑦 is true nearest neighbor and 8𝑦 is

model’s answer, loss is ∥ 𝑦 − 8𝑦 ∥$$

To make training efficient:
• To enable sparse lookups: Gumbel

softmax + noise
• To preserve inputs: Transformer +

differentiable sorting

What data structures can we learn?

Uniform distribution in 1D

-1 1

Model trained on this distribution:

• Learns to sort, with small error
• Does better than binary search

𝑥"𝑥$ 𝑥%𝑥& 𝑥' 𝑥(

Model outperforms binary search

Query model begins search not far from
nearest neighbor

end-to-end
binary-search

Harder 1D distribution where quantiles don’t concentrate

Model learns binary search!

end-to-end
binary-search

Uniform distribution in 2D: What is the right permutation?

-1 1

-1

1?

Uniform distribution in 2D: Outperforms kd-trees

-1 1

-1

1
end-to-end
kd-tree

Model learns to index nearby points together
Original points colored by index position Transformed points colored by index position

Hard distribution in 2D: Matches kd-trees

end-to-end
kd-tree

-1 1

-1

1

Can see that the model is essentially recovering a kd-tree!

Sort by x-axis

-1 1

-1

1

Can see that the model is essentially recovering a kd-tree!

Sort each half
by y-axis

-1 1

-1

1

Can see that the model is essentially recovering a kd-tree!

Uniform distribution in 30D: Matches LSH

• In high dimensions (even 30), we don’t
understand optimal data structures, even for
the uniform distribution!

• Kd-trees suffer from curse of dimensionality

• LSH is a popular alternative

end-to-end
LSH_k=4
LSH_k=3

Model learns to do a projection, like LSH

Query model mainly considers projection of query onto this 2-dimensional subspace to decide where to look

Model can learn underlying metric space

…

𝑥! 𝑥" 𝑥1

𝑥>

Input: 50 images of numbers uniformly drawn from [0,200]

Query: Images of numbers uniformly drawn from [0,200]

• Train on cross-entropy loss of prediction
• Model gets no access to the labelling of the image as a number

end-to-end
binary-search +++

Summary: Claims & Thoughts

We can train models end to end to learn data structures

• Model also learns to use extra space
• We also show we can learn data structures for frequency estimation in a data stream,

recovering/outperforming count-sketch

Models outperform data-independent baselines

• Also consider settings with power-law distributions etc.

Learned models can be interpreted and understood, providing insights for data-structure design

• Can we use these to understand tradeoffs in theory, build better strategies for high-dimensional
NN search and other data structure problems?

Tianyi Zhou

Elliot Kau You-Qi HuangBhavya Vasudeva

Deqing Fu Tianqi Chen Robin Jia

Laurent Charlin Shivam Garg Greg Valiant

Omar Salemohamed

• How can we use understanding of computational and
information theoretic landscape to understand Transformers?

• How can we use Transformers to understand and discover
algorithms and data structures?

Thanks!

• Transformers Learn Higher-Order Optimization Methods for In-Context
Learning: A Study with Linear Models

Deqing Fu, Tianqi Chen, Robin Jia, Vatsal Sharan

• Pre-trained LLMs Use Fourier Features to Compute Addition
Tianyi Zhou, Deqing Fu, Vatsal Sharan, Robin Jia

• Simplicity Bias of Transformers to Learn Low Sensitivity Functions
Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliot Kau, You-Qi Huang, Vatsal Sharan

• Discovering Data Structures: Nearest Neighbor Search and Beyond
Omar Salemohamed, Laurent Charlin, Shivam Garg, Vatsal Sharan, Gregory Valiant

