
David Chiang
Joint work with Dana Angluin (Yale), Peter Cholak, Anand Pillay, and
Andy Yang (Notre Dame)

Transformer Expressivity and
Formal Logic

what formal
languages can

be described by
transformers?

what formal
languages can

be described by
transformers?

Neural networks and formal languages

optimizationexpressivity

NN theory

generalization

[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.

expressivity

Neural networks and formal languages

word/position vectors

position-wise

self-attention

position-wise

self-attention

sigmoid

P(accept)

Neural networks and formal languages

• Syntax: Testing whether a formula is well-formed (≈ 1-Dyck) is
recognizable by a transformer

• Semantics: Testing whether a formula is true (= Boolean formula
value problem or BFVP) is not recognizable by a transformer
(assuming O(poly(n)) bits of precision and TC⁰ ≠ NC¹)

(𝟶 ∧ ¬𝟷) ∨ (¬𝟶 ∧ 𝟷)

Neural networks and formal languages

• Weekly online seminar

• Organized by Lena Strobl (Umea) and Andy Yang (Notre Dame)

https://flann.super.site

what formal
languages can

be described by
transformers?

what formal
languages can

be described by
transformers?

Neural networks and formal languages

optimizationexpressivity

NN theory

generalization

[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.

expressivity

circuitsautomata logic

Neural networks and formal languages

• Transformers and logic (finite model theory, descriptive
complexity theory)

• Many connections with circuit complexity but don’t have to
worry about uniformity

• Fine control over computational resources (available
predicates, quantifiers, number of variables, etc.)

Overview

• First-order logic

• Masked unique-hard attention transformers = first-order logic

• Many related results, e.g., adding layers always adds expressivity

• Counting logics

• Lower bounds: a temporal logic with counting ≤ transformers

• Upper bounds: transformers ≤ a first-order logic with counting

First-order logic

[2] Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly the
star-free languages. To appear, NeurIPS 2024.

LTL
strict

future+past
masking

strict future
masking

nonstrict
masking

depth 1

depth 2

rational
sinusoidal

PEs

finite image
PEs

masked unique hard attention transformers

Masked unique hard attention transformers (MUHATs)

• Unique hard attention

• All attention is on the highest-
scoring position

• In case of a tie, choose rightmost

• Strict future masking

• Each position can only attend to a
previous (not same) position

• First position attends nowhereword/position vectors

position-wise

self-attention

position-wise

self-attention

sigmoid

P(accept)

First-order logic (FO[<])
for strings

000000: true

“every position has a 0”
∀x . Q𝟶(x) 010101: false

000000: true

“every 0 comes before every 1”
∀x . ∀y . (Q𝟶(x) ∧ Q𝟷(y)) → x < y 010101: false

000111: false

000111: true

Linear temporal logic (LTL)

000000: true

“it has always been 0”
G−1 Q𝟶 010101: false

000000: true

“it was 1 since it had always been 0,

and it is now 1”

(Q𝟷 S (G−1 Q𝟶)) ∧ Q𝟷
010101: false

000111: false

000111: true

• (“ since ”) is strict: doesn’t have to be true
currently

• Similarly, (“ until ”)

• (“always has been ”) can be defined in terms of

ϕ S ψ ϕ ψ ϕ

ϕ U ψ ϕ ψ

G−1 ϕ ϕ S

Linear temporal logic (LTL)

Star-free languages

FO[<] LTL
counter-

free
automata

star-free
regular

expressions
Kamp, 1968

Schützenberger,
1965

McNaughton and
Papert, 1971

(aa)*, PARITY, MAJORITY

∌
(ab)*

∈

Main result

FO[<] LTLKamp, 1968 MUHATsour paper

a little easier

Main result

FO[<] LTLKamp, 1968 MUHATsour paper

a little easier

LTL to MUHATs

¬ϕ ϕ ∧ ψ ϕ S ψ

ϕ

1 − ϕ

ϕ ψ

max(0, ϕ + ψ − 1)

identity identity

ϕ ψ

find ¬ϕ ∨ ψ

ψ

connectives become FFNs temporal operators use
self-attention

Main result

FO[<] LTLKamp, 1968 MUHATsour paper

a little easier

MUHATs to FO[<]

• Inputs are word
embeddings

• Each position
depends on at most
two other positions

• There is a finite set
of possible
activation vectors

activation vectors

activation vectors

residual
connectionattention

Other results

strict
future+past

masking
strict future

masking
non-strict
masking

depth 1

depth 2

rational
sinusoidal

PEs

finite image
PEs

star-free

also
star-free

stutter-
invariant
star-free

since
hierarchy

FO[MOD] =
regular

languages
in AC0

FO[Mon]

(Gabbay & al. 1980)

(Etessami & Wilke 2000)

(Peled & Wilke 1997)

(Barrington & al. 1992)
(Barrington & al. 2005)

Counting

First-order logic with counting

000000: false

“there are more 1s than 0s”
#x[Q𝟷(x)] > #x[Q𝟶(x)] 010100: false

“there are twice as many 0s as 1s”
#x[Q𝟶(x)] = #x[Q𝟷(x)] + #x[Q𝟷(x)]

101101: true

000000: false
010100: true
101101: false

Temporal logic with counting

“there are more 1s than 0s”

#Q𝟷 > #Q𝟶

“there are twice as

many 0s as 1s”

#Q𝟶 = #Q𝟷 + #Q𝟷

000000: false
010100: false
101101: true

000000: false
010100: true
101101: false

[3] Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted by
transformer encoders with hard attention. ICLR 2023.

Temporal logic with counting

←
[←

Q(<
←
Q)] = 0 ∧

←
Q(=

←
Q)

The number of left
and right

parentheses is equal

At no time have more left
parentheses than right
parentheses been seen

1-DYCK: Matched and balanced parentheses

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.

Lower bounds

Kt[#,+]
←
#

FO#[+] normal form

#

FO#[+]
#x[ϕ(x)]

softmax
attention

transformers[5] [5]

[4]

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.

[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

MAJORITY ∈

1-DYCK ∈

∌

PARITY

Lower bounds

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.

[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

Kt[#,+]
←
#

FO#[+] normal form

#

FO#[+]
#x[ϕ(x)]

softmax
attention

transformers[5] [5]

[4]

MAJORITY ∈

1-DYCK ∈

∌

PARITY

Lower bounds
One-variable normal form for FO#[+]

• FO#[+] only has unary (monadic) predicates (; could add others)

• Adapt normal form for monadic first-order logic that has only one variable

Qa(x)

#x[#y[P(x) ∧ Q(y)]]

= #x[P(x) ∧ #y[Q(y)]]

= #x[P(x)] ∧ #y[Q(y)]

= #x[P(x)] ∧ #x[Q(x)]

Lower bounds

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.

[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

Kt[#,+]
←
#

FO#[+] normal form

#

FO#[+]
#x[ϕ(x)]

softmax
attention

transformers[5] [5]

[4]

MAJORITY ∈

1-DYCK ∈

∌

PARITY

Lower bounds
The tricky part

• Attention doesn’t count; it
averages

• Often need to multiply by n
(total length) or i (current
position)

• Fancy position embeddings

• Layer normalization tricks
activation vectors

activation vectors

←
ϕ
3

←
ϕ
2

←
ϕ
1

Upper bounds

FO#[+]
#x[ϕ(x)]

O(log n)-
precision

transformers

O(1)-
precision

transformers

[5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

[6] Merrill and Sabharwal. A logic for expressing log-precision transformers. ICLR 2023.

[7] Chiang. Transformers in DLOGTIME-uniform TC⁰. arXiv:2409.13629, 2024.

FO#[+,×]

#x[ϕ(x)] = y

[5]

[6]

∌ PARITY

O(poly(n))-
precision

transformers
[7]

*Assuming TC⁰ ≠ NC¹.

∌ BFVP*

= DLOGTIME-uniform TC⁰

#x[ϕ(x)]

Upper bounds
A restricted version of FO#[+,×]?

• FO#[+,×] is very expressive

• a.k.a. FOM, FOM[BIT], DLOGTIME-uniform TC⁰

• see esp. Hesse et al., 2002

• Some possible restrictions:

• Two variables

• Separate sorts for counts and positions

• Some restriction on multiplication

Wrap-Up

Conclusions

• Logic is a great tool for
studying transformer
expressivity

• We’ve worked out a full-orbed
correspondence between
unique hard attention
transformers and FO[<]/LTL

• We’re just getting started with
softmax attention transformers
and counting logics

∧ ∨ ¬

#
←
#

→
#

S U
∀ ∃

