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Annual Computer Poker Competition

. Each year, research labs would make poker bots

. It turned into a competition of scaling models:
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Action: cb200c/b200c /kk/kk
Outcome: You won a pot of 800!

| Next Hand

Slumbot called.
You bet 200.
Slumbot called.
You bet 200.
Slumbot called.
You checked.
Slumbot checked.
You checked.
Slumbot checked.



2015 Brains vs. Al Poker Competition

. In 2015 we (CMU) challenged 4 top poker pros to an
80,000-hand poker competition

. $120,000 in prize money to incentivize them

. Our bot (Claudico) lost by 9.1 bb/100




The importance of search in poker

Scaling in a medium-sized poker game [1]
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[1] “Safe and Nested Subgame Solving in Imperfect-Information Games.”
Brown & Sandholm. NeurlPS 2017 Best Paper.



2017 Brains vs Al Two-Player Poker Al

[Brown & Sandholm Science-17]

. Libratus against 4 top poker pros
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. 120,000 hands of poker

. $200,000 in prize money
. Won by 15 bb/100 (Claudico had lost by 9 bb/100)

- P-value = 0.0002
. Each human lost individually to Libratus



2019 Pluribus Six-Player Poker Al

[Brown & Sandholm Science-19]

. Pluribus against 15 top pros in six-player no-limit Texas Hold’em

- 10,000 hands over 12 days in June 2019

- Won with >95% statistical significance

- Used variance-reduction techniques to decrease luck

- One bot playing with five humans

. Cost under $150 to train, runs on 28 CPU cores (no GPUs)




Why wasn’t search considered
important in poker before?

. Cultural factors: researchers wanted the solution for the entire game upfront
. Scaling test-time compute makes experiments more expensive

. Incentives:
- People were always thinking about winning the next Annual Computer Poker Competition (ACPC)

- The ACPC limited test-time compute to 2 CPU cores

. Most important: people underestimated the difference it would make



Search in Go

[Silver et al. Science-17]
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The state of Al today

. Every year, the models become bigger,

v 100b
Q
trained on more data, for longer ‘g
©
@
2.
B
. Every year, they do better than the 3
previous year’s models £
=
. But the inference costs are still quite low
Ai2
- Pretraining costs >$100 million e

- Inference costs pennies

Google A
BERT-Large
340m
.

Openal
GPT

110m

GPT3
175b

[ =
=)
T-NLG
> 176
nvioia .
MegatronlM
8.3b

Uv(r'\.“l
GPT2 Grover-Mega
1.5b 15b

A2 *

/
B
4
/
Transformer /

/
ELMo =. m_ / 0

465m Mr.pnn 665m ~  ROBERTa
0m 368
. .
XUNET 5
3
340M  pitilgeRT
66m



Is there a general way to scale
inference compute in LLMs?



Verification in LLMs via Consensus / Majority Vote

o Generate a bunch of solutions and take the most common one

o Can be thought of as similar to sampling at low temperature

o  Consensus flatlines before 100 samples
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Large Language Monkeys: Scaling Inference Compute
with Repeated Sampling

Bradley Brown*!t, Jordan Juravsky*f, Ryan Ehrlich*!, Ronald Clark!, Quoc V. Le$,
Christopher Réf, and Azalia Mirhoseinit



OpenAl ol

pass@1 accuracy
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Evals of OpenAl ol-preview and ol
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How does OpenAl ol work?

. Uses large-scale RL to generate a chain of thought (CoT) [wei et al. NeurlPs-2022] before answering
. CoT is longer and high-quality than what is attained via prompting

. CoT contains behavior like:
- Error correction
- Trying multiple strategies

- Breaking down problems into smaller steps

. Example CoTs on the research blog post! https://openai.com/index/learning-to-reason-with-llms/



https://openai.com/index/learning-to-reason-with-llms/

The Generator-Verifier Gap

« For some problems, verifying a good solution is easier than generating one
« Examples where verification is easier than generation:

Many puzzles (Sudoku, for example)
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The Generator-Verifier Gap

« For some problems, verifying a good solution is easier than generating one
« Examples where verification is easier than generation:

- Many puzzles (Sudoku, for example)
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The Generator-Verifier Gap

For some problems, verifying a good solution is easier than generating one

Examples where verification is easier than generation:
- Many puzzles (Sudoku, for example)
- Math
o Programming
Examples where verification isn’t much easier
- Information retrieval (What’s the capital of Bhutan?)
- Image recognition
When a generator-verifier gap exists and we
have a good verifier, we can spend more

compute on inference to achieve better performance
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Scaling Scaling Laws with Board Games (Hex)

[Andy L. Jones, arXiv-2021]

Knowing now that compute can be spent in two places,
at train time and test time, the immediate question is: how do
these two budgets trade off? This is illustrated in Fig. 9, which
shows that the trade-off is linear in log-compute: for each
additional 10x of train-time compute, about 15X of test-time
compute can be eliminated, down to a floor of a single-node
tree search.
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Fig. 9. The trade-off between train-time compute and test-time compute. Each
dotted line gives the minimum train-test compute required for a certain Elo
on a9 x 9 board



Where does this go?

. Much higher inference compute, but much more capable models
- What inference cost are you willing to pay for a proof of the Riemann Hypothesis?

- What inference cost are you willing to pay for new life-saving drugs?
. There is still room to push inference compute much further

. Al can be more than chatbots



The Bitter Lesson by Richard Sutton

“The biggest lesson that can be read from 70 years of Al research is that general
methods that leverage computation are ultimately the most effective... The two

methods that seem to scale arbitrarily in this way are search and learning.”



What’'s next for me?

. We are launching a new multi-agent reasoning team

. Looking for strong engineers that are interested in research
- Prior multi-agent research experience not required

- Tool use and distributed systems experience would be helpful

. If you are interested, apply at https://jobs.ashbyhg.com/openai/form/oai-multi-agent



https://jobs.ashbyhq.com/openai/form/oai-multi-agent

