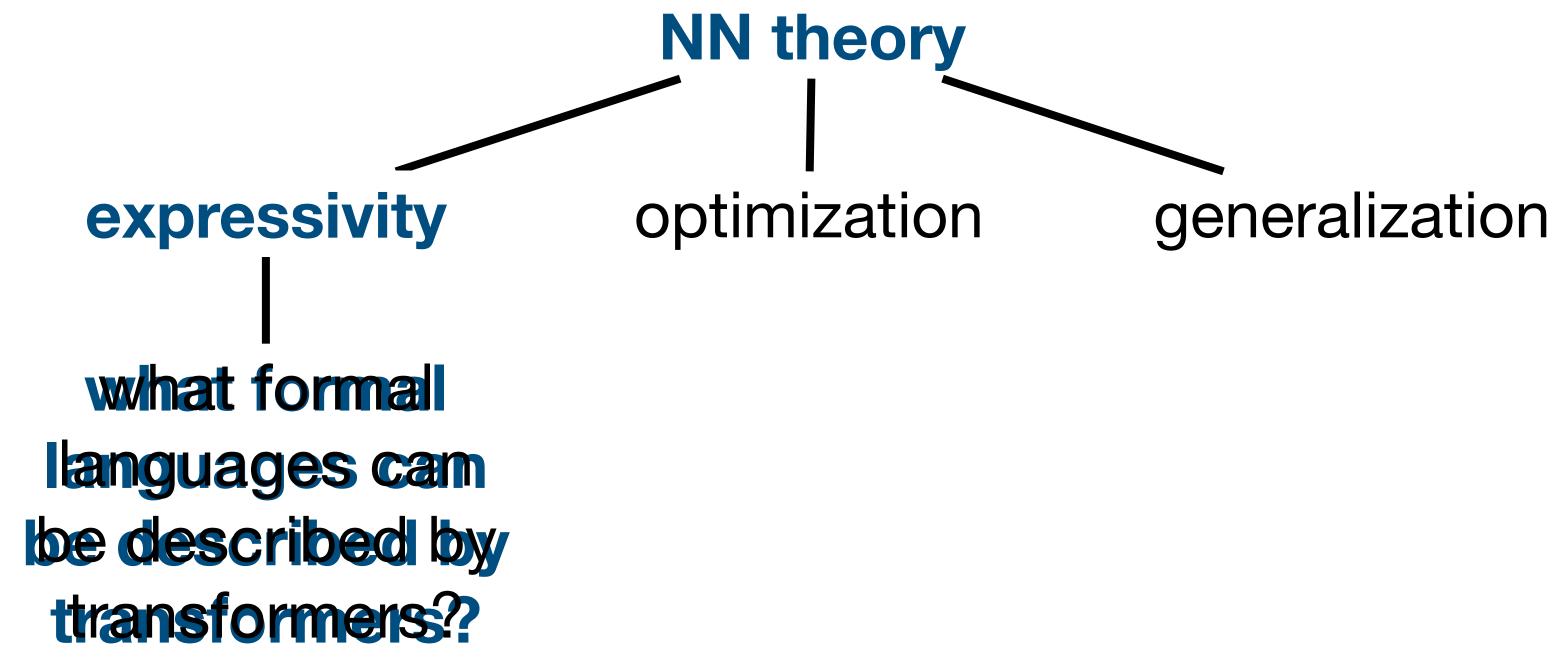
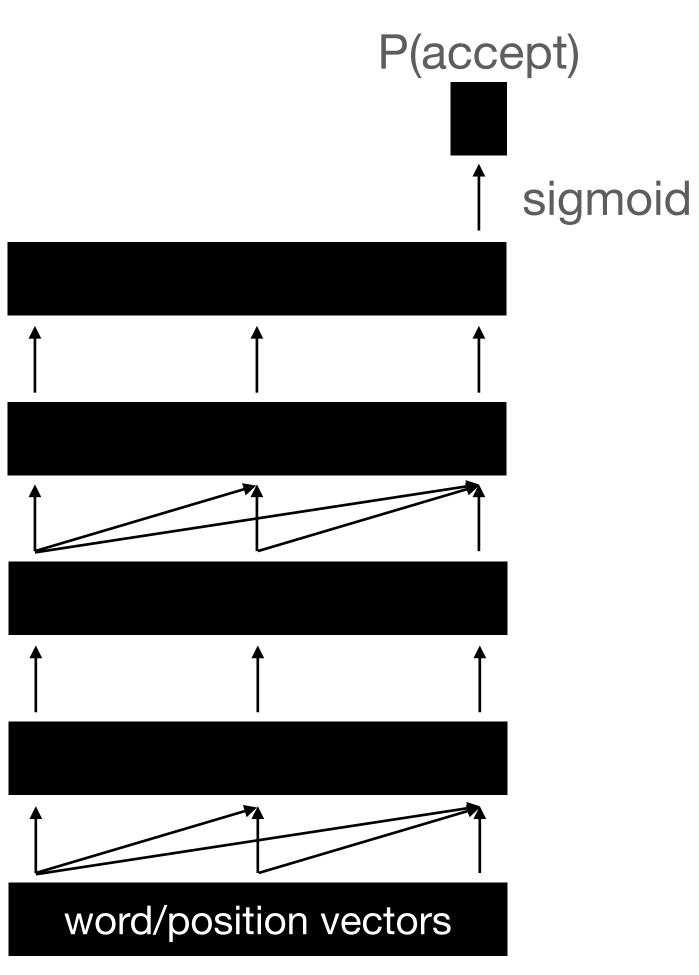
Transformer Expressivity and Formal Logic

David Chiang Joint work with Dana Angluin (Yale), Peter Cholak, Anand Pillay, and Andy Yang (Notre Dame)

Neural networks and formal languages NN theory



[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can transformers express? A survey. *Transactions of the Association for Computational Linguistics*, 2024.



self-attention

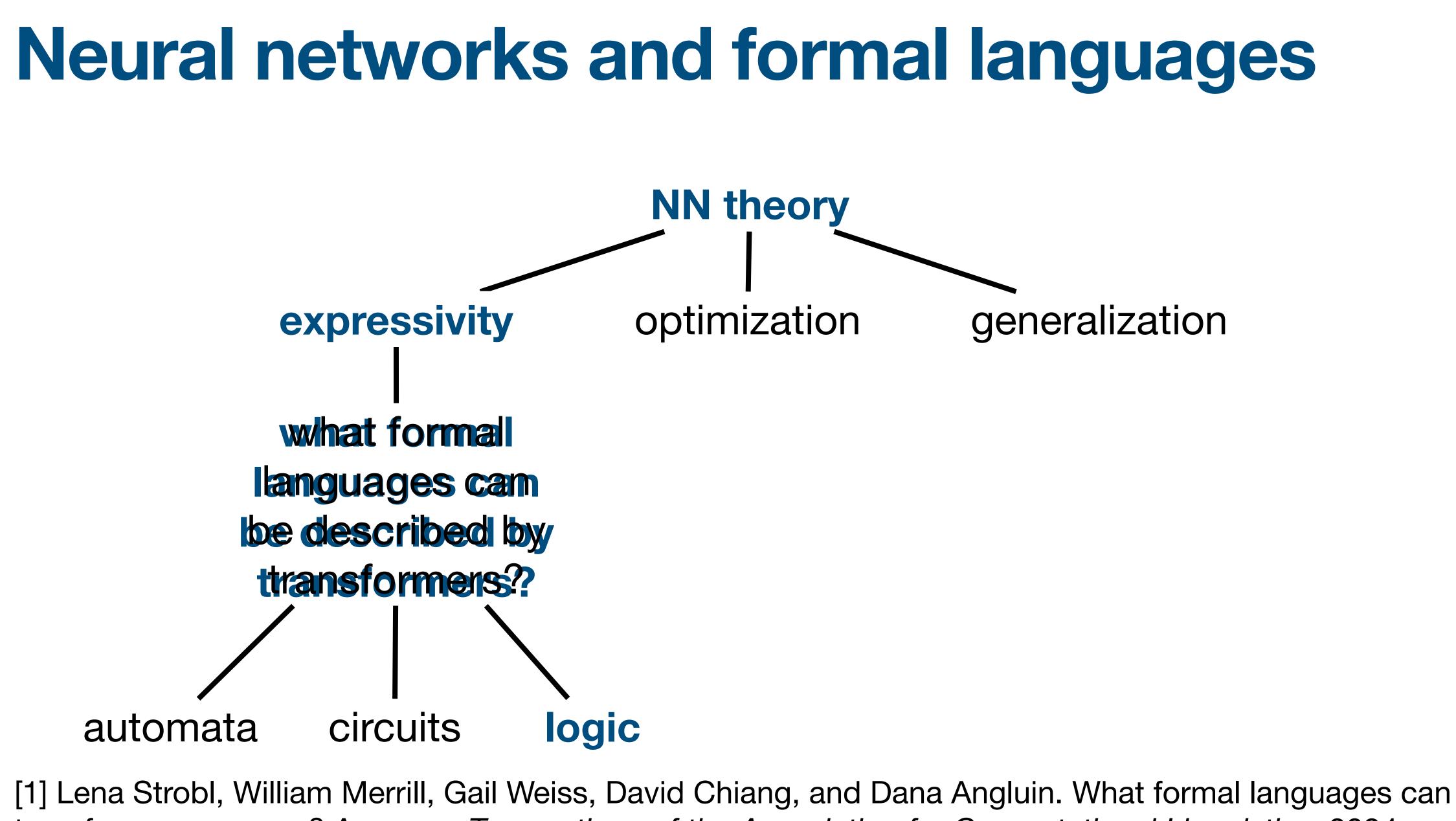
$(0 \land \neg 1) \lor (\neg 0 \land 1)$

- Syntax: Testing whether a formula is well-formed (≈ 1-Dyck) is recognizable by a transformer
- Semantics: Testing whether a formula is true (= Boolean formula value problem or BFVP) is *not* recognizable by a transformer (assuming O(poly(*n*)) bits of precision and TC⁰ ≠ NC¹)

- Weekly online seminar

https://flann.super.site

Organized by Lena Strobl (Umea) and Andy Yang (Notre Dame)



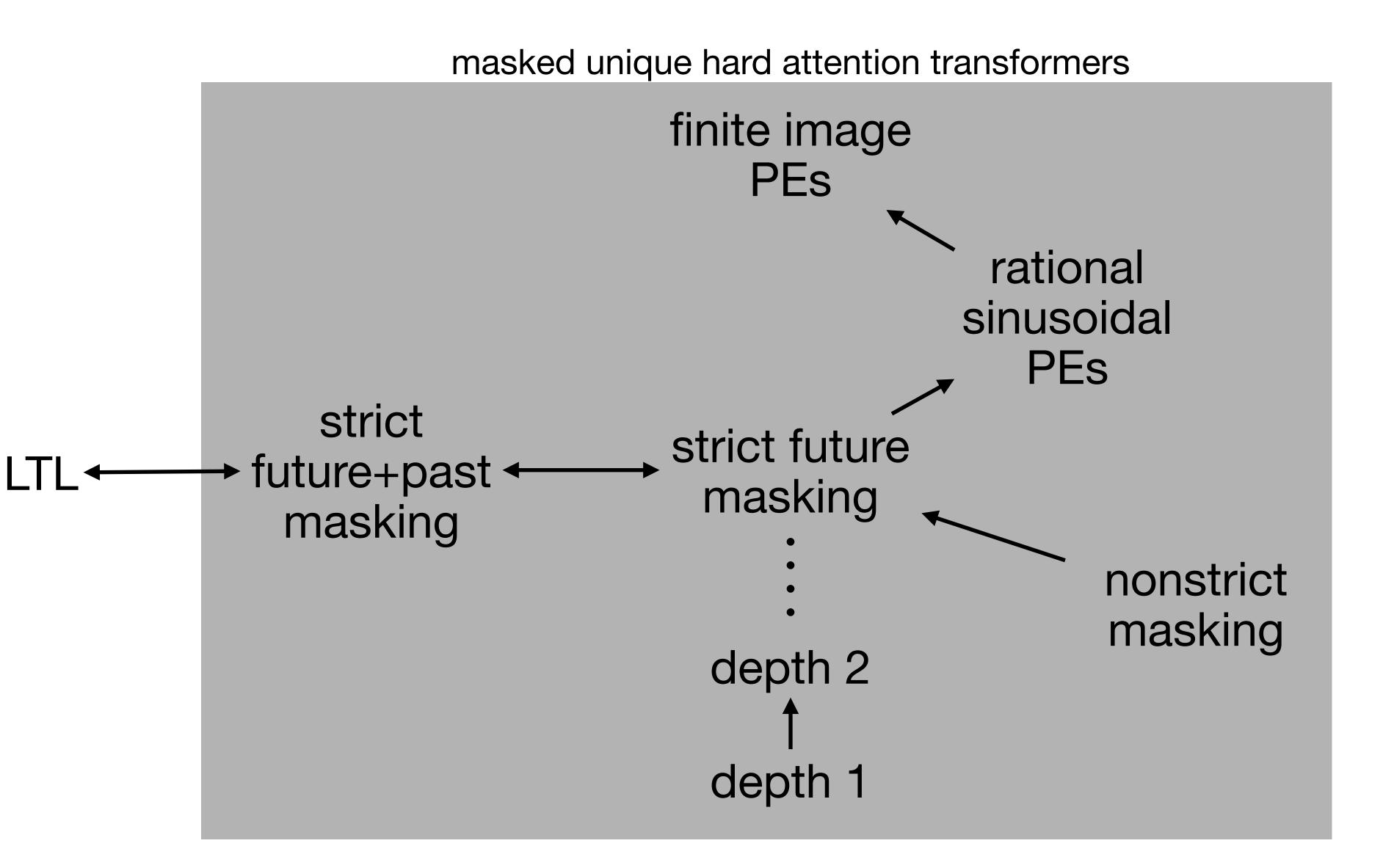
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.

- Transformers and logic (finite model theory, descriptive) complexity theory)
 - worry about uniformity
 - Fine control over computational resources (available) predicates, quantifiers, number of variables, etc.)

Many connections with circuit complexity but don't have to

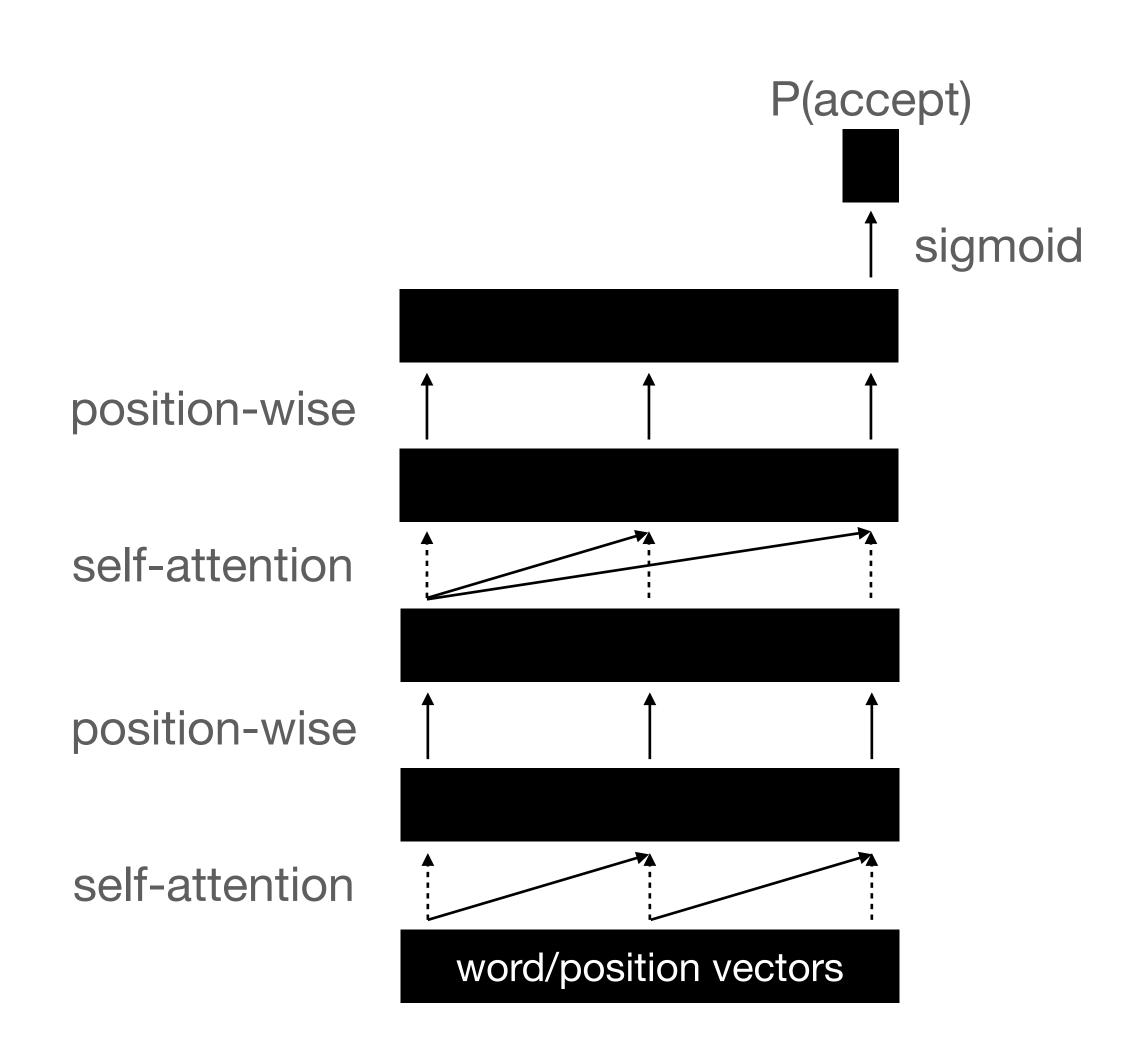
- First-order logic
 - Masked unique-hard attention transformers = first-order logic Many related results, e.g., adding layers always adds expressivity
- Counting logics
 - Lower bounds: a temporal logic with counting \leq transformers
 - Upper bounds: transformers \leq a first-order logic with counting

First-order logic



[2] Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly the star-free languages. To appear, NeurIPS 2024.

Masked unique hard attention transformers (MUHATs)

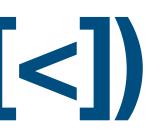


- Unique hard attention
 - All attention is on the highestscoring position
 - In case of a tie, choose rightmost
- Strict future masking
 - Each position can only attend to a previous (not same) position
 - First position attends nowhere

First-order logic (FO[<]) for strings

$\forall x \cdot Q_0(x)$ "every position has a 0"

$\forall x . \forall y . (Q_0(x) \land Q_1(y)) \rightarrow x < y$ "every 0 comes before every 1"



0000000: true 010101: false 0001111: false

0000000: true 010101: false 0001111: true

Linear temporal logic (LTL)

$G^{-1}Q_{0}$ "it has always been 0"

$(Q_1 \mathbf{S} (\mathbf{G}^{-1} Q_0)) \wedge Q_1$ "it was 1 since it had always been 0, and it is now 1"

0000000: true 010101: false 0001111: false

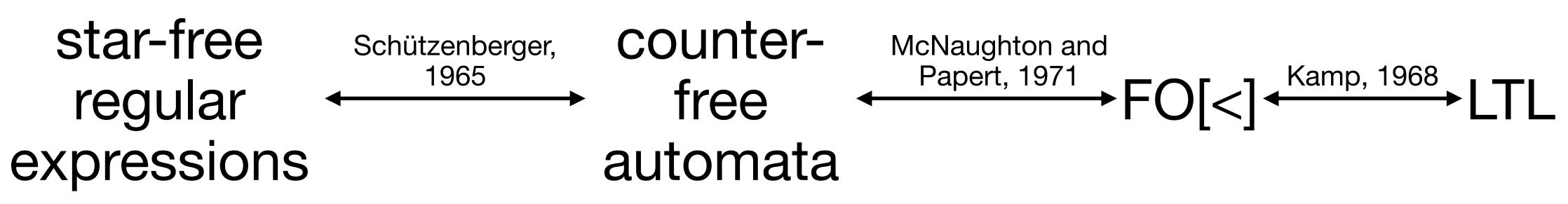
0000000: true 010101: false 0001111: true

Linear temporal logic (LTL)

- ϕ **S** ψ (" ϕ since ψ ") is strict: ϕ doesn't have to be true currently
- Similarly, $\phi U \psi$ (" ϕ until ψ ")
- ${f G}^{-1}\,\phi$ ("always has been ϕ ") can be defined in terms of ${f S}$

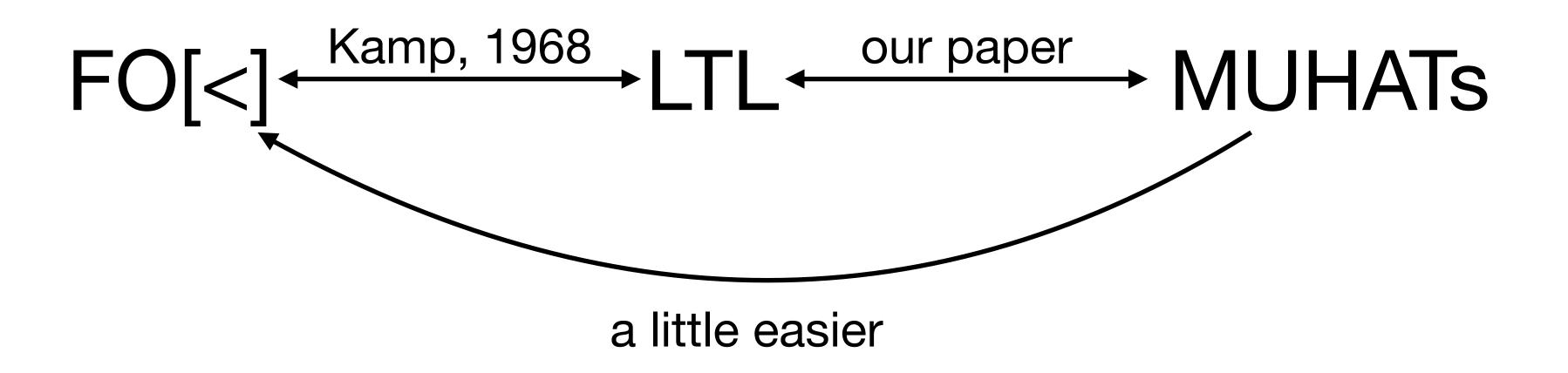
Star-free languages

(aa)*, PARITY, MAJORITY

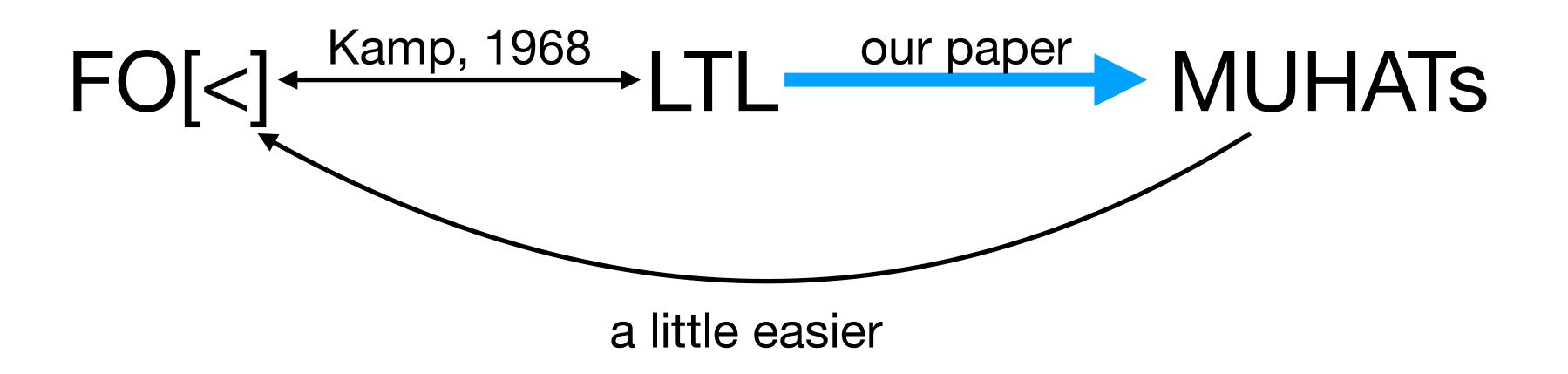


- Ψ
- (ab)*

Main result

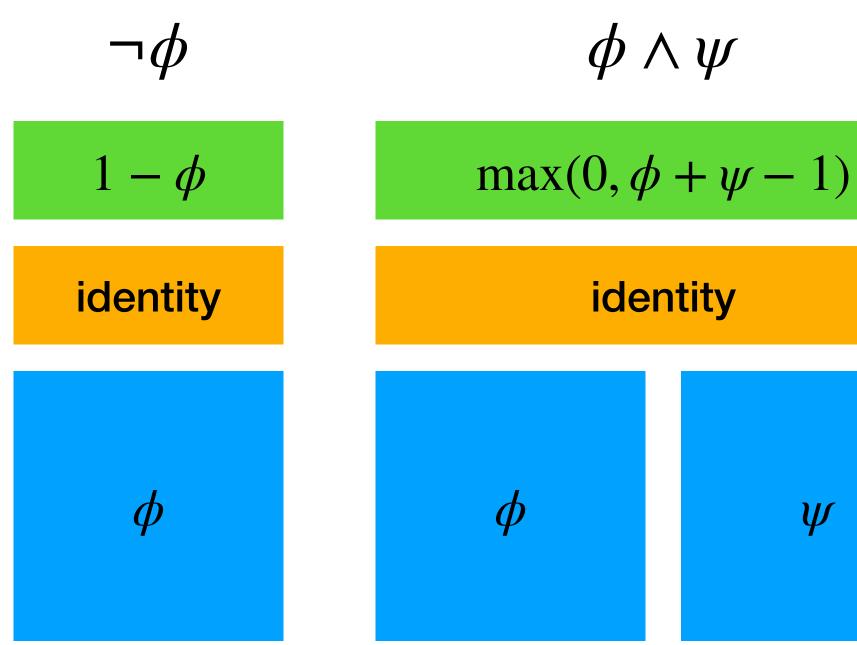


Main result



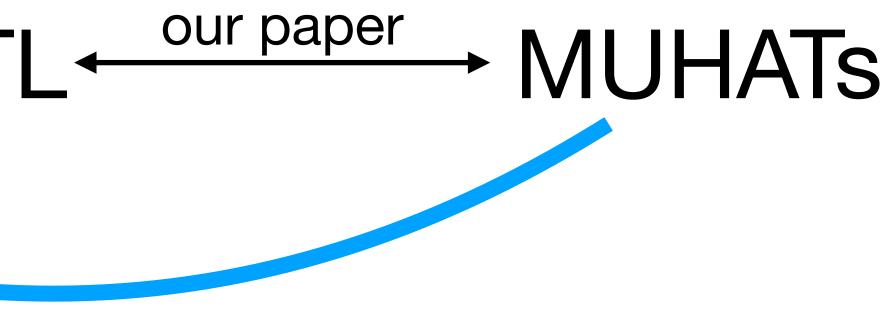
LTL to MUHATS

temporal operators use connectives become FFNs self-attention $\phi \mathbf{S} \boldsymbol{\psi}$ $\phi \wedge \psi$ $\max(0, \phi + \psi - 1)$ Ψ find $\neg \phi \lor \psi$ identity ϕ ϕ ϕ Ψ Ψ



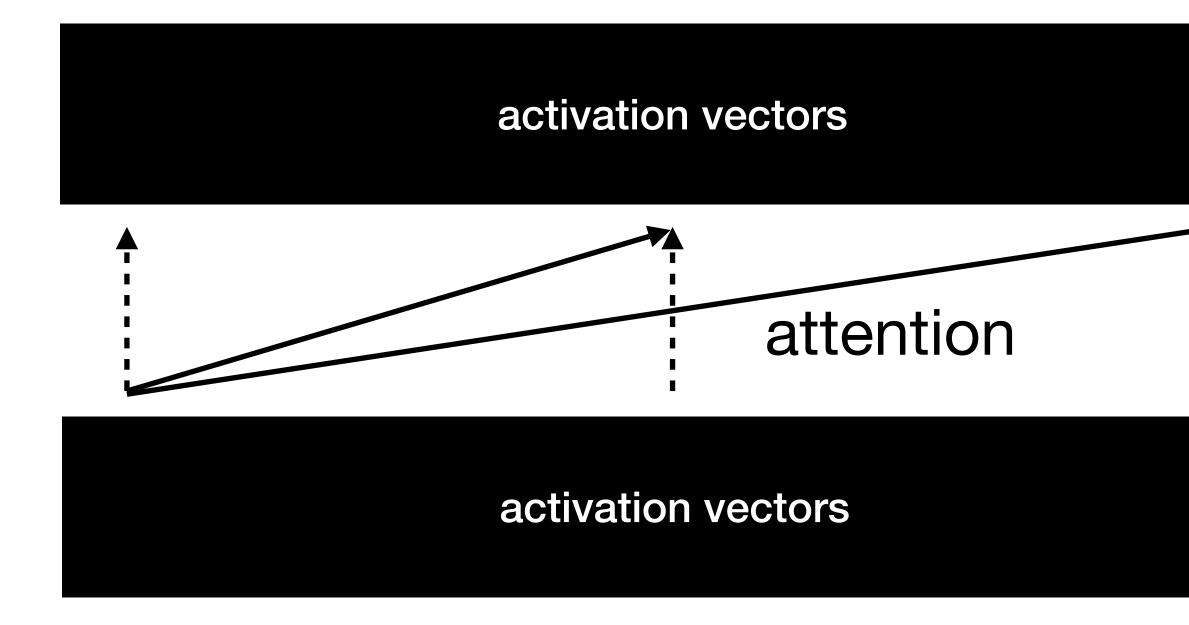
Main result

FO[<] Kamp, 1968 LT



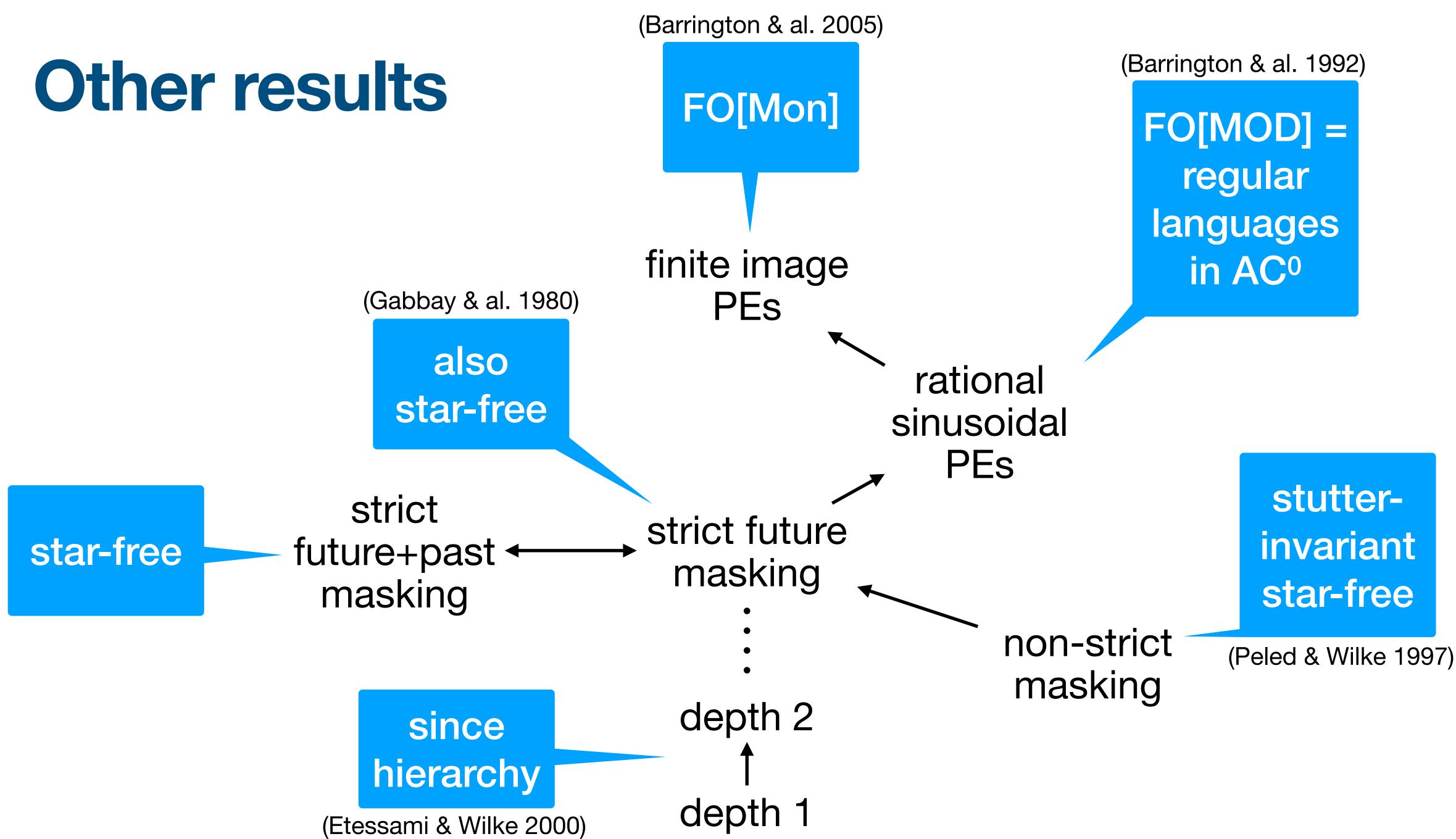
a little easier

MUHATs to FO[<]



residual connection

- Inputs are word embeddings
- Each position depends on at most two other positions
- There is a *finite* set of possible activation vectors



First-order logic with counting

$\#x[Q_1(x)] > \#x[Q_0(x)]$ "there are more 1s than 0s"

$\#x[Q_0(x)] = \#x[Q_1(x)] + \#x[Q_1(x)]$ "there are twice as many 0s as 1s"

0000000: false 010100: false 101101: true

000000: false

010100: true

101101: false

Temporal logic with counting

$#Q_1 > #Q_0$ "there are more 1s than 0s"

$#Q_0 = #Q_1 + #Q_1$ "there are twice as many 0s as 1s"

[3] Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted by transformer encoders with hard attention. ICLR 2023.

000000: false 010100: false 101101: true 0000000: false 010100: true 101101: false

Temporal logic with counting

1-DYCK: Matched and balanced parentheses

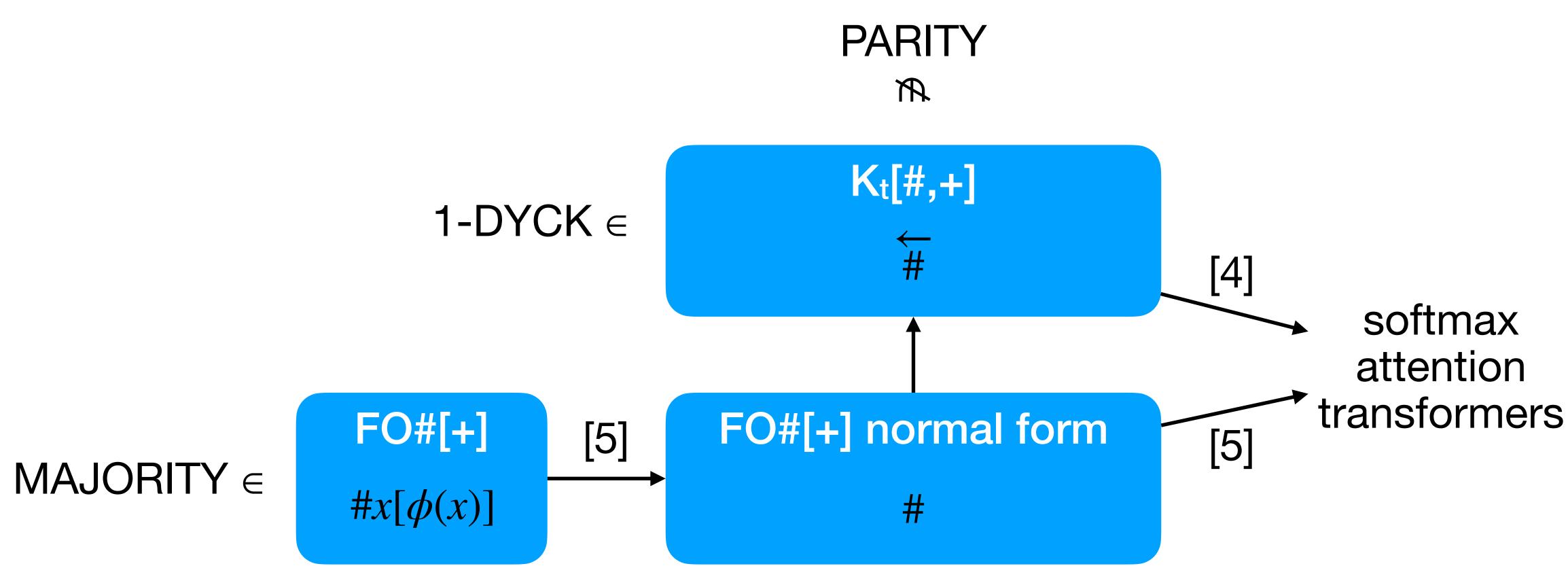
 $\overleftarrow{\#} \overleftarrow{\#} Q_{(} < \overleftarrow{\#} Q_{)}$

At no time have more le parentheses than righ parentheses been see

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.

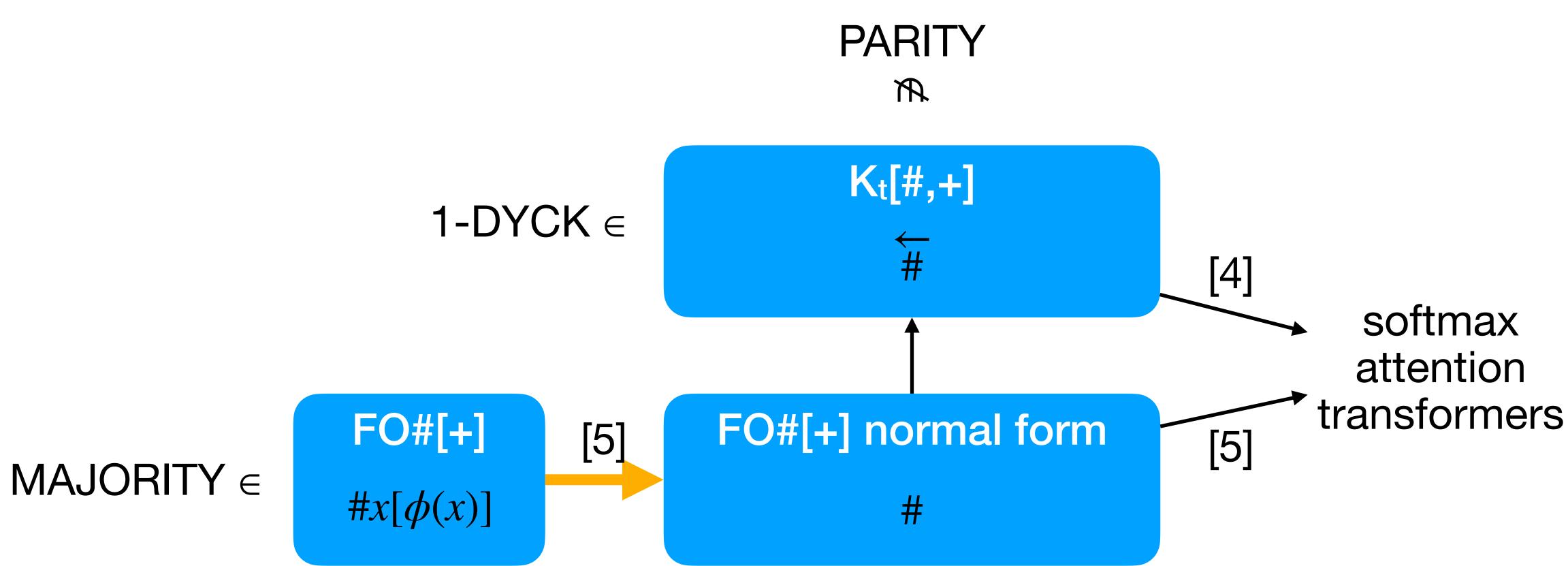
$$= 0 \wedge \overleftarrow{\#} Q_{(} = \overleftarrow{\#} Q_{)}$$
eft The number of left and right parentheses is equal

Lower bounds



[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

Lower bounds

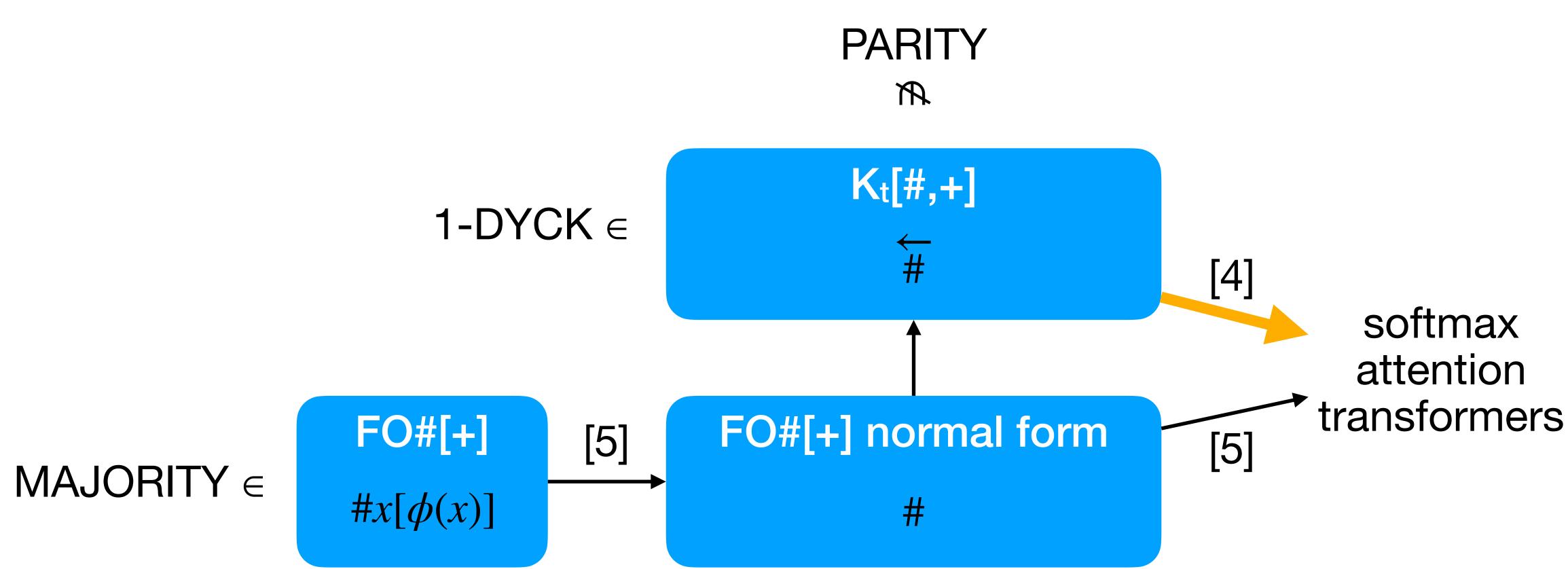


[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

Lower bounds **One-variable normal form for FO#[+]**

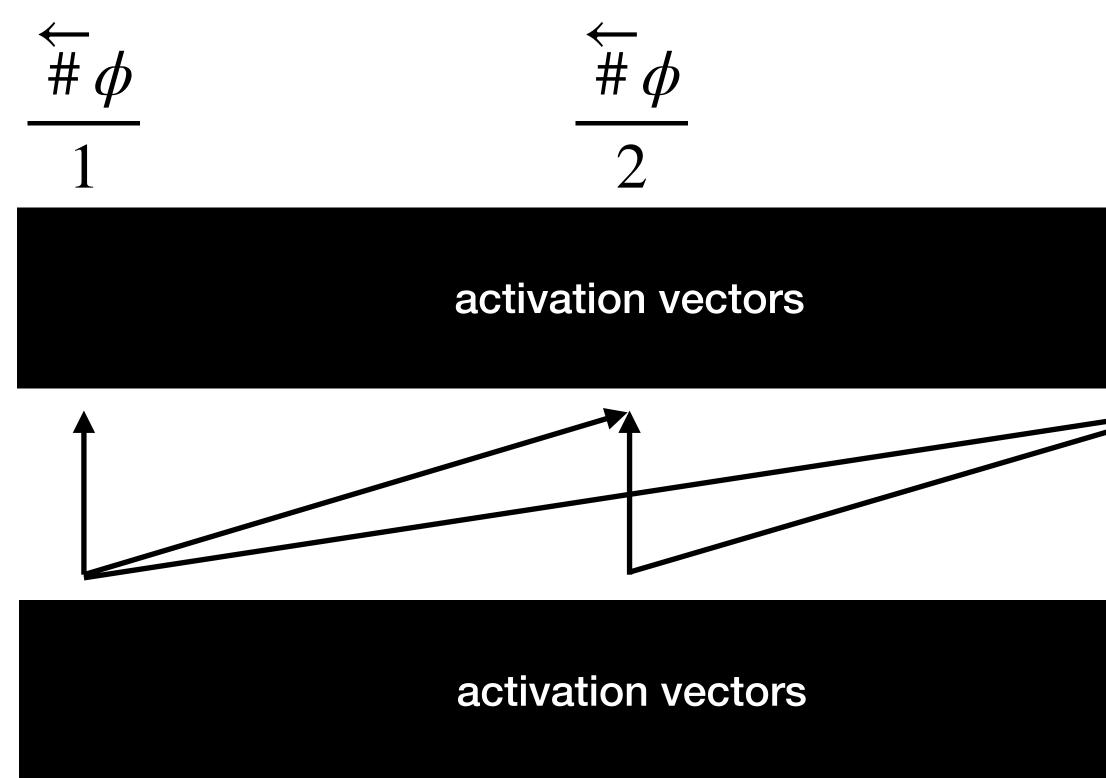
- FO#[+] only has unary (monadic) predicates ($Q_a(x)$; could add others) Adapt normal form for monadic first-order logic that has only one variable $#x[#y[P(x) \land Q(y)]]$ $= #x[P(x) \land #y[Q(y)]]$ $= #x[P(x)] \wedge #y[Q(y)]$ $= #x[P(x)] \wedge #x[Q(x)]$

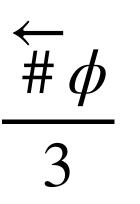
Lower bounds

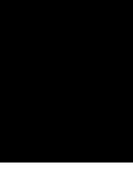


[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

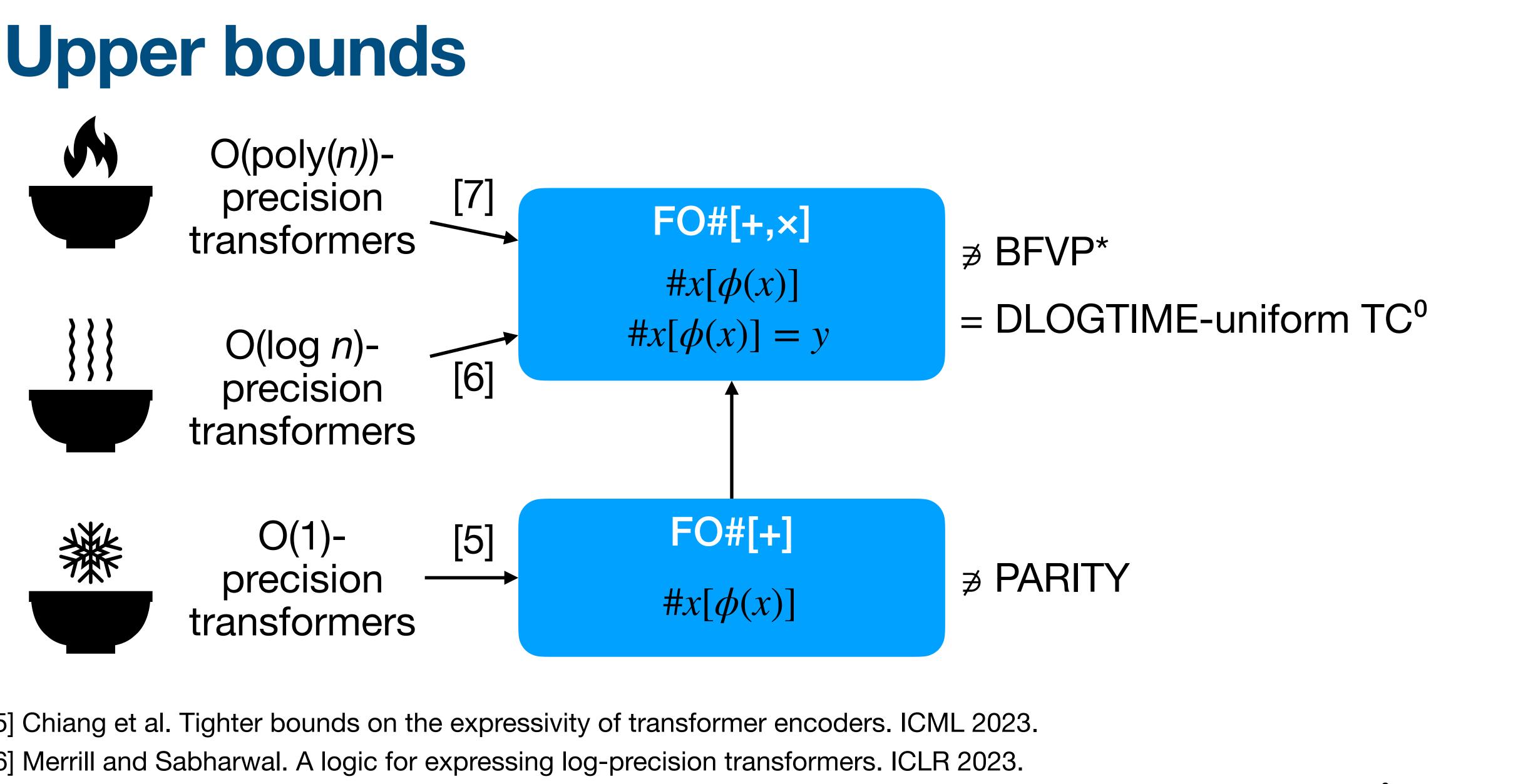
Lower bounds The tricky part







- Attention doesn't count; it averages
- Often need to multiply by n (total length) or i (current position)
- Fancy position embeddings
- Layer normalization tricks



[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023. [6] Merrill and Sabharwal. A logic for expressing log-precision transformers. ICLR 2023. [7] Chiang. Transformers in DLOGTIME-uniform TC⁰. arXiv:2409.13629, 2024.

*Assuming TC⁰ \neq NC¹.

Upper bounds A restricted version of FO#[+,×]?

- FO#[+,×] is very expressive
 - a.k.a. FOM, FOM[BIT], DLOGTIME-uniform TC⁰
 - see esp. Hesse et al., 2002
- Some possible restrictions:
 - Two variables
 - Separate sorts for counts and positions
 - Some restriction on multiplication

Wrap-Up

Conclusions

- Logic is a great tool for studying transformer $\# \overleftarrow{\#} \overrightarrow{\#}$ expressivity
- We've worked out a full-orbed correspondence between *unique hard* attention transformers and FO[<]/LTL
- We're just getting started with softmax attention transformers and counting logics

 $\land \lor \neg$

