Transformer Expressivity and
Formal Logic

David Chiang UNIVERSITY OF
Joint work with Dana Angluin (Yale), Peter Cholak, Anand Pillay, and ==
gluin (Yale) y NOTRE DAME

Andy Yang (Notre Dame) =

Neural networks and formal languages

NN theory
expressivity optimization generalization
wihat fornmnall
lEanguages cam
ive diescribed by
tiransformenss?

[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.

Neural networks and formal languages

P(accept)

T sigmoid

position-wise T T T

self-attention | _——F—"]

position-wise T T T
self-attention WT

word/position vectors

Neural networks and formal languages

(OAD)V(HO0OAL)

e Syntax: Testing whether a formula is well-formed (= 1-Dyck) is
recognizable by a transformer

 Semantics: Testing whether a formula is true (= Boolean formula
value problem or BFVP) is not recognizable by a transformer
(assuming O(poly(n)) bits of precision and TC° # NC?)

Neural networks and formal languages

* Weekly online seminar

* Organized by Lena Strobl (Umea) and Andy Yang (Notre Dame)

https://flann.super.site

Neural networks and formal languages

NN theory
expressivity optimization generalization
wihat formnall
lEanguages cam
ive diescribed by
tiransformenss’”?

/1N

automata circuits logic

[1] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages can
transformers express? A survey. Transactions of the Association for Computational Linguistics, 2024.

Neural networks and formal languages

* Transformers and logic (finite model theory, descriptive
complexity theory)

 Many connections with circuit complexity but don’t have to
worry about uniformity

* Fine control over computational resources (available
predicates, quantifiers, number of variables, etc.)

Overview

* First-order logic
 Masked unique-hard attention transformers = first-order logic
 Many related results, e.g., adding layers always adds expressivity
* Counting logics
* Lower bounds: a temporal logic with counting < transformers

 Upper bounds: transformers < a first-order logic with counting

First-order logic

masked unigue hard attention transformers

LTL

[2] Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly the
star-free languages. To appear, NeurlPS 2024.

Masked unique hard attention transformers (MUHATS)

P(accept)
B Unique hard attention
T sigmoid
D » All attention is on the highest-
position-wise T T T sooring position

_e , , * In case of a tie, choose rightmost
I » Strict future masking

ostione H » Each position can only attend to a
revi not sam ition
self-attention | _—"7 _—} previous (not same) positio

word/position vectors e First pOSitiOﬂ attends nowhere

self-attention

First-order logic (FO[<])

for strings

Vx.Qpx)

“every position has a 0”

Vx.Vy. (Qox) AQ(y) = x <Yy
“every @ comes before every 1”

PO0000: true
P10101: false
PO0111: false

000000: true

010101: false
P00111: true

Linear temporal logic (LTL)

G ! Q,

“Iit has always been 0”

(01 S (G™" Q) A ©;
“it was 1 since it had always been 0,
and it is now 1”

PO0000: true
P10101: false
PO0111: false

000000: true

010101: false
P00111: true

Linear temporal logic (LTL)

« b S v (“¢h since y”) is strict: ¢ doesn’t have to be true
currently

« Similarly, @ U w (“¢ until y”)

. G| @ (“always has been ¢”) can be defined in terms of S

Star-free languages

(aa)”, PARITY, MAJORITY

R
Star'free Schutzenberger, COu nter— McNaughton and
1965 Papert, 1971 Kamp, 1968
regular «— free — FO[<]+———LTL
expressions automata
),

(ab)”

Main result

FO[<] Kamp, 1968 LTL our paper MUHATS

\/

a little easier

Main result

FO[<] Kamp, 1968 LTL our Eaeer. MUHATS

\/

a little easier

LTL to MUHAISs

temporal operators use

connectives become FFNs .
self-attention

$Svy

Main result

FO[<] Kamp, 1968 LTL our paper MUHATS

__/

a little easier

MUHATSs to FO|<]

* Inputs are word

 residual * Each position
attention . connection depends on at most

two other positions
* There is a finite set

of possible
activation vectors

(Barrington & al. 2005)
(Barrington & al. 1992)

Other results

FO[MOD] =

regular
languages

finite image in ACO

(Gabbay & al. 1980) PESs
also ™ rational
star-free sinusoidal
PEs

strict strict fu’cure/v SHter
_ Invariant
future+_past T maskin 3
masking : S~ star-free

NON-StrICt ™ (pgieq & wilke 1997)

. masking
since depth 2
hierarchy !
depth 1

(Etessami & Wilke 2000)

Counting

First-order logic with counting

PO00O0O0: false

Hx[Q (x)] > #x[Qp(x)] 010100: false
“th 1s th)
ere are more 1s than 0s 101101: true

P00000: false

#x[Qo(0)] = #x[Q1 ()] + #X[Q1)] 515100: true
“there are twice as many 0s as 1s” |
101101: false

Temporal logic with counting

PO00O0O0: false

. anlw >r #;Qoth e 010100: false
ere are more 1s than s 101101: true

#0, = #0, + #0, 000000: false
“there are twice as 010100: true
many s as 1s’ 101101: false

[3] Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted by
transformer encoders with hard attention. ICLR 2023.

Temporal logic with counting

1-DYCK: Matched and balanced parentheses

— [« — — —
#|#0<#0|=0 A #Q=%0Q
* *

At no time have more left The number of left
parentheses than right and right
parentheses been seen parentheses is equal

[4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.

Lower bounds

PARITY
R
Ki[#,+]
1-DYCK €&
4]
softmax
attention

FO#[+] 5] FO#[+] normal form 5] transformers
MAJORITY &

4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.
5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

Lower bounds

PARITY
R
Ki[#,+]
1-DYCK €&
4]
softmax
attention
transformers

FO#[+] 5 FO#[+] normal form
MAJORITY e —]b

4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.
5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

Lower bounds

One-variable normal form for FO#[+]

 FO#[+] only has unary (monadic) predicates ((J (x); could add others)

» Adapt normal form for monadic first-order logic that has only one variable
#x[#y[P(x) A Q(¥)]]
= #x[P(x) A #y[Q(y)]]

= #x[P(x)] A #y[Q(y)]
= #x|P(x)] A #x[Q(x)]

Lower bounds

PARITY
R
Ki[#,+]
1-DYCK €&
4]
softmax
attention

FO#[+] 5] FO#[+] normal form 5] transformers
MAJORITY &

4] Yang and Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. CoLM 2024.
5] Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.

Lower bounds

The tricky part
¢ ¢ ¢« Attention doesn’t count: it
1 2 3 averages

(total length) or i/ (current
WT position)

e Layer normalization tricks

(=)

Upper bounds
M opolym)-

precision [/]
transformers

O(log n)-
i i i orecision (6]
transformers

;}% O(1)- [5]
precision

transformers

] Chiang. Transformers in DLOGTIME-uniform TC°. arXiv:2409.13629, 2024.

% BFVP*
= DLOGTIME-uniform TC°

3 PARITY

Chiang et al. Tighter bounds on the expressivity of transformer encoders. ICML 2023.
Merrill and Sabharwal. A logic for expressing log-precision transformers. ICLR 2023.

*Assuming TC® = NC.

Upper bounds

A restricted version of FO#[+,x]?

o FO#[+,x] is very expressive
 a.k.a. FOM, FOM[BIT], DLOGTIME-uniform TC®
* see esp. Hesse et al., 2002
 Some possible restrictions:
* [wo variables
o Separate sorts for counts and positions

 Some restriction on multiplication

Conclusions

o AV -
* Logic is a great tool for SU

studying transformer TR .
expressivity m
FO[MOD] =

regular

languages

 \We’ve worked out a full-orbed e
correspondence between

future+past

unique hard attention S L - |
transformers and FO[<]/LTL 1

)
masking

* \We’re just getting started with el

[
softmax attention transformers “\ otoan ﬂ
. . softmax prec?s:;n [5]
and counting logics ":*ffmfs
g g MRS w_‘ prgéi‘ls?i-on ﬂ' # PARITY

transformers

2 BFVP*
= DLOGTIME-uniform TC°

