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[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.
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Neural networks and formal languages
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e Syntax: Testing whether a formula is well-formed (= 1-Dyck) is
recognizable by a transformer

 Semantics: Testing whether a formula is true (= Boolean formula
value problem or BFVP) is not recognizable by a transformer
(assuming O(poly(n)) bits of precision and TC° # NC?)



Neural networks and formal languages

* Weekly online seminar

* Organized by Lena Strobl (Umea) and Andy Yang (Notre Dame)

https://flann.super.site
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[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.



Neural networks and formal languages

* Transformers and logic (finite model theory, descriptive
complexity theory)

 Many connections with circuit complexity but don’t have to
worry about uniformity

* Fine control over computational resources (available
predicates, quantifiers, number of variables, etc.)



Overview

* First-order logic
 Masked unique-hard attention transformers = first-order logic
 Many related results, e.g., adding layers always adds expressivity
* Counting logics
* Lower bounds: a temporal logic with counting < transformers

 Upper bounds: transformers < a first-order logic with counting



First-order logic



masked unigue hard attention transformers
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[2] Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly the
star-free languages. To appear, NeurlPS 2024.



Masked unique hard attention transformers (MUHATS)
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First-order logic (FO[<])

for strings

Vx.Qpx)

“every position has a 0”

Vx.Vy. (Qox) AQ(y) = x <Yy
“every @ comes before every 1”
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Linear temporal logic (LTL)

G ! Q,

“Iit has always been 0”

(01 S (G™" Q) A ©;
“it was 1 since it had always been 0,
and it is now 1”
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000000: true

010101: false
P00111: true



Linear temporal logic (LTL)

« b S v (“¢h since y”) is strict: ¢ doesn’t have to be true
currently

« Similarly, @ U w (“¢ until y”)

. G| @ (“always has been ¢”) can be defined in terms of S



Star-free languages
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MUHATSs to FO|<]

* Inputs are word

 residual * Each position
attention . connection  depends on at most

two other positions
* There is a finite set

of possible
activation vectors




(Barrington & al. 2005)
(Barrington & al. 1992)

Other results

FO[MOD] =

regular
languages

finite image in ACO

(Gabbay & al. 1980) PESs
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. masking
since depth 2
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(Etessami & Wilke 2000)



Counting



First-order logic with counting

PO00O0O0: false

Hx[Q (x)] > #x[Qp(x)] 010100: false
“th 1s th )
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P00000: false

#x[Qo(0)] = #x[Q1 ()] + #X[Q1 )] 515100: true
“there are twice as many 0s as 1s” |
101101: false



Temporal logic with counting

PO00O0O0: false

. anlw >r #;Qoth e 010100: false
ere are more 1s than s 101101: true

#0, = #0, + #0, 000000: false
“there are twice as 010100: true
many s as 1s’ 101101: false

[3] Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted by
transformer encoders with hard attention. ICLR 2023.



Temporal logic with counting

1-DYCK: Matched and balanced parentheses

— [« — — —
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At no time have more left The number of left
parentheses than right and right
parentheses been seen parentheses is equal

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.
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4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.
5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.
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Lower bounds

One-variable normal form for FO#[+]

 FO#[+] only has unary (monadic) predicates ((J (x); could add others)

» Adapt normal form for monadic first-order logic that has only one variable
#x[#y[P(x) A Q(¥)]]
= #x[P(x) A #y[Q(y)]]

= #x[P(x)] A #y[Q(y)]
= #x|P(x)] A #x[Q(x)]
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4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.
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Lower bounds

The tricky part
¢ ¢ ¢« Attention doesn’t count: it
1 2 3 averages

(total length) or i/ (current
WT position)

e Layer normalization tricks
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Upper bounds
M  opolym)-

precision  [/]
transformers

O(log n)-
i i i orecision (6]
transformers

;}% O(1)- [5]
precision

transformers

] Chiang. Transformers in DLOGTIME-uniform TC°. arXiv:2409.13629, 2024.

% BFVP*
= DLOGTIME-uniform TC°

3 PARITY

Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.
Merrill and Sabharwal. A logic for expressing log-precision transformers. ICLR 2023.

*Assuming TC® = NC.



Upper bounds

A restricted version of FO#[+,x]?

o FO#[+,x] is very expressive
 a.k.a. FOM, FOM[BIT], DLOGTIME-uniform TC®
* see esp. Hesse et al., 2002
 Some possible restrictions:
* [wo variables
o Separate sorts for counts and positions

 Some restriction on multiplication
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