Learning lterated Models

Nati Srebro (TTIC)

Based on ongoing joint work and discussions with
Nirmit Joshi (TTIC), Gal Vardi (TTIC>Weizmann),
Theo Misiakiewicz (TTIC—>Yale), Zhiyuan Li (TTIC)

InputZ[:n] = X he2elT(D(x) = 7[-1] = Z[n + T

, A \ Chain of Thought

7 = hCOT(T)(X) —
/
RO
. Generally conS|derh(X) = h([0] X), and think of]
Iterating a function h: X" — Z{ h(X) = h([0,0,0, ..., 0] @ X) when defining h(-)
For input of length |X| = n, start with Z[0: n] = X, and fort > n:

Z[t] = h(Z[:t])
hCOT(O)(X) — X

hCoT(t+1) (X) — hCoT(t) (X) @ [h (hCoT(t) (X))] i e. hCoT(t) (X) = Z|X|+t

hezel)(x) = hCoT® (x)[—1], i.e. the output of the last iteration

Forabaseclass H = {h:2* -» X} € XX consider:

FLCOTM) = L pCoTMD 3* 5 3 | h € I } gre2e(M) = fpe2eM.3* 5 3| heH } c ¥

(Realizable) Learning of an Iterated Class

End-to-end learning of #<¢2¢(1): Given (Xl-,yi = peze(l) (Xl-)) for Xy ... X,,~iid D, learn h: 2* = T with
Ex~p |err (A(X),he2MX))| <€ (errG) =1iff 5%y

« Formally: Learning rule A: (2* x £)* — %" e-e2e-learns 7 (D) with sample complexity m on input
distribution D, if forany h € 3, E¢_pm)]EX~D [err (A(S)(X), he2e(T) (X))] <e€
h

e2e(T

» Distindependent learning: Rule A e-e2e-learns with sample complexity m(e) for any distribution D over x*
Input length dependent: sample complexity m(e, n) for any distribution D on X

= PAC-Learning H ¢2e(T)

Chain-of-Thought learning of #£¢2¢(1): Given {Z; = h®°T(M (X))} for X; ... X, ~iid D, learn h: £* > T with
Ex-p [err (E(X), heze(T) (X))] <e€

* Formally: Learning rule 4: (X*)* - 32X e-CoT-learns H ™ with sample complexity m on input distribution
D, ifforanyh € H, E¢_pm Ex-p [err (A(S)(X), he2e(T) (X))] <e€
h

CoT(T)

~ AR-Learnable [Malach 24 “Auto-Regressive Next-Token Predictors are Universal Learners™]
(but we only care about final output)

Bounding the Sample Complexity in terms of H

If H has bounded cardinality:
1 1
Mcor(r) (H) < Megery (H) <0 (log|7—[eze(T)| -E) <0 (log|7—[| .E)

If h € H has binary output, i.e. £ = {0,1}, can we bound in terms of VC(H) ?
_ N - .
Meot(r)(H) < Meery (H) <0 (VC(S’-[eze(T)) -Z) <0 (T VC(H) .E)

Tight: Vp, 1 exists H with VC(H) = D but meyer) (H) = Q (VC(S’-[eze(T))) = Q(TD),
even over {0,1}",n = O0(log TD)

Over X = R and relying on generalization of VC, even worse:

There exists H with subgraph dimension (aka Pollard pseudo-dimension) 1, but H ¢2¢(T) has
infinite subgraph dim, forany T > 1.

lterated Linear Thresholds

L; = { h,:Z — sign({w, Z[—d:])) | w € R

Theorem: VC (Lzzem) <0(dT A d?)

e2e Learning
Findw s.t.y; = hﬁ,zem (X;)
Fori=1..m Even m = 0(d) possible

With m contexts, mT total examples for H

m=5((dT/\d2)-%

Open: is this tight?

d 1 .
CoT Learning =>» Suggests m = el might be enough

Findw st. Z;[—t] = hy, (Z;[: —t]) - but examples notiid (only d independent)

Fori=1..m, t=1..T ... AND need error at each step to be%

= Actual sample complexity O ((dT Ad?)- %

€

m ind. Samples per w;, but need err< m

Separate w; (improper)

Findw; s.t. Z;[—t] = hy,(Z;[: —t]) < Sample complexity O (dT : %)
Fori=1..m, t = 1..T [Malach 24]

} over X = {1}

Hard!
No poly(n,d, T) time learning
(even improper, if Icrypto)

Easy!
LP-Satisfiability

Open: is this tight?

No stat advantage over e2e?
Advantage over separate w; ?

Simulating Circuits with Iterated Linear Thresholds
Recall Z = h¢°T(M(X) is defined as Z[t] = h(X[: t])
Contrast with Z; specified by h = (hy, ..., h;) defined as Z[t] = h,(Z[: t]) initialized with Z[: |X|] = X
T = {X §E| h=(hy,..,hy) €T}, 32D = {X v Z5[-1] |E = (hy, .., hy) € HT}

=
©
-
—+
N
é
Il
<
N
=|
I
=

Simulating Circuits with Iterated Linear Thresholds

Recall Z = h¢°T(N(X) is defined as Z[t] = h(X[: t])
Contrast with Z- specified by h = (hy, ..., h;) defined as Z[t] = h,(Z[: t]) initialized with Z[: |X|] =
FCOT(T) — {X i EE| h=(hy,.. hy)€ }[T}, Freze(T) = {X -7 |h = (hy,...,hp) € }[T}

Any (logical or linear threshold) circuit of size S over {+1}" can be simulated by ng@:g,

i.e. for any circuit, there is a sequence h of lin thresholds s.t.Z- - |1] is the output of unit i on input 7+ [nl =X
[Malach 24]

Theorem: Forany w,, ..., wy € R%,i.e. h € L], there exists w € RO(+D) st forall X € {+1}7,

h‘(/eVZe(O((n+T)2)) ([_1 1@(n+T)2] @ X) _ §E(X) [—1]

e2e(T)

Conclusion: Any circuit of size § can be simulated by £, withd, T = O(SZ) and a fixed input expansion.

2e(T)

Learning poly-size circuits is hard =» learning LZ intime poly(n,d, T) is hard

Ultimate: DESCs = { any function describable with S bits }
=>log|DESCs| < S, hence learnable with O(S) samples

More specifically: PROGs = { programs with of length S }
= log|PROGs| = 0(S), hence learnable with 0(S) samples
But: Not tractable computationally + output not useful

How about: TIME;+ = { programs with runtime T }
Also learnable with O(T) samples, learning € NP
TIME; © CIRCUTpoly(T) C NNpoly(T)
=>We can learn TIME} (with poly-opt sample size) by learning a Feed-Forward Neural Nets

But what about PROGg 1 ={programs of length § and runtime T’}
* Learning with O(S) samplesis € NP, as longas T = poly(n)
« “Goal”: learn with poly(SlogT) samples and “training time” poly(T)
 Can we construct a simple and “trainable” class H 2 PROG 1 of complexity poly(SlogT) ?

Ly ={hy:Z » sign((w, Z[-d:1)|w e RY '}
Z = h&PT (Z[:n]) with Z[t] = h,, (Z[: t]) fort = n

Problem with LSOT(T): context length is 0(d)
= i.e. Z[t] only depends on Z[t — d: t] € {+1}¢
=> Computation has state space of size 24, i.e. need d = Q(MEMORY)

How can we get context length > complexity?

Simplest attempt: sparse linear thresholds:
Ly ={hw:Z ~ sign({w, Z[-d:1)|w € R [lwlly < k}
 Complexity VC (Lcel’zkem) = 0(k?log d) with context length d

* Tractably CoT learnable for k = 0O(1) (is this enough?) or with a sparse-learning oracle.

* What is the expressive power of Lccl‘;(T(T) ?7?

« Can we describe a simple class H s.t.:
* PROGg < 328
« VC(30e2¢(M) = poly(SlogT)
 CoTl learnable with poly(SlogT) and time poly(T)

The Turing lterative Model

For an internal state space size S (and wlog tape alphabet {0,1}) consider a iterative model on alphabet
Y =[S] x{0,1} x {—1,0,1}

parametrized by a Turing Machine transition function A: (state, tape sym) — (new state, new sym, move) :
Hs={ hp:2* > 2 | A€ ([S] x{0,1} x {—1,0,1plsIx{0.1} }

Where hA((SO, 70, Mg), vy (Sg—1,Te—1, mt_l)) computes the next symbol to be written, state and move for a
TM specified by transition table A

hA(/ = (So, 70, mo), e (St_l,Tt_l, mt_l)):

Foreachi = 0...t, calculate pos[i] = X;; s; Claim: PROG o155y poty(ry = TMsy }[;Ze(T)
Find i* = maxi s.t.pos|i] = pos|t] With a fixed input embedding Z[i] = (0, X[i], 1)
Ifexists, r =7+, elser =0 And fixed output decoding (proj to 2" component)

output (s¢, 15, M) = A(S¢—1,7)

Claim: log|Hs| < 2S5 1log 6S
=>e2e learnable withm = 0(Slog S)

Claim: CoT learnable withm = 0(Slog S) intime O(ST)
by memorizing size-0(S) table

The Turing lterative Model

For an internal state space size S (and wlog tape alphabet {0,1}) consider an iterative model on alphabet
Y =[S] x{0,1} x {—1,0,1}

parametrized by a Turing Machine transition function A: (state, tape sym) — (new state, new sym, move) :
Hs={ hp:2* > 2 | A€ ([S] x{0,1} x {—1,0,1plsIx{0.1} }

Where hA((SO, 70, Mg), vy (Sg—1,Te—1, mt_l)) computes the next symbol to be written, state and move for a
TM specified by transition table A

hA(Z = (S0, To, Mo), -+ (St—lrrt—lrmt—l)):
Foreachi = 0...t, calculate pos[i] = X;; s;
Find i* = maxi s.t.pos|i] = pos|t]

If exists, r =71+, elser =0

output (s¢, 1, m;) = A(S¢_1,7)

pos[i] =i -Attn(k[j] = 0,q[i] = 0,v[j] = Sj)

Keys: k[i] = (i, 100T pos|[i])) Attn(k, q[i], v):

Values: v[i] = (posli], ;) j* =argmin ||k[j] — q[i]]l
Query: q[t] = (t,100T posli]) J<t

Obtain (p,r) = Attn(k, q[t], v) return v|j”]

If p # pos[i],setr < 0)

The Turing lterative Model

For an internal state space size S (and wlog tape alphabet {0,1}) consider an iterative model on alphabet
Y =[S] x{0,1} x {—1,0,1}

parametrized by a Turing Machine transition function A: (state, tape sym) — (new state, new sym, move) :
Hs={ hp:2* > 2 | A€ ([S] x{0,1} x {—1,0,1plsIx{0.1} }

Where hA((SO, 70, Mg), vy (Sg—1,Te—1, mt_l)) computes the next symbol to be written, state and move for a
TM specified by transition table A

hA(/ = (So, 70, mo), e (St_l,Tt_l, mt_l)):
Foreachi = 0...t, calculate pos[i] = X;; s;
Find i* = maxi s.t.pos|i] = pos|t]

pos[i] =i -Attn(k[j] = 0,q[i] = 0,v[j] = Sj)

If exists, 7 = 1, else 7 = 0 Keys: k] = (i, 1OOT.pos[i])) Attn(.k,q[i],'v):
output (s, 7, m,) = A(s) Values: v[i] = (posli],r;) wljl =1iff
P L 2 T ') Query: q[t] = (¢, 100T pos[i]) j € arg min ||k[j] — q[{]]|
: _ j<i
Obtain (p,r) = Attn(k, q[t], v) 5 e wiilvli]

If p # pos|i], setr < 0) return > wii]
j<i

The Turing lterative Model

For an internal state space size S (and wlog tape alphabet {0,1}) consider an iterative model on alphabet
Y =[S] x{0,1} x {—1,0,1}

parametrized by a Turing Machine transition function A: (state, tape sym) — (new state, new sym, move) :
Hs={ hp:2* > 2 | A€ ([S] x{0,1} x {—1,0,1plsIx{0.1} }

Where hA((SO, 70, Mg), vy (Sg—1,Te—1, mt_l)) computes the next symbol to be written, state and move for a
TM specified by transition table A

hA(Z = (S0, To, Mo), -+ (St—lrrt—lrmt—l)):
Foreachi = 0...t, calculate pos[i] = X;; s;
Find i* = maxi s.t.pos|i] = pos|t]

If exists, r =71+, elser =0
output (s¢, 1, m;) = A(S¢_1,7)

pos[i] =i -Attn(k[j] = 0,q[i] = 0,v[j] = Sj)

Keys: k[i] = (i, 100T pos[i]))
Values: v[i] = (posli],r;)

Query: q[t] = (t, 100T pos|i])

Obtain (p,r) = Attng_.(k, q[t], v) return
If p # pos[i],setr < 0)

Attng(k, q[i],v):
W[]] = eﬂ”k[]]_CI[l]”
Zj<i wljlv[j]
Zj<i W[]]

The Turing lterative Model

For an internal state space size S (and wlog tape alphabet {0,1}) consider an iterative model on alphabet
Y =[S] x{0,1} x {—1,0,1}

parametrized by a Turing Machine transition function A: (state, tape sym) — (new state, new sym, move) :
Hs={ hp:2* > 2 | A€ ([S] x{0,1} x {—1,0,1plsIx{0.1} }

Where hA((SO, 70, Mg), vy (Sg—1,Te—1, mt_l)) computes the next symbol to be written, state and move for a
TM specified by transition table A

hA(Z = (S0, To, Mo), -+ (St—1»7"t—1;mt—1))3
Foreachi = 0...t, calculate pos[i] = X;; s;
Find i* = maxi s.t.pos|i] = pos|t]

If exists, r =71;+,elser =0
output (s¢, 1, m;) = A(S¢_1,7)

pos[i] = i - Attn(k[j] = 0,q[i] = 0,v[j] = s;)
Keys: k[i] = (i, pos[il?, T — pos[i]?))
Values: v[i] = (posli],r;)] Balil

) _ 1 w =e g
Query: q[t] = (100T4,1t90$[t]2,T2 — pOS[t]Z) % i whilvl]
Obtain (p,7) = Attng_,(k, qlt],v) return Y ici Wil
If p # pos|i], setr « 0 J
Hs < { Transformer with poly(S log T)-sized MLP and O(log T) precision } (with simple fixed encoding)

[Jorge Pérez, Pablo Barceld, Javier Marinkovic 21, Attention is Turing-Complete]
[Colin Wei, Yining Chen, Tengyu Ma ’22, Statistically Meaningful...Approximating TM with Transformers]
[William Merrill, Ashish Sabharwal ‘24, The Expressive Power of Transformers with Chain of Thought]

Attn(k, q[i], v):

A (Minimal) Transformer?

sign({w,Z|—d:])) if Z|-5:]#[11111]

fw(X) = {Attn(Z) if Z|-5:]=[11111] Attn(X):
q = X[—r:0]

kli] = X[—-2ri: —2ri + 1]

v[i] = X[-2ri + 1]

— d
Har = {fW | weR } return Attn(keys = k, query = q,vals = v)

Claim: }[Cg,Tr) CoT learnable with m = 0(d?) samples in time poly(d, T)

j_[eZe(poly(T))

' ?
What can it represent? PROGgt € dr=poly(SlogT) ° "

Summary

e Study of (Stationary) Iterative Models essential for understanding:
* Autoregressive learning as itis actually done

* Learning with large context length, and sample complexity independent of context
(input + output) length

* Length generalization
* Learning with sample complexity scaling with program length, not runtime

* Open questions even on simple models

* What’s the right view of non-realizable learning?
* What is the goal/reward/error?
* Discriminative/reward-based view of iterative models vs generative view

	Slide 1: Learning Iterated Models
	Slide 2
	Slide 3: (Realizable) Learning of an Iterated Class
	Slide 4: Bounding the Sample Complexity in terms of script cap H
	Slide 5: Iterated Linear Thresholds
	Slide 6: Simulating Circuits with Iterated Linear Thresholds
	Slide 7: Simulating Circuits with Iterated Linear Thresholds
	Slide 8: What I’d Really Like to Learn
	Slide 9
	Slide 10
	Slide 11: The Turing Iterative Model
	Slide 12: The Turing Iterative Model
	Slide 13: The Turing Iterative Model
	Slide 14: The Turing Iterative Model
	Slide 15: The Turing Iterative Model
	Slide 16: A (Minimal) Transformer?
	Slide 17: Summary

