
Learning Iterated Models
Nati Srebro (TTIC)

Based on ongoing joint work and discussions with
Nirmit Joshi (TTIC), Gal Vardi (TTIC→Weizmann),
Theo Misiakiewicz (TTIC→Yale), Zhiyuan Li (TTIC)

Iterating a function ℎ: Σ∗ → Σ

For input of length 𝑋 = 𝑛, start with 𝑍 0: 𝑛 = 𝑋, and for 𝑡 ≥ 𝑛:

𝑍 𝑡 = ℎ(𝑍 : 𝑡)

ℎCoT(0) 𝑋 = 𝑋

ℎCoT(𝑡+1) 𝑋 = ℎCoT 𝑡 (𝑋) ⊕ ℎ ℎCoT(𝑡) 𝑋 i.e. ℎCoT(𝑡) 𝑋 ∈ Σ 𝑋 +𝑡

ℎe2e 𝑡 𝑋 = ℎCoT 𝑡 (𝑋)[−1], i.e. the output of the last iteration

For a base class ℋ = ℎ: Σ∗ → Σ ⊆ ΣΣ∗
consider:

ℋCoT 𝑇 = ℎCoT(𝑇): Σ∗ → Σ∗ ℎ ∈ ℋ ℋe2e 𝑇 = ℎe2e(𝑇): Σ∗ → Σ ℎ ∈ ℋ ⊆ ΣΣ∗

Generally consider ℎ 𝑋 = ℎ(0 ⊕ 𝑋), and think of
ℎ 𝑋 = ℎ 0,0,0, … , 0 ⊕ 𝑋 when defining ℎ(⋅)

Input 𝑍 : 𝑛 = 𝑋

Chain of Thought
ℎe2e𝑇 𝑇 𝑋 = 𝑍 −1 = 𝑍[𝑛 + 𝑇]

ℎ

ℎ

ℎ

𝑍 = ℎ𝐶𝑜𝑇 𝑇 (𝑋) =

(Realizable) Learning of an Iterated Class
End-to-end learning of 𝓗𝐞𝟐𝐞 𝑻 : Given 𝑋𝑖 , 𝑦𝑖 = ℎe2e 𝑇 𝑋𝑖 for 𝑋1 … 𝑋𝑚~𝑖𝑖𝑑 𝒟, learn ෠ℎ: Σ∗ → Σ with

𝔼𝑋∼𝒟 𝑒𝑟𝑟 ෠ℎ 𝑋 , ℎe2e 𝑇 𝑋 ≤ 𝜖

• Formally: Learning rule 𝐴: Σ∗ × Σ ∗ → ΣΣ∗
 𝜖-e2e-learns ℋ 𝑇 with sample complexity 𝑚 on input

distribution 𝒟, if for any ℎ ∈ ℋ, 𝔼𝑆∼𝒟
ℎe2e 𝑇
𝑚 𝔼𝑋∼𝒟 𝑒𝑟𝑟 𝐴(𝑆) 𝑋 , ℎe2e 𝑇 𝑋 ≤ 𝜖

• Dist independent learning: Rule 𝐴 𝜖-e2e-learns with sample complexity 𝑚 𝜖 for any distribution 𝒟 over Σ∗

Input length dependent: sample complexity 𝑚(𝜖, 𝑛) for any distribution 𝒟 on Σ𝑛

≡ PAC-Learning ℋe2e 𝑇

Chain-of-Thought learning of 𝓗𝐞𝟐𝐞 𝑻 : Given Zi = ℎCoT 𝑇 𝑋𝑖 for 𝑋1 … 𝑋𝑚~𝑖𝑖𝑑 𝒟, learn ෠ℎ: Σ∗ → Σ with
𝔼𝑋∼𝒟 𝑒𝑟𝑟 ෠ℎ 𝑋 , ℎe2e 𝑇 𝑋 ≤ 𝜖

• Formally: Learning rule 𝐴: Σ∗ ∗ → ΣΣ∗
 𝜖-CoT-learns ℋ 𝑇 with sample complexity 𝑚 on input distribution

𝒟, if for any ℎ ∈ ℋ, 𝔼𝑆∼𝒟
ℎCoT 𝑇
𝑚 𝔼𝑋∼𝒟 𝑒𝑟𝑟 𝐴(𝑆) 𝑋 , ℎe2e 𝑇 𝑋 ≤ 𝜖

≈ AR-Learnable [Malach 24 “Auto-Regressive Next-Token Predictors are Universal Learners”]
(but we only care about final output)

𝑒𝑟𝑟 ො𝑦, 𝑦 = 1 𝑖𝑓𝑓 ො𝑦 ≠ 𝑦

Bounding the Sample Complexity in terms of ℋ
If ℋ has bounded cardinality:

𝑚CoT 𝑇 ℋ ≤ 𝑚e2e 𝑇 ℋ ≤ 𝑂 log ℋe2e 𝑇 ⋅
1

𝜖
≤ 𝑂 log ℋ ⋅

1

𝜖

If ℎ ∈ ℋ has binary output, i.e. Σ = 0,1 , can we bound in terms of 𝑉𝐶 ℋ ?

𝑚CoT 𝑇 ℋ ≤ 𝑚e2e 𝑇 ℋ ≤ ෨𝑂 𝑉𝐶 ℋe2e 𝑇 ⋅
1

𝜖
≤ ෨𝑂 𝑇 ⋅ 𝑉𝐶 ℋ ⋅

1

𝜖

Tight: ∀𝐷,𝑇 exists ℋ with 𝑉𝐶 ℋ = 𝐷 but 𝑚e2e 𝑇 ℋ = Ω 𝑉𝐶 ℋe2e 𝑇 = Ω 𝑇𝐷 ,
even over 0,1 𝑛, 𝑛 = 𝑂 log 𝑇𝐷

Over Σ = ℝ and relying on generalization of VC, even worse:

There exists ℋ with subgraph dimension (aka Pollard pseudo-dimension) 1, but ℋe2e 𝑇 has
infinite subgraph dim, for any 𝑇 > 1.

Iterated Linear Thresholds
ℒ𝑑 = ℎ𝑤: 𝑍 ↦ sign 𝑤, 1 ⊕ 𝑍 −𝑑: 𝑤 ∈ ℝ𝑑+1 over Σ = {±1}

Theorem: 𝑉𝐶 ℒ𝑑
e2e(𝑇)

≤ 𝑂 𝑑𝑇 ∧ 𝑑2

e2e Learning
Find 𝑤 s.t. 𝑦𝑖 = ℎ𝑤

e2e 𝑇
𝑋𝑖

For 𝑖 = 1. . 𝑚

CoT Learning
Find 𝑤 s.t. 𝑍𝑖 −𝑡 = ℎ𝑤 𝑍𝑖 : −𝑡
For 𝑖 = 1. . 𝑚, 𝑡 = 1. . 𝑇

𝒎 = ෩𝑶 𝒅𝑻 ∧ 𝒅𝟐 ⋅
𝟏

𝝐

With 𝑚 contexts, 𝑚𝑇 total examples for ℋ
➔ Suggests 𝑚 =

𝑑

𝑇
⋅

1

𝜖
 might be enough

… but examples not iid (only 𝑑 independent)
… AND need error at each step to be 𝜖

𝑇

➔ Actual sample complexity ෩𝑶 𝒅𝑻 ∧ 𝒅𝟐 ⋅
𝟏

𝝐

𝑚 ind. Samples per 𝑤𝑖, but need err≤
𝜖

𝑇

➔ Sample complexity ෩𝑶 𝒅𝑻 ⋅
𝟏

𝝐

Separate 𝒘𝒊 (improper)
Find 𝑤𝒕 s.t. 𝑍𝑖 −𝑡 = ℎ𝑤𝒕

𝑍𝑖 : −𝑡

For 𝑖 = 1. . 𝑚, 𝑡 = 1. . 𝑇 [Malach 24]

Hard!
No 𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝑇) time learning
(even improper, if ∃crypto)

Easy!
LP-Satisfiability

Open: is this tight?
Even 𝑚 = 𝑂 𝑑 possible

Open: is this tight?
No stat advantage over e2e?
Advantage over separate 𝑤𝑖 ?

Simulating Circuits with Iterated Linear Thresholds
Recall 𝒁 = 𝒉𝑪𝒐𝑻 𝑻 (𝑿) is defined as 𝒁 𝒕 = 𝒉(𝑿 : 𝒕)

Contrast with 𝑍ℎ specified by ℎ = (ℎ1, … , ℎ𝑇) defined as 𝑍 𝑡 = ℎ𝑡(𝑍 : 𝑡) initialized with 𝑍 : 𝑋 = 𝑋

ℋCoT(𝑇) = 𝑋 ↦ 𝑍ℎ ℎ = ℎ1, … , ℎ𝑇 ∈ ℋ𝑇 , ℋe2e(𝑇) = 𝑋 ↦ 𝑍ℎ[−1] ℎ = ℎ1, … , ℎ𝑇 ∈ ℋ𝑇

Input 𝑍 : 𝑛 = 𝑋

Chain of Thought
𝑍ℎ[−1]

ℎ𝟏

ℎ𝟐

ℎ𝐭

𝑍ℎ =

Simulating Circuits with Iterated Linear Thresholds
Recall 𝒁 = 𝒉𝑪𝒐𝑻 𝑻 (𝑿) is defined as 𝒁 𝒕 = 𝒉(𝑿 : 𝒕)

Contrast with 𝑍ℎ specified by ℎ = (ℎ1, … , ℎ𝑇) defined as 𝑍 𝑡 = ℎ𝑡(𝑍 : 𝑡) initialized with 𝑍 : 𝑋 = 𝑋

ℋCoT(𝑇) = 𝑋 ↦ 𝑍ℎ ℎ = ℎ1, … , ℎ𝑇 ∈ ℋ𝑇 , ℋe2e(𝑇) = 𝑋 ↦ 𝑍ℎ[−1] ℎ = ℎ1, … , ℎ𝑇 ∈ ℋ𝑇

Any (logical or linear threshold) circuit of size 𝑆 over ±1 𝑛 can be simulated by ℒ𝑛+𝑇
CoT(𝑇=𝑆),

i.e. for any circuit, there is a sequence ℎ of lin thresholds s.t.𝑍ℎ[𝑖] is the output of unit 𝑖 on input 𝑍ℎ : 𝑛 = 𝑋
[Malach 24]

Theorem: For any 𝑤1, … , 𝑤𝑇 ∈ ℝ𝑑, i.e. ℎ ∈ ℒ𝑑
𝑇, there exists 𝒘 ∈ ℝ𝑶(𝒏+𝑻 𝟐) s.t. for all 𝑋 ∈ ±1 𝑛,

𝒉𝒘
𝒆𝟐𝒆 𝑶(𝒏+𝑻 𝟐)

−1 1⊕ 𝑛+𝑇 2
⊕ 𝑋 = 𝑍ℎ 𝑋 [−1]

Conclusion: Any circuit of size 𝑆 can be simulated by 𝓛𝒅
𝐞𝟐𝐞(𝑻) with 𝒅, 𝑻 = 𝑶 𝑺𝟐 and a fixed input expansion.

Learning poly-size circuits is hard ➔ learning ℒ𝑑
e2e(𝑇) in time 𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝑇) is hard

What I’d Really Like to Learn
• Ultimate: 𝐷𝐸𝑆𝐶𝑆 = { any function describable with 𝑆 bits }
➔log 𝐷𝐸𝑆𝐶𝑆 ≤ 𝑆, hence learnable with 𝑂(𝑆) samples

• More specifically: 𝑃𝑅𝑂𝐺𝑆 = { programs with of length 𝑆 }
➔ log 𝑃𝑅𝑂𝐺𝑆 = 𝑂(𝑆), hence learnable with 𝑂(𝑆) samples
But: Not tractable computationally + output not useful

• How about: 𝑇𝐼𝑀𝐸𝑇 = { programs with runtime 𝑇 }
Also learnable with 𝑂(𝑇) samples, learning ∈ 𝑁𝑃
 𝑇𝐼𝑀𝐸𝑇 ⊆ 𝐶𝐼𝑅𝐶𝑈𝑇𝑝𝑜𝑙𝑦 𝑇 ⊆ 𝑁𝑁𝑝𝑜𝑙𝑦 𝑇

➔We can learn 𝑇𝐼𝑀𝐸𝑇 (with poly-opt sample size) by learning a Feed-Forward Neural Nets

• But what about 𝑃𝑅𝑂𝐺𝑆,𝑇 ={programs of length 𝑆 and runtime 𝑇}
• Learning with 𝑂(𝑆) samples is ∈ 𝑁𝑃, as long as 𝑇 = 𝑝𝑜𝑙𝑦(𝑛)
• “Goal”: learn with 𝑝𝑜𝑙𝑦 𝑆 log 𝑇 samples and “training time” 𝑝𝑜𝑙𝑦(𝑇)
• Can we construct a simple and “trainable” class ℋ ⊇ 𝑃𝑅𝑂𝐺𝑆,𝑇 of complexity 𝑝𝑜𝑙𝑦 𝑆 log 𝑇 ?

ℒ𝑑 = ℎ𝑤: 𝑍 ↦ sign 𝑤, 1 ⊕ 𝑍 −𝑑: 𝑤 ∈ ℝ𝑑+1

𝑍 = ℎ𝑤
𝐶𝑜𝑇(𝑍[: 𝑛]) with 𝑍 𝑡 = ℎ𝑤(𝑍 : 𝑡) for 𝑡 ≥ 𝑛

Problem with ℒ𝑑
CoT(𝑇): context length is 𝑂 𝑑

➔ i.e. 𝑍[𝑡] only depends on 𝑍 𝑡 − 𝑑: 𝑡 ∈ ±1 𝑑

➔ Computation has state space of size 2𝑑, i.e. need 𝑑 = Ω(𝑀𝐸𝑀𝑂𝑅𝑌)

How can we get context length ≫ complexity?

Simplest attempt: sparse linear thresholds:
ℒ𝑑,𝑘 = ℎ𝑤: 𝑍 ↦ sign 𝑤, 1 ⊕ 𝑍 −𝑑: 𝑤 ∈ ℝ𝑑+1, 𝑤 0 ≤ 𝑘

• Complexity 𝑉𝐶 ℒ𝑑,𝑘
e2e 𝑇

= 𝑂 𝑘2 log 𝑑 with context length 𝑑

• Tractably CoT learnable for 𝑘 = 𝑂(1) (is this enough?) or with a sparse-learning oracle.

• What is the expressive power of ℒ𝑑,𝑘
CoT 𝑇 ??

• Can we describe a simple class ℋ s.t.:
• 𝑃𝑅𝑂𝐺𝑆,𝑇 ⊆ ℋe2e 𝑇

• 𝑉𝐶 ℋe2e 𝑇 = 𝑝𝑜𝑙𝑦 𝑆 log 𝑇

• CoT learnable with 𝑝𝑜𝑙𝑦 𝑆 log 𝑇 and time 𝑝𝑜𝑙𝑦(𝑇)

The Turing Iterative Model
For an internal state space size 𝑆 (and wlog tape alphabet 0,1) consider a iterative model on alphabet

Σ = 𝑆 × 0,1 × −1,0,1

parametrized by a Turing Machine transition function 𝐴: 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑎𝑝𝑒 𝑠𝑦𝑚 ↦ (𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤 𝑠𝑦𝑚, 𝑚𝑜𝑣𝑒) :
ℋ𝑆 = ℎ𝐴: Σ∗ → Σ 𝐴 ∈ 𝑆 × 0,1 × −1,0,1 𝑆 × 0,1

Where ℎ𝐴 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 computes the next symbol to be written, state and move for a
TM specified by transition table 𝐴

ℎ𝐴 𝑍 = 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 :
 For each 𝑖 = 0 … 𝑡, calculate 𝑝𝑜𝑠 𝑖 = σ𝑗<𝑖 𝑠𝑗

 Find 𝑖∗ = max 𝑖 𝑠. 𝑡. 𝑝𝑜𝑠 𝑖 = 𝑝𝑜𝑠 𝑡
 If exists, 𝑟 = 𝑟𝑖∗, else 𝑟 = 0
 output 𝑠𝑡 , 𝑟𝑡 , 𝑚𝑡 = 𝐴 𝑠𝑡−1, 𝑟

Claim: 𝑃𝑅𝑂𝐺𝑝𝑜𝑙𝑦(𝑆),𝑝𝑜𝑙𝑦(𝑇) = 𝑇𝑀𝑆,𝑇 ⊆ ℋ𝑆
e2e(𝑇)

With a fixed input embedding 𝑍 𝑖 = 0, 𝑋 𝑖 , 1
And fixed output decoding (proj to 2nd component)

Claim: log ℋ𝑆 ≤ 2𝑆 log 6𝑆
➔e2e learnable with 𝑚 = 𝑂 𝑆 log 𝑆

Claim: CoT learnable with 𝑚 = 𝑂(𝑆 log 𝑆) in time ෨𝑂(𝑆𝑇)
by memorizing size-𝑂(𝑆) table

The Turing Iterative Model
For an internal state space size 𝑆 (and wlog tape alphabet 0,1) consider an iterative model on alphabet

Σ = 𝑆 × 0,1 × −1,0,1

parametrized by a Turing Machine transition function 𝐴: 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑎𝑝𝑒 𝑠𝑦𝑚 ↦ (𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤 𝑠𝑦𝑚, 𝑚𝑜𝑣𝑒) :
ℋ𝑆 = ℎ𝐴: Σ∗ → Σ 𝐴 ∈ 𝑆 × 0,1 × −1,0,1 𝑆 × 0,1

Where ℎ𝐴 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 computes the next symbol to be written, state and move for a
TM specified by transition table 𝐴

ℎ𝐴 𝑍 = 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 :
 For each 𝑖 = 0 … 𝑡, calculate 𝑝𝑜𝑠 𝑖 = σ𝑗<𝑖 𝑠𝑗

 Find 𝑖∗ = max 𝑖 𝑠. 𝑡. 𝑝𝑜𝑠 𝑖 = 𝑝𝑜𝑠 𝑡
 If exists, 𝑟 = 𝑟𝑖∗, else 𝑟 = 0
 output 𝑠𝑡 , 𝑟𝑡 , 𝑚𝑡 = 𝐴 𝑠𝑡−1, 𝑟

𝑝𝑜𝑠 𝑖 = 𝑖 ⋅ 𝐴𝑡𝑡𝑛 𝑘[𝑗] = 0, 𝑞[𝑖] = 0, 𝑣[𝑗] = 𝑠𝑗

𝐴𝑡𝑡𝑛 𝑘, 𝑞[𝑖], 𝑣 :
 𝑗∗ = arg min

𝑗<𝑖
‖𝑘[𝑗] − 𝑞[𝑖]‖

 return 𝑣[𝑗∗]

Keys: 𝑘 𝑖 = (𝑖, 100𝑇 𝑝𝑜𝑠[𝑖])
Values: 𝑣 𝑖 = 𝑝𝑜𝑠 𝑖 , 𝑟𝑖
Query: 𝑞[𝑡] = 𝑡, 100𝑇 𝑝𝑜𝑠 𝑖
Obtain 𝑝, 𝑟 = 𝐴𝑡𝑡𝑛 𝑘, 𝑞 𝑡 , 𝑣
If 𝑝 ≠ 𝑝𝑜𝑠[𝑖], set 𝑟 ← 0

The Turing Iterative Model
For an internal state space size 𝑆 (and wlog tape alphabet 0,1) consider an iterative model on alphabet

Σ = 𝑆 × 0,1 × −1,0,1

parametrized by a Turing Machine transition function 𝐴: 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑎𝑝𝑒 𝑠𝑦𝑚 ↦ (𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤 𝑠𝑦𝑚, 𝑚𝑜𝑣𝑒) :
ℋ𝑆 = ℎ𝐴: Σ∗ → Σ 𝐴 ∈ 𝑆 × 0,1 × −1,0,1 𝑆 × 0,1

Where ℎ𝐴 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 computes the next symbol to be written, state and move for a
TM specified by transition table 𝐴

ℎ𝐴 𝑍 = 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 :
 For each 𝑖 = 0 … 𝑡, calculate 𝑝𝑜𝑠 𝑖 = σ𝑗<𝑖 𝑠𝑗

 Find 𝑖∗ = max 𝑖 𝑠. 𝑡. 𝑝𝑜𝑠 𝑖 = 𝑝𝑜𝑠 𝑡
 If exists, 𝑟 = 𝑟𝑖∗, else 𝑟 = 0
 output 𝑠𝑡 , 𝑟𝑡 , 𝑚𝑡 = 𝐴 𝑠𝑡−1, 𝑟

𝑝𝑜𝑠 𝑖 = 𝑖 ⋅ 𝐴𝑡𝑡𝑛 𝑘[𝑗] = 0, 𝑞[𝑖] = 0, 𝑣[𝑗] = 𝑠𝑗

Keys: 𝑘 𝑖 = (𝑖, 100𝑇 𝑝𝑜𝑠[𝑖])
Values: 𝑣 𝑖 = 𝑝𝑜𝑠 𝑖 , 𝑟𝑖
Query: 𝑞[𝑡] = 𝑡, 100𝑇 𝑝𝑜𝑠 𝑖
Obtain 𝑝, 𝑟 = 𝐴𝑡𝑡𝑛 𝑘, 𝑞 𝑡 , 𝑣
If 𝑝 ≠ 𝑝𝑜𝑠[𝑖], set 𝑟 ← 0

𝐴𝑡𝑡𝑛 𝑘, 𝑞[𝑖], 𝑣 :
 𝑤 𝑗 = 1 𝑖𝑓𝑓
 𝑗 ∈ arg min

𝑗<𝑖
‖𝑘[𝑗] − 𝑞[𝑖]‖

 return
σ𝑗<𝑖 𝑤 𝑗 𝑣[𝑗]

σ𝑗<𝑖 𝑤[𝑗]

The Turing Iterative Model
For an internal state space size 𝑆 (and wlog tape alphabet 0,1) consider an iterative model on alphabet

Σ = 𝑆 × 0,1 × −1,0,1

parametrized by a Turing Machine transition function 𝐴: 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑎𝑝𝑒 𝑠𝑦𝑚 ↦ (𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤 𝑠𝑦𝑚, 𝑚𝑜𝑣𝑒) :
ℋ𝑆 = ℎ𝐴: Σ∗ → Σ 𝐴 ∈ 𝑆 × 0,1 × −1,0,1 𝑆 × 0,1

Where ℎ𝐴 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 computes the next symbol to be written, state and move for a
TM specified by transition table 𝐴

ℎ𝐴 𝑍 = 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 :
 For each 𝑖 = 0 … 𝑡, calculate 𝑝𝑜𝑠 𝑖 = σ𝑗<𝑖 𝑠𝑗

 Find 𝑖∗ = max 𝑖 𝑠. 𝑡. 𝑝𝑜𝑠 𝑖 = 𝑝𝑜𝑠 𝑡
 If exists, 𝑟 = 𝑟𝑖∗, else 𝑟 = 0
 output 𝑠𝑡 , 𝑟𝑡 , 𝑚𝑡 = 𝐴 𝑠𝑡−1, 𝑟

𝑝𝑜𝑠 𝑖 = 𝑖 ⋅ 𝐴𝑡𝑡𝑛 𝑘[𝑗] = 0, 𝑞[𝑖] = 0, 𝑣[𝑗] = 𝑠𝑗

Keys: 𝑘 𝑖 = (𝑖, 100𝑇 𝑝𝑜𝑠[𝑖])
Values: 𝑣 𝑖 = 𝑝𝑜𝑠 𝑖 , 𝑟𝑖
Query: 𝑞[𝑡] = 𝑡, 100𝑇 𝑝𝑜𝑠 𝑖
Obtain 𝑝, 𝑟 = 𝐴𝑡𝑡𝑛𝛽→∞ 𝑘, 𝑞 𝑡 , 𝑣
If 𝑝 ≠ 𝑝𝑜𝑠[𝑖], set 𝑟 ← 0

𝐴𝑡𝑡𝑛𝛽 𝑘, 𝑞[𝑖], 𝑣 :

 𝑤[𝑗] = 𝑒𝛽 𝑘 𝑗 −𝑞[𝑖]

 return
σ𝑗<𝑖 𝑤 𝑗 𝑣[𝑗]

σ𝑗<𝑖 𝑤[𝑗]

The Turing Iterative Model
For an internal state space size 𝑆 (and wlog tape alphabet 0,1) consider an iterative model on alphabet

Σ = 𝑆 × 0,1 × −1,0,1

parametrized by a Turing Machine transition function 𝐴: 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑎𝑝𝑒 𝑠𝑦𝑚 ↦ (𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤 𝑠𝑦𝑚, 𝑚𝑜𝑣𝑒) :
ℋ𝑆 = ℎ𝐴: Σ∗ → Σ 𝐴 ∈ 𝑆 × 0,1 × −1,0,1 𝑆 × 0,1

Where ℎ𝐴 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 computes the next symbol to be written, state and move for a
TM specified by transition table 𝐴

ℎ𝐴 𝑍 = 𝑠0, 𝑟0, 𝑚0 , … , 𝑠𝑡−1, 𝑟𝑡−1, 𝑚𝑡−1 :
 For each 𝑖 = 0 … 𝑡, calculate 𝑝𝑜𝑠 𝑖 = σ𝑗<𝑖 𝑠𝑗

 Find 𝑖∗ = max 𝑖 𝑠. 𝑡. 𝑝𝑜𝑠 𝑖 = 𝑝𝑜𝑠 𝑡
 If exists, 𝑟 = 𝑟𝑖∗, else 𝑟 = 0
 output 𝑠𝑡 , 𝑟𝑡 , 𝑚𝑡 = 𝐴 𝑠𝑡−1, 𝑟

𝐴𝑡𝑡𝑛 𝑘, 𝑞[𝑖], 𝑣 :

 𝑤[𝑗] = 𝑒𝛽⟨𝑞[𝑖],𝑣⟩

 return
σ𝑗<𝑖 𝑤 𝑗 𝑣[𝑗]

σ𝑗<𝑖 𝑤[𝑗]

Keys: 𝑘 𝑖 = (𝑖, 𝑝𝑜𝑠 𝑖 2, 𝑇2 − 𝑝𝑜𝑠 𝑖 2)
Values: 𝑣 𝑖 = 𝑝𝑜𝑠 𝑖 , 𝑟𝑖

Query: 𝑞[𝑡] =
1

100𝑇4 , 𝑝𝑜𝑠 𝑡 2, 𝑇2 − 𝑝𝑜𝑠 𝑡 2
Obtain 𝑝, 𝑟 = 𝐴𝑡𝑡𝑛𝛽→∞ 𝑘, 𝑞 𝑡 , 𝑣
If 𝑝 ≠ 𝑝𝑜𝑠[𝑖], set 𝑟 ← 0

ℋ𝑆 ⊆ { Transformer with poly(S log T)-sized MLP and O(log T) precision } (with simple fixed encoding)
 [Jorge Pérez, Pablo Barceló, Javier Marinkovic ’21, Attention is Turing-Complete]

 [Colin Wei, Yining Chen, Tengyu Ma ’22, Statistically Meaningful…Approximating TM with Transformers]

 [William Merrill, Ashish Sabharwal ‘24, The Expressive Power of Transformers with Chain of Thought]

𝑝𝑜𝑠 𝑖 = 𝑖 ⋅ 𝐴𝑡𝑡𝑛 𝑘[𝑗] = 0, 𝑞[𝑖] = 0, 𝑣[𝑗] = 𝑠𝑗

A (Minimal) Transformer?
𝑓𝑤 𝑋 = ቊ

𝑠𝑖𝑔𝑛 𝑤, 𝑍 −𝑑: 𝑖𝑓 𝑍 −5: ≠ [1 1 1 1 1]

Attn 𝑍 𝑖𝑓 𝑍 −5: = [1 1 1 1 1]

 ℋ𝑑,𝑟 = 𝑓𝑤 𝑤 ∈ ℝ𝑑

Claim: ℋ𝑑,𝑟
(𝑇) CoT learnable with 𝑚 = 𝑂 𝑑2 samples in time 𝑝𝑜𝑙𝑦 𝑑, 𝑇

What can it represent? 𝑃𝑅𝑂𝐺𝑆,𝑇 ∈ ℋ
𝑑,𝑟=𝑝𝑜𝑙𝑦 𝑆 log 𝑇

e2e 𝑝𝑜𝑙𝑦 𝑇 ???

Attn(𝑋):
 𝑞 = 𝑋 −𝑟: 0
 𝑘 𝑖 = 𝑋 −2𝑟𝑖: −2𝑟𝑖 + 𝑟
 𝑣 𝑖 = 𝑋[−2𝑟𝑖 + 𝑟]
 return 𝐴𝑡𝑡𝑛(𝑘𝑒𝑦𝑠 = 𝑘, 𝑞𝑢𝑒𝑟𝑦 = 𝑞, 𝑣𝑎𝑙𝑠 = 𝑣)

Summary
• Study of (Stationary) Iterative Models essential for understanding:

• Autoregressive learning as it is actually done
• Learning with large context length, and sample complexity independent of context

(input + output) length
• Length generalization
• Learning with sample complexity scaling with program length, not runtime

• Open questions even on simple models

• What’s the right view of non-realizable learning?
• What is the goal/reward/error?
• Discriminative/reward-based view of iterative models vs generative view

	Slide 1: Learning Iterated Models
	Slide 2
	Slide 3: (Realizable) Learning of an Iterated Class
	Slide 4: Bounding the Sample Complexity in terms of script cap H
	Slide 5: Iterated Linear Thresholds
	Slide 6: Simulating Circuits with Iterated Linear Thresholds
	Slide 7: Simulating Circuits with Iterated Linear Thresholds
	Slide 8: What I’d Really Like to Learn
	Slide 9
	Slide 10
	Slide 11: The Turing Iterative Model
	Slide 12: The Turing Iterative Model
	Slide 13: The Turing Iterative Model
	Slide 14: The Turing Iterative Model
	Slide 15: The Turing Iterative Model
	Slide 16: A (Minimal) Transformer?
	Slide 17: Summary

