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Transformers
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Transformers
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Transformers
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Algorithmic Acceleration
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Algorithmic Acceleration
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Previous Work

Sparse Structure

» Local Attention (Parmar et al., 18’) |
» Sparse Transformer (Child et al., 197) r |
» Longformer (Beltagy et al., 20’) - .
» Reformer (Kitaev et al., 20’) EEE =~ EEEE
. Sinkhorn Attention (Tay et al., 20) T

Kernel Methods | 3 | B H . -l-

» Lambda network (Bello et al., 21")

» Performer (Choromanski et al., 21°) (b) Sparse Transformer (strided)
» Random Feature Attention (Peng et al., 21°)

» Randomized Attention (Zheng et al., 22’)

(b) Random feature attention.

Linformer b
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Nystrom approximation

softmax
Low-rank Approximation
» Linformer (Wang et al., 20’) l
» Nystromformer (Xiong et al., 21°) 00 @
» Nested Attention (Max et al., 217) e
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Previous Work

(AlIman & Song 23’) High quality (1/poly(n))
entrywise approximation of Att(Q, K, V') requires
nearly quadratic time assuming SETH
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Previous Works

No End-to-End approximation (in some works)
. Only approximate matrix A = exp(QK")

Would like to:
. Compute Att € R™*? such that
|l Att — Att(Q,K,V) llopis small

These methods do not support causal masking

20



HyperAttention

Insu Han (Adobe), Rajesh Jayaram (Google), Amin Karbasi (Yale),

Vahab Mirrokni (Google), David Woodruff (CMU), Amir Zandieh




Algorithmic Acceleration

Q, K,V eRrnxd Self Attention
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2. Approximate matrix product A - V

memory/runtime: O (n?)
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Algorithmic Acceleration

Q K,V e rv Self Attention

1. Approximate nxm mxd

Dii= X Aij= 2 exp({qikj))

J€[n] J€[n]

CEoD

2. Compute a row sampling sketch S
€ R™*™ where row i is sampled with
probability || v; |5 > m
~ srank(softmax(QK")) - d




Algorithmic Acceleration

d
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Algorithmic Acceleration

Approximate D; ; = ), Al] Y. exp({(q;, k]))

j€[n] JE[n]

Find ‘Heavy’ elements of A = exp(QKT) Estimate ‘Light’ elements of A via

uniform column sampling
' i

ANNNENNEEENENE
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Algorithmic Acceleration

Approximate D; ; = ), Al] Y. exp({(q;, k]))

j€[n] JE[n]

Find ‘Heavy’ elements of A = exp(QKT) Estimate ‘Light’ elements of A via

I ﬂ

uniform column sampling

_|_

E

D; ; =contribution of heavy elements + contribution of light elements

less im—portant
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Algorithmic Acceleration

Theorem (informal). If the maximum squared column norm in softmax(QK ") is
and the ratio of max and min row sums in A = exp(QK ") after removing heavy

~

elements is 1°(1) then Att can be computed in O (dn*t°)) time with:
I softmax(QKT)V — Att ||, < € || softmax(QK™) lgpll V oy

ni-o(1)

A .q q 1 q
Column norm bound non-trivial — allows for entries as large as — L in softmax(QK™)
>—0

n2

Estimating the contribution of light elements is non-trivial
Tested assumption of squared column norms in first attention layer of T2T-ViT on ImageNet

For chatgim2-6b-32k and LongBeach, only the lexicographically first few columns had large norm
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Algorithmic Acceleration
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Algorithmic Acceleration

Finding Heavy contributions in practice

| | less important

A = exp(QK")

memory/runtime: O (n?)

A GPU-friendly algorithm to compute
heavy entries and minimize 1/O
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Algorithmic Acceleration

Finding Heavy contributions in practice

| | less important

A = exp(QKD)

memory/runtime: O (n?)

A Permutation algorithm that gathers
neavy entries around the diagonal
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Algorithmic Acceleration

Self Attention

| | less important

A = exp(QKD)

memory/runtime: O (n?)

How can entries be gathered?

= SortLSH (Locality Sensitive Hashing)
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Algorithmic Acceleration

Self Attention
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Algorithmic Acceleration

Self Attention
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Algorithmic Acceleration

k. Kok, Kkskk

Self Attention
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Algorithmic Acceleration
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Algorithmic Acceleration

Causal Masking

exp (QKT) @ Mcausal

Output embeddings only depend
on input embeddings in the past
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Algorithmic Acceleration

exp (QKT) @ Mcausal

Output embeddings only depend
on input embeddings in the past

Causal Masking

Divide and conquer

~

Joeues
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Algorithmic Acceleration

exp (QKT) @ Mcausal

Output embeddings only depend
on input embeddings in the past

Causal Masking

Divide and conquer

~
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Algorithmic Acceleration

ChatGLM2

Dialog:

Marisol: it's so sweet he had been waiting

Jackie: we don't know yet when we'll get married but you are all invited ofc
Carlita: PLEASE don't pick June, I'll be in Canada then

Eunica: | hate weddings but I'll make an exception

Marisol: can't wait!

LongBench datasets with n = 32768

HyperAttention: Long-context Attention in Near-Linear Time

Insu Han Rajesh Jayaram Amin Karbasi
Yale University Google Research Yale University, Google Research
insu.han@yale.edu rkjayaram@google.com amin.karbasi@yale.edu
Vahab Mirrokni David P. Woodruff Amir Zandieh
Google Research CMU, Google Research Independent Researcher
mirrokni@google.com dwoodruf@cs.cmu.edu amir.zed512@gmail.com
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PolySketchFormer

Praneeth Kacham, Vahab Mirrokni, Peilin Zhong (Google Research)



Generalizations of Softmax Attention

e Let sim(q, k) = 0 be an arbitrary function that measures similarity between the
query g and key k

® Attention mechanism w.r.t sim is

51'177(qj, kl)

3 (%
isti'stIm(CIj» ki)

Oj=

e Softmax: sim(q, k) = exp({q, k))



Kernel View of Attention

® Suppose @ is such that s1m(q, k) = (@ (q), p(k))
fQ"' = @(Q) and K' = @(K), outputis

D™t LT(Q"- (K" -V

Here LT is the lower triangular part for the causal setting

® Why write this way?

e Linear time algorithm for computing LT(A - BT) - C
® Runtime depends on output dimension of ¢ ()

® What about ¢ for softmax?

® No finite dimensional feature maps



Previous Work

® Performer (Choromanski et al.,) uses a finite-dimensional map @ to approximate exponential
® Vectors with larger norms require ¢ with larger dimension

® Other works consider arbitrary @ instead of first defining sim(-,*)
® p(x) = elu(x) + 1 (Katharopoulos et al. '20), @ (x) = relu(x)
® Model quality is worse compared to softmax

® |s softmax necessary? Do other functions with similar properties work?
e Consider sim(q, k) = (q, k)P where p = 2 is an even integer
e Always = 0

® Increases as (g, k) goes up



Feature map for Polynomials

* A finite dimensional @ suchthat (@ (q), @ (k)) = (q, k)P?
° p:x > xOP
o Ifx € R", then x®P € R

QDY .. . L= X X e e X
‘(X p)(ll,lz ..... lp)_xll xlz xlp

(q®P, k¥P) = (q, k)"



Linear Attention using Polynomials

e Given Q, K,V € R

e Compute Q®P and KOP

° LY(Q@W : (K®p)T) -V in 0(nhp+1) time
® Typically, h = 64, 128, 256

® Too expensive even forp = 4

® Use sketching to approximate!



Sketching for Approximate Matrix Multiplication

® Want to compute

LY(Q@)p : (K®p)T) V4

o Q®p and K®P can have a large number of columns

e Can we compute matrices Q' and K’ such that Q®? - (K®P)T = Q' - (K")T?

® Ahle et al. '20 give a fast sketch called TensorSketch

e Can approximate using LT(Q’ - (K')") -V



Sketching for Approximate Matrix Multiplication

(K®P)T




Matrix Sketching

Never have to compute the matrices Q®?, K®P and just use Q' and K’

Can simply compute ZT{Q" - (K')") - V in linear time
Does this work?

® Model training fails to converge
Non-negativity

® Q' - (K')T can have negative entries, whereas entries of Q®P - (K®P)T are > 0

12



Solving Issue of Negative Entries

o ConsiderQ” — (QI)®2 and K” — (K/)®2
® Q', K' are sketches for degree p/2
e Allentries of Q"' - (K'')" are non-negative! They are of the form (q', k') = 0

® Show that if Q' and K' have an approximate matrix product property for degree p/2, then
Q"' and K"’ have a similar guarantee for degree p

e[| Q" - (KT — QP (K®P)T || is small
e Compute LT(Q" - (K'Y -V

® The model converges!

13



Other Optimizations

® TensorSketch is a random sketch — instead, treat the sketch as learnable parameters
® When computing L7(A - B") - C, use block multiplication and cumulative sums

® Compute diagonal blocks exactly as such blocks are sensitive to approximation



Model Perplexities

Perplexities on Wiki-40B
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Context Length

® Softmax

® Polynomial (p=2)
Polynomial (p=4)

® Polynomial (p=8)

® Polysketch (random)

® Polysketch (random + local)

© Polysketch (learned)

© Polysketch (learned + local)

® Performer
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Training Latencies

Train steps/sec of different mechanisms

5

® Softmax

® FlashAttention
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® Polysketch (learned)
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® Polysketch (learned + local)

©® Performer (2k features, fast LT)
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Context Length
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Conclusions and Future Work

In practice,
® FlashAttention is an optimized implementation of softmax attention and used heavily

® HyperAttention on pretrained models may reduce quality too much. Fine-tuning increases quality but depends
on the hash bucket sizes — still being tested!

® Expect PolySketchFormer to do worse than softmax on very long contexts, but still may be useful for shorter
contexts

[Kannan, Bhattacharyya, Kacham, W] use tools from randomized linear algebra to show for a class of sym functions,
there is a small subset of keys so that any heavy attention score involves a key from that subset. Still being tested!

Open questions
® (Can we achieve linear time for Hyperattention with weaker assumptions?
® (Can we design a non-negative tensorsketch for PolySketchFormer without squaring the embedding dimension?

® Are there other natural assumptions that allow us to break the quadratic time worst case hardness?



