
David Chiang 
Joint work with Dana Angluin (Yale), Peter Cholak, Anand Pillay, and 
Andy Yang (Notre Dame)

Transformer Expressivity and 
Formal Logic



what formal 
languages can 

be described by 
transformers?

what formal 
languages can 

be described by 
transformers?

Neural networks and formal languages

optimizationexpressivity

NN theory

generalization

[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can 
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.

expressivity



Neural networks and formal languages

word/position vectors

position-wise

self-attention

position-wise

self-attention

sigmoid

P(accept)



Neural networks and formal languages

• Syntax: Testing whether a formula is well-formed (≈ 1-Dyck) is 
recognizable by a transformer


• Semantics: Testing whether a formula is true (= Boolean formula 
value problem or BFVP) is not recognizable by a transformer 
(assuming O(poly(n)) bits of precision and TC⁰ ≠ NC¹)

(𝟶 ∧ ¬𝟷) ∨ (¬𝟶 ∧ 𝟷)



Neural networks and formal languages

• Weekly online seminar


• Organized by Lena Strobl (Umea) and Andy Yang (Notre Dame)


https://flann.super.site
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Neural networks and formal languages

• Transformers and logic (finite model theory, descriptive 
complexity theory)


• Many connections with circuit complexity but don’t have to 
worry about uniformity


• Fine control over computational resources (available 
predicates, quantifiers, number of variables, etc.)



Overview

• First-order logic


• Masked unique-hard attention transformers = first-order logic


• Many related results, e.g., adding layers always adds expressivity


• Counting logics


• Lower bounds: a temporal logic with counting ≤ transformers


• Upper bounds: transformers ≤ a first-order logic with counting



First-order logic



[2] Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly the 
star-free languages. To appear, NeurIPS 2024.
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Masked unique hard attention transformers (MUHATs)

• Unique hard attention


• All attention is on the highest-
scoring position


• In case of a tie, choose rightmost


• Strict future masking


• Each position can only attend to a 
previous (not same) position


• First position attends nowhereword/position vectors
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First-order logic (FO[<])
for strings

000000: true



“every position has a 0”
∀x . Q𝟶(x) 010101: false

000000: true



“every 0 comes before every 1”
∀x . ∀y . (Q𝟶(x) ∧ Q𝟷(y)) → x < y 010101: false

000111: false

000111: true



Linear temporal logic (LTL)

000000: true



“it has always been 0”
G−1 Q𝟶 010101: false

000000: true

“it was 1 since it had always been 0, 

and it is now 1”

(Q𝟷 S (G−1 Q𝟶)) ∧ Q𝟷
010101: false

000111: false

000111: true



•  (“  since ”) is strict:  doesn’t have to be true 
currently


• Similarly,  (“  until ”)


•  (“always has been ”) can be defined in terms of 

ϕ S ψ ϕ ψ ϕ

ϕ U ψ ϕ ψ

G−1 ϕ ϕ S

Linear temporal logic (LTL)



Star-free languages

FO[<] LTL
counter-

free 
automata

star-free 
regular 

expressions
Kamp, 1968

Schützenberger, 
1965

McNaughton and 
Papert, 1971
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LTL to MUHATs

¬ϕ ϕ ∧ ψ ϕ S ψ

ϕ

1 − ϕ

ϕ ψ

max(0, ϕ + ψ − 1)

identity identity

ϕ ψ

find ¬ϕ ∨ ψ

ψ

connectives become FFNs temporal operators use 
self-attention



Main result
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a little easier



MUHATs to FO[<]

• Inputs are word 
embeddings


• Each position 
depends on at most 
two other positions


• There is a finite set 
of possible 
activation vectors

activation vectors

activation vectors

residual 
connectionattention



Other results
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also 
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invariant 
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since 
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(Gabbay & al. 1980)

(Etessami & Wilke 2000)

(Peled & Wilke 1997)

(Barrington & al. 1992)
(Barrington & al. 2005)



Counting



First-order logic with counting

000000: false



“there are more 1s than 0s”
#x[Q𝟷(x)] > #x[Q𝟶(x)] 010100: false



“there are twice as many 0s as 1s”
#x[Q𝟶(x)] = #x[Q𝟷(x)] + #x[Q𝟷(x)]

101101: true

000000: false
010100: true
101101: false



Temporal logic with counting



“there are more 1s than 0s”

#Q𝟷 > #Q𝟶



“there are twice as 

many 0s as 1s”

#Q𝟶 = #Q𝟷 + #Q𝟷

000000: false
010100: false
101101: true

000000: false
010100: true
101101: false

[3] Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted by 
transformer encoders with hard attention. ICLR 2023.



Temporal logic with counting

←
# [←

# Q( <
←
# Q)] = 0 ∧

←
# Q( =

←
# Q)

The number of left 
and right 

parentheses is equal

At no time have more left 
parentheses than right 
parentheses been seen

1-DYCK: Matched and balanced parentheses

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.
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Lower bounds
One-variable normal form for FO#[+] 

• FO#[+] only has unary (monadic) predicates ( ; could add others)


• Adapt normal form for monadic first-order logic that has only one variable











Qa(x)

#x[#y[P(x) ∧ Q(y)]]

= #x[P(x) ∧ #y[Q(y)]]

= #x[P(x)] ∧ #y[Q(y)]

= #x[P(x)] ∧ #x[Q(x)]



Lower bounds
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Lower bounds
The tricky part

• Attention doesn’t count; it 
averages


• Often need to multiply by n 
(total length) or i (current 
position)


• Fancy position embeddings


• Layer normalization tricks
activation vectors

activation vectors

←
# ϕ
3

←
# ϕ
2

←
# ϕ
1



Upper bounds

FO#[+]
#x[ϕ(x)]

O(log n)-
precision 

transformers

O(1)-
precision 

transformers

[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023. 

[6] Merrill and Sabharwal. A logic for expressing log-precision transformers. ICLR 2023.

[7] Chiang. Transformers in DLOGTIME-uniform TC⁰. arXiv:2409.13629, 2024.

FO#[+,×]

#x[ϕ(x)] = y

[5]

[6]

∌ PARITY

O(poly(n))-
precision 

transformers
[7]

*Assuming TC⁰ ≠ NC¹.

∌ BFVP*

= DLOGTIME-uniform TC⁰

#x[ϕ(x)]



Upper bounds
A restricted version of FO#[+,×]?

• FO#[+,×] is very expressive


• a.k.a. FOM, FOM[BIT], DLOGTIME-uniform TC⁰


• see esp. Hesse et al., 2002


• Some possible restrictions:


• Two variables


• Separate sorts for counts and positions 


• Some restriction on multiplication



Wrap-Up



Conclusions

• Logic is a great tool for 
studying transformer 
expressivity


• We’ve worked out a full-orbed 
correspondence between 
unique hard attention 
transformers and FO[<]/LTL


• We’re just getting started with 
softmax attention transformers 
and counting logics

∧ ∨ ¬

#
←
#

→
#

S U
∀ ∃


