Capabilities and Limitations of Transformers in sequential reasoning

Bingbin Liu

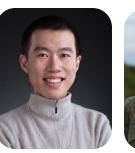
Carnegie Mellon University → Simons → Kempner (Harvard)

Surbhi

Goel

Jordan T. Ash

Akshay Krishnamurthy



Yuchen Li

Cyril Zhang

This talk

0. Formalizing reasoning.

Finite-state automata

1. (Theoretical) Capabilities – Shallow solutions to sequential tasks. Tools from Krohn-Rhodes theory and formal languages.

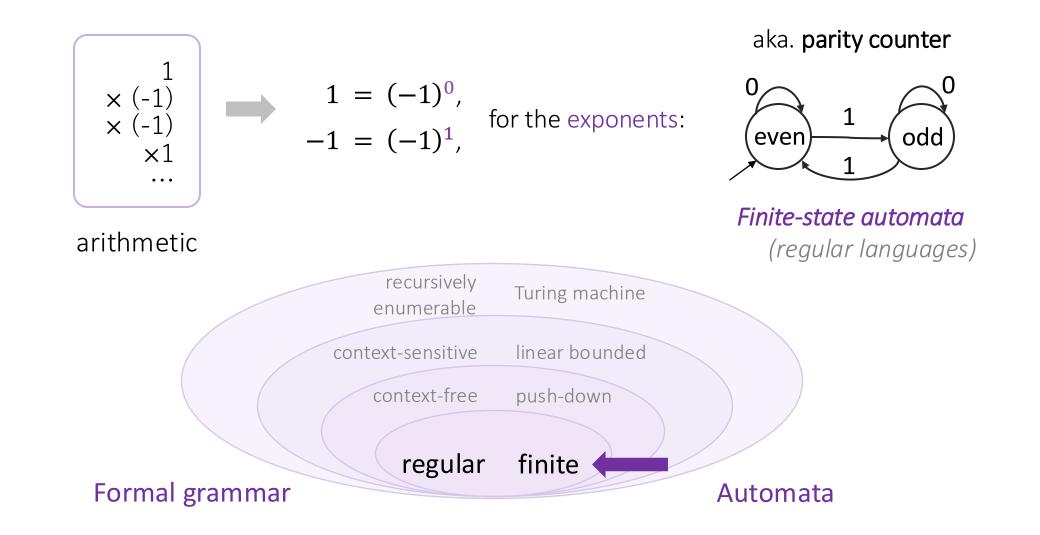
2. (Practical) Limitations – Imperfect out-of-distribution performance. *Causes and mitigations.*

Sequential reasoning tasks

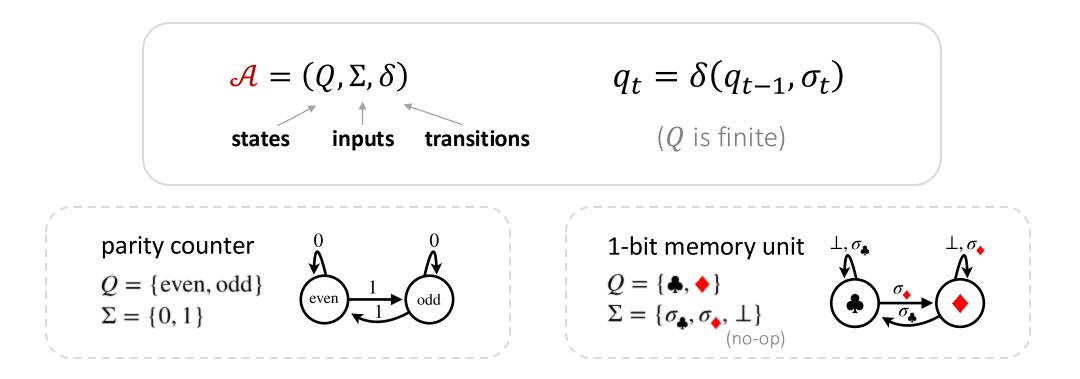


Universal presence in diverse forms.

Formalizing sequential reasoning

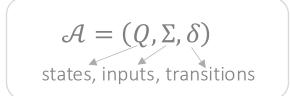


Sequential reasoning via automata

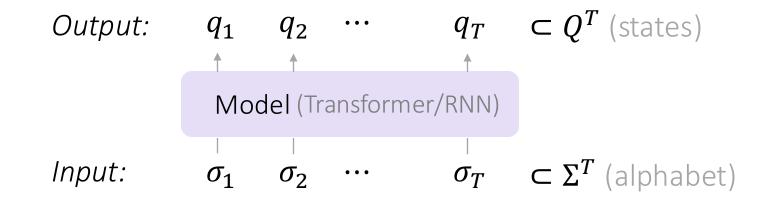


Reasoning = simulating the dynamics of \mathcal{A} .

Task: Simulating automata



Simulating \mathcal{A} : learn a *seq2seq function* for sequence length T.



The Transformer layer

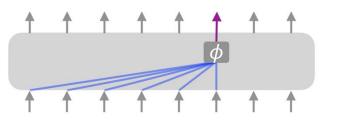
Computation *parallel* across positions.

$$attention \ scores: \sum_{j} \alpha_{ij} = 1$$

$$l^{th} \text{ layer, position } i \in [T]: x_i^{(l)} = \phi(\sum_{j \le i} \alpha_{ij}^{(l)} x_j^{(l-1)})$$

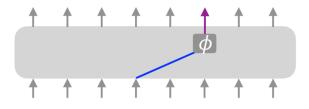
$$parameters \checkmark$$

1. uniform attention $/\overrightarrow{\alpha_i} = \begin{bmatrix} \frac{1}{T}, \frac{1}{T}, \cdots, \frac{1}{T} \end{bmatrix}$



e.g. average, sum.

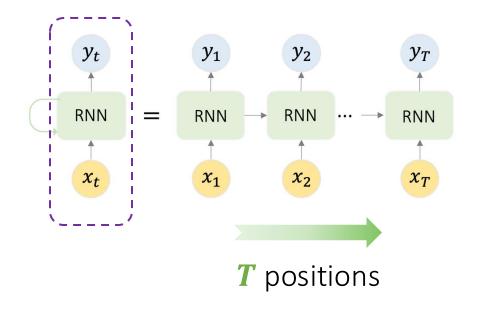
2. sparse attention $/ \overrightarrow{\alpha_i} = [0, \cdots 1, 0, \cdots]$



Architecture choices

Recurrent Neural Nets (RNNs)

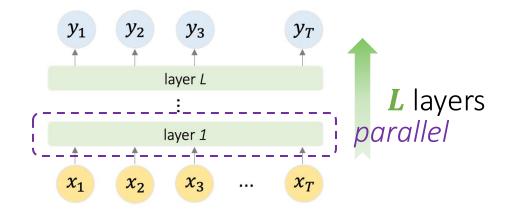
sequential across positions Natural for $q_t = \delta(q_{t-1}, \sigma_t)$



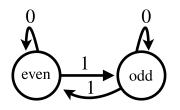
L (#layers) $\ll T$ (# positions)

Transformer

parallel across positions sequential across layers

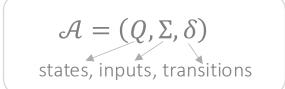


A <u>parallel</u> model for a <u>sequential</u> task?



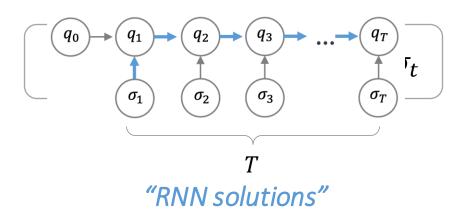
parity

Different ways to simulate automata



Simulating = mapping from $(\sigma_1, \sigma_2, \dots, \sigma_T) \subset \Sigma^T$ to $(q_1, q_2, \dots, q_T) \subset Q^T$.

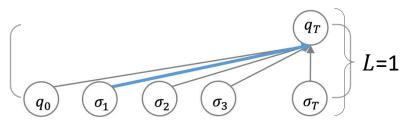
Iterative solution



Shortcut

o(T) # sequential steps

Parallel solution

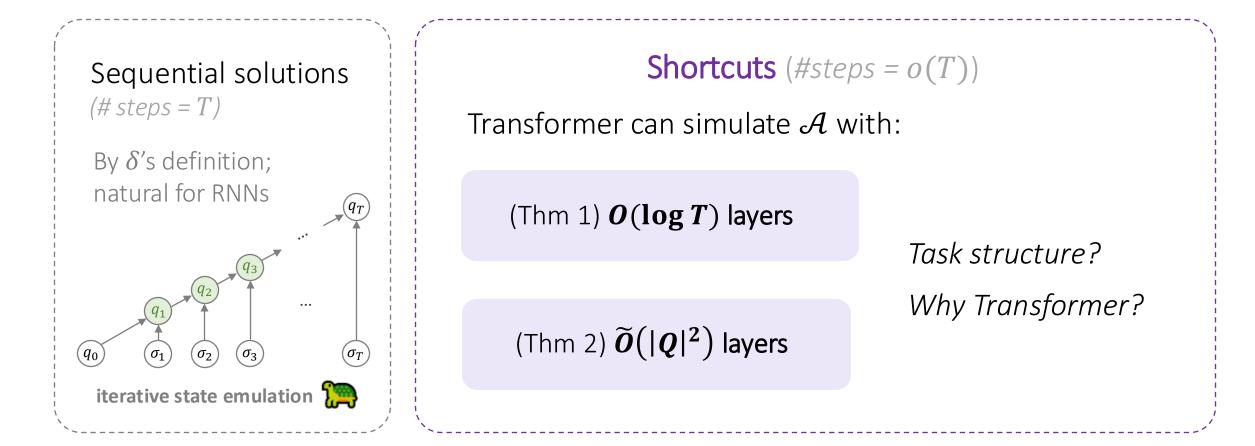


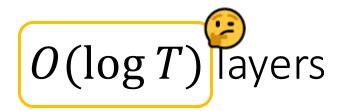
"Transformer solutions"

Solutions of Reasoning

steps = # sequential computation steps

$$\mathcal{A} = (Q, \Sigma, \delta), \quad q_t = \delta(q_{t-1}, \sigma_t).$$





$$\begin{aligned} \mathcal{A} &= (Q, \Sigma, \delta), \\ q_t &= \delta(q_{t-1}, \sigma_t). \end{aligned}$$

Goal: compute
$$q_t = (\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1))(q_0), t \in [T].$$

 $\delta(\cdot, \sigma): Q \to Q$

function \longleftrightarrow matrix

composition
$$\longleftrightarrow$$
 multiplication

How to get $o(\log T)$ layers?

$$q_t = \left(\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)\right)(q_0)$$

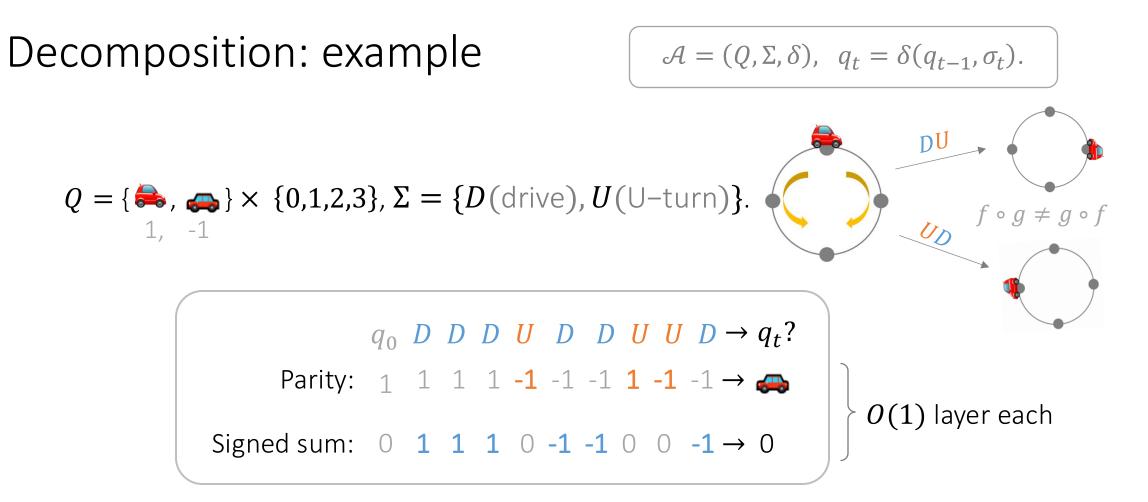
We already have positive results.

• Parity: only need to count #1s.

 $f \circ g = g \circ f$ Counting works for commutative function composition: O(1) layers.

> $f \circ g \neq g \circ f$ How about *non-commutative* compositions?

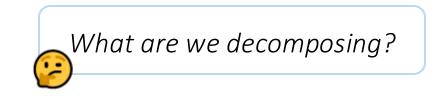
> > Decomposition



1. Direction = parity (sum) of U. (parity: $\{1, -1\} \leftrightarrow \{0, 1\}$)

2. Position = signed sum mod 4 : sign = parity of U.

Decomposition: general



Transformation semigroup: $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$ under composition.

A generalization of group, satisfying only associativity.

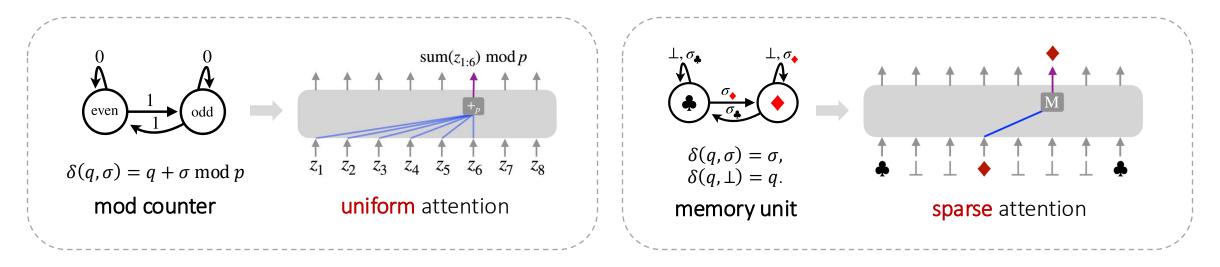
$$\begin{array}{c} \text{parity counter} \\ Q = \{\text{even, odd}\} \\ \Sigma = \{0, 1\} \end{array} \xrightarrow[even]{1} \text{odd} \longrightarrow \\ \end{array} \xrightarrow[even]{1} \text{odd} \longrightarrow \\ \end{array} \xrightarrow{\delta(\cdot, 0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\ \delta(\cdot, 1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}} \xrightarrow[f(\mathcal{A})] \xrightarrow[f(\mathcal{A})]{} \text{cyclic group } C_2$$

$$\begin{array}{c} \text{memory unit} \\ Q = \{ \blacklozenge, \blacklozenge \} \\ \Sigma = \{\sigma_{\clubsuit}, \sigma_{\diamondsuit}, \bot \} \end{array} \xrightarrow{L, \sigma_{\clubsuit}} \xrightarrow[f(\mathcal{A})]{} \xrightarrow[f(\mathcal{A})]{}$$

Decomposition: $\tilde{O}(|Q|^2)$ layers

 $\mathcal{A} = (Q, \Sigma, \delta),$ $q_t = \delta(q_{t-1}, \sigma_t).$

For a subset of \mathcal{A} , its $\mathcal{T}(\mathcal{A})$ can be *decomposed* into 2 base factors [Krohn-Rhodes]: (solvable)



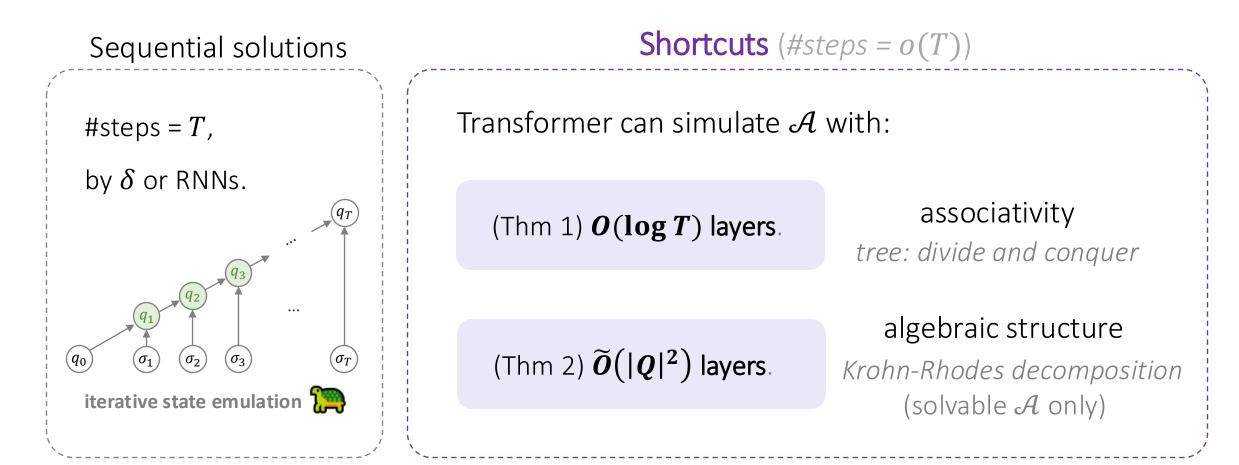
 $\tilde{O}(|Q|^2)$ layers $\left\{ \right.$

- Why Transformer: Each factor representable by 1 Transformer layer.
 Number of factors is Õ(|Q|²).

Solutions of Reasoning

steps = # sequential computation steps

$$\mathcal{A} = (Q, \Sigma, \delta), \quad q_t = \delta(q_{t-1}, \sigma_t).$$



Remarks

All \mathcal{A} : $O(\log T)$ layers.

Solvable $\mathcal{A}:\widetilde{oldsymbol{O}}ig(|oldsymbol{Q}|^2ig)$ layers.

- 1. Can we improve $O(\log T)$ in general? Likely not.
 - Constant-depth Transformers $\subset TC^0$ [Merrill et al. 21, Li et al. 24; survey by Strobl et al. 23].
 - Some automata are NC^1 complete (e.g. S_5).
 - $\rightarrow \Omega(\log T)$ unless $TC^0 = NC^1$.
- 2. What is special about Transformers?
 - Parameter sharing: T times more efficient in size than a circuit.
 - **Parallelism**: can be even shallower than Krohn-Rhodes.
 - O(1)-layer for all abelian groups and a special non-abelian group.

Representational results \rightarrow practical insights?

What solutions are found in practice?

Transformers can simulate automata in practice

19 automata, across various depths.

- Good in-distribution accuracy.
- Deeper factorization \rightarrow more layers.
 - Rows ordered by #factorization steps.

Constructions ≠ empirical solutions

There are multiple constructions.

Infinitely many

• $O(\log T)$ for all \mathcal{A} ; $\tilde{O}(|Q|^2)$ if solvable.

non-solvable

Transformer	depth L	(T=100)
-------------	---------	---------

		1	2	3	4	5	6	7	8	12	16	
	Dyck	99.3	100	100	100	100	100	100	100	100	100	
	Grid9	92.2	100	100	100	100	100	100	100	100	100	
	<i>C</i> ₂		99.8	99.9	100	100	99.5	100	99.7	100	100	
	<i>C</i> ₃	54.6	94.6	96.7	99.4	100	100	99.8	100	100	100	a
	C ₂ ³	65.0	77.9	99.9	97.9	100	99.8	98.2	99.9	95.9	80.6	automaton
	D_6	25.4	27.2	47.4	75.2	100	100	100	100	100	100	lato
	D_8	45.6	98.0	100	100	100	100	100	100	100	100	Ъ
	Q ₈	31.6	49.2	59.6	60.4	73.5	99.3	100	100	100	100	
	A ₅	12.5	23.1	32.5	46.7	71.2	98.8	100	100	100	100	
•	S 5	7.9	11.8	14.6	19.7	26.0	28.4	32.8	51.8	97.2	99.9	

Infinitely many solutions to Dyck

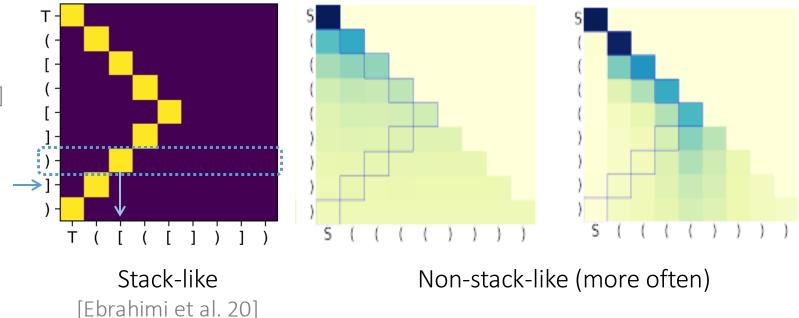
Dyck language: balanced parentheses \rightarrow capturing *hierarchical* structures.

valid ([]) invalid ([)]

The puppy (which my friend (who lives in NYC) adopted) is fluffy.

Processed by a stack or a **2-layer** Transformer. [Ebrahimi et al. 20, Yao et al. 21]

e.g. visualizing 2nd layer attention patterns.



Infinitely many solutions to Dyck

Dyck language: balanced parentheses \rightarrow capturing *hierarchical* structures.

valid ([]) invalid ([)]

Processed by a stack or a **2-layer** Transformer. [Ebrahimi et al. 20, Yao et al. 21]

e.g. visualizing 2nd layer attention patterns.

Infinitely many solutions, even with a *constrained* 1st layer (i.e. output depending only on type and depth).

[WL<u>L</u>R 23]: all 2-layer Transformers solving Dyck suffice and need to satisfy a *balanced condition*.

~ a Transformer's version of the pumping lemma. (informal: $xyz \in L \rightarrow xy^*z \in L$.)

Attention maps may not reflect the task structure.

• Including *non-hierarchical* patterns, e.g. uniform attn.

Infinitely many solutions to Dyck

Dyck language: balanced parentheses \rightarrow capturing *hierarchical* structures.

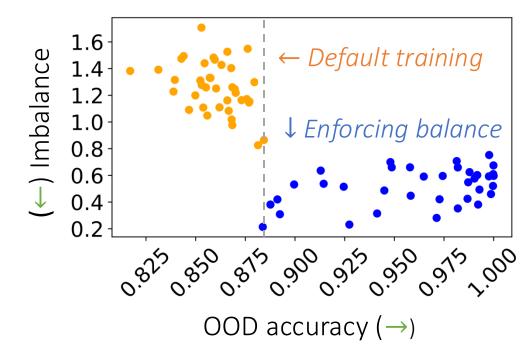
valid ([]) invalid ([)]

Processed by a stack or a **2-layer** Transformer. [Ebrahimi et al. 20, Yao et al. 21]

e.g. visualizing 2nd layer attention patterns.

Infinitely many solutions, even with a *constrained* 1st layer (i.e. output depending only on type and depth).

• The <u>balanced condition</u> as a regularizer.



Representational results \rightarrow practical insights?

- Constructions ≠ Practical solutions.
 [WLLR23] Infinitely many solutions even for a 2-layer model on Dyck.
- Why does Transformer struggle OOD? [LAGKZ23]

A simple(st) language based on the memory unit

Recall: one (of the 2) base factor of automata decomposition.

1-bit memory unit $Q = \{0,1\}, \Sigma = \{\sigma_0, \sigma_1, \bot\}$ $\downarrow, \sigma_\bullet$ $\downarrow,$

Flip-Flop Language (FFL): sequences of instruction-value pairs.

- 3 instructions: w (write), i (ignore), r (read).
- 2 values: $\{0, 1\} Constraint$: the value for **r** must be the same as the last **w**.

Flip-Flop Language Modeling (FFLM)

Flip-Flop Language (FFL): instruction-value pairs; **r** recalls the most recent **w**.

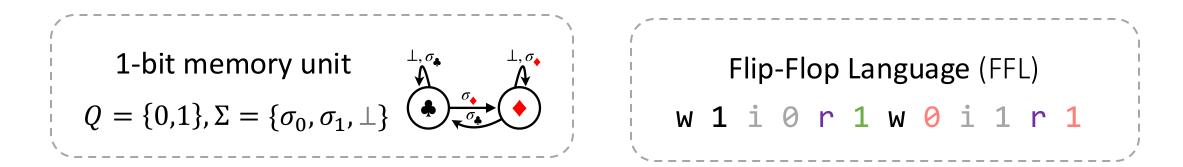
Task: supervise & evaluate only on the values following r.

• Deterministic task; training signals not "drawn" by irrelevant tokens.

Data distribution: FFL(p_i), where p_i can vary across train/test.

•
$$p_w = p_r = (1 - p_i)/2$$
, $p_0 = p_1 = 0.5$. Fix length $T = 512$.

Why Flip-Flop?

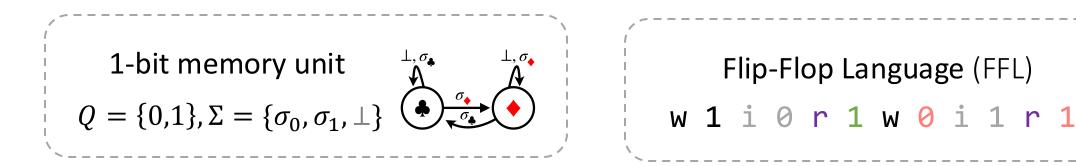


An atomic unit embedded in many reasoning tasks (e.g. automata).

• (1-hop) Induction head [Olsson et al. 22]

w1i0r1w0i1r1

Why Flip-Flop?

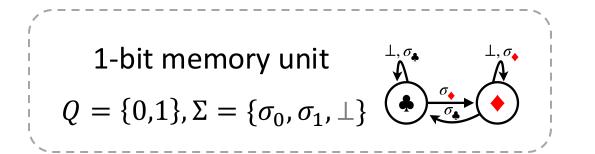


An atomic unit embedded in many reasoning tasks (e.g. automata).

- (1-hop) Induction head [Olsson et al. 22]
- Long-range dependency

```
w1i0r1...i1r
```

Why Flip-Flop?



```
Flip-Flop Language (FFL)
w 1 i 0 r 1 w 0 i 1 r 1
```

An atomic unit embedded in many reasoning tasks (e.g. automata).

- (1-hop) Induction head [Olsson et al. 22] Irrele
- Long-range dependency
- Closed-domain hallucination [Dziri et al. 22, OpenAl 23]

```
[Shi et al. 23]
Alice put the keys
```

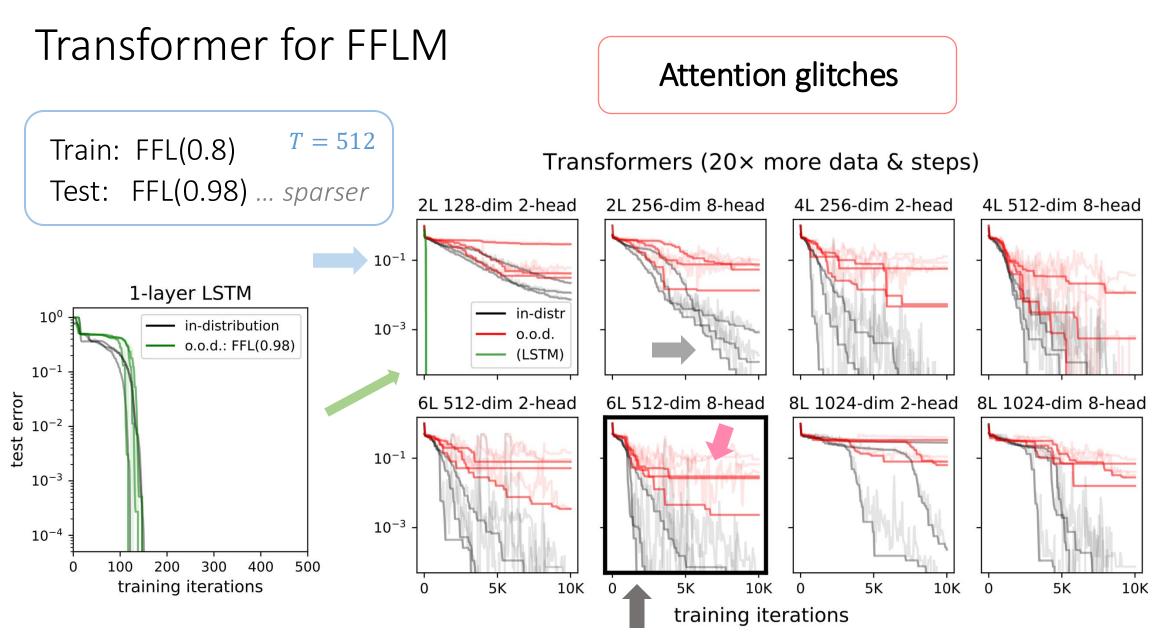
on the table.

```
Bob came in later.
...
Bob left and took
```

the keys from

```
Updated semantics
[Miceli-Barone et al. 23]
```

```
def f():
    sum = len
    . . .
    x = [1,2,3]
    . .
    assert(sum(x))==3
```

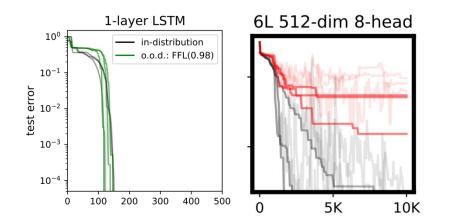


Attention Glitches

Def: imperfect hard retrieval.

- Transformers exhibit a long tail of errors.
- 1-layer LSTMs extrapolate *perfectly*.
- Even commercial models are not robust.

FFL(
$$p_i$$
): $p_w = p_r = (1 - p_i)/2$.



```
User: Hi, let's play a game. There are 3
instructions: "write", "read", and "ignore".
...
For example, ...
Now, please answer the following sequence: ...
```

<u>GP</u>	T 40	<u>2: 5</u>	50%	aco	2				
1,	0,	0,	1,	1,	0,	0,	1,	1,	0
_	-	_	-	_	_	_	_	_	
<u>GPT o1-mini</u> :			100%		aco				

Cause of attention glitches?

FFL(
$$p_i$$
): $p_w = p_r = (1 - p_i)/2$.

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

2 potential causes, each related to 1 type of OOD error.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

$$a_{\max} = \underbrace{\frac{\exp(z_{\max})}{\exp(z_{1}) + \dots + \exp(z_{t})} + \exp(z_{\max})}_{to \ be \ ignored}$$

- Also identified in prior work [Hahn 20, Chiang & Cholak 22].
- Possible mitigation: Switching to hard attention.

Cause of attention glitches?

$$FFL(p_i): p_w = p_r = (1 - p_i)/2.$$

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

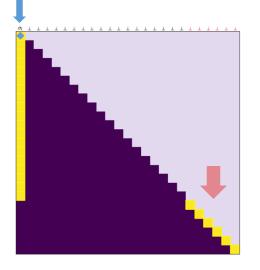
2 potential causes, each related to 1 type of OOD error.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

Position over content: lead to wrong argmax. (e.g. sparser w, length gen)

1-bit memory unit $Q = \{0,1\}, \Sigma = \{\sigma_0, \sigma_1, \bot\}$

Experiments: 1-layer, 1-head models.



Mitigating attention glitches

Data & scale

• Incorporating OOD data.

Performance ceiling; a few samples can help. e.g. "priming" [Jelassi et al. 23]

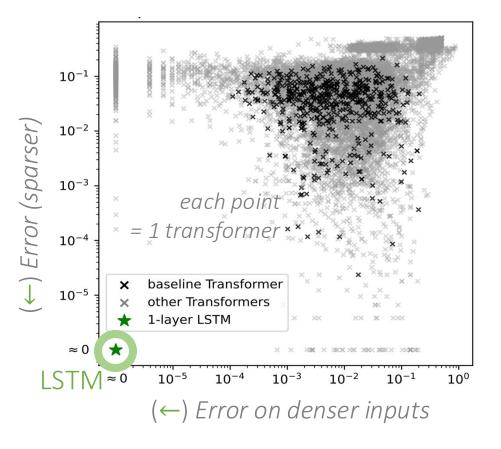
• Resource scaling: larger, train for longer. Fresh samples → better coverage.

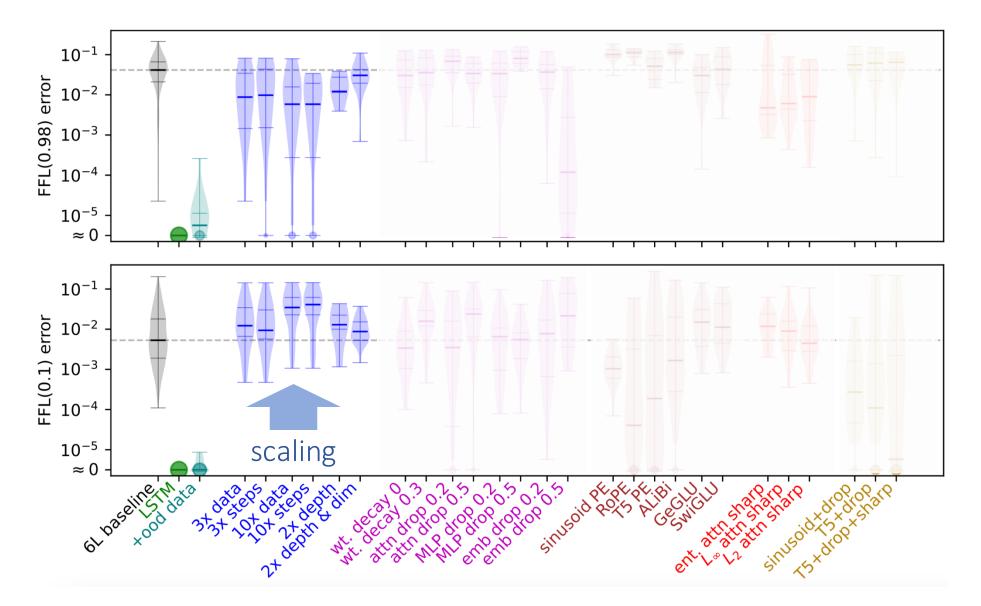
Algorithmic control

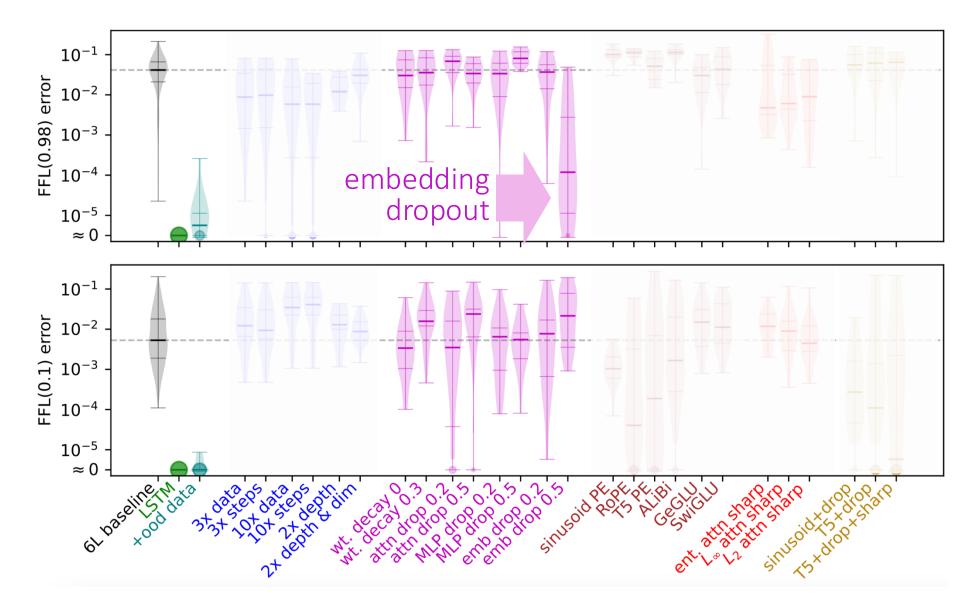
• Regularization

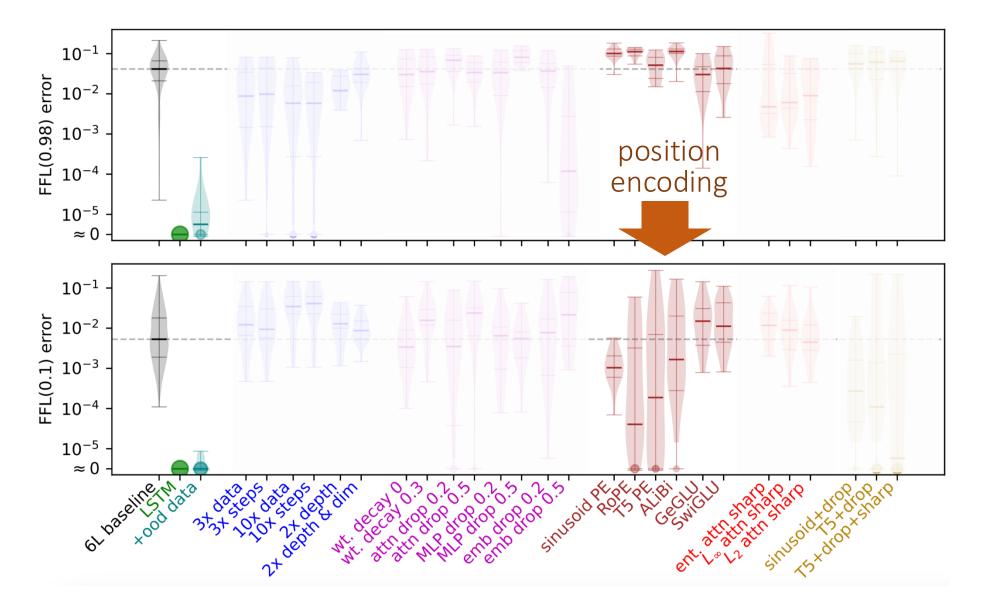
weight decay, dropout, attention sparsity.

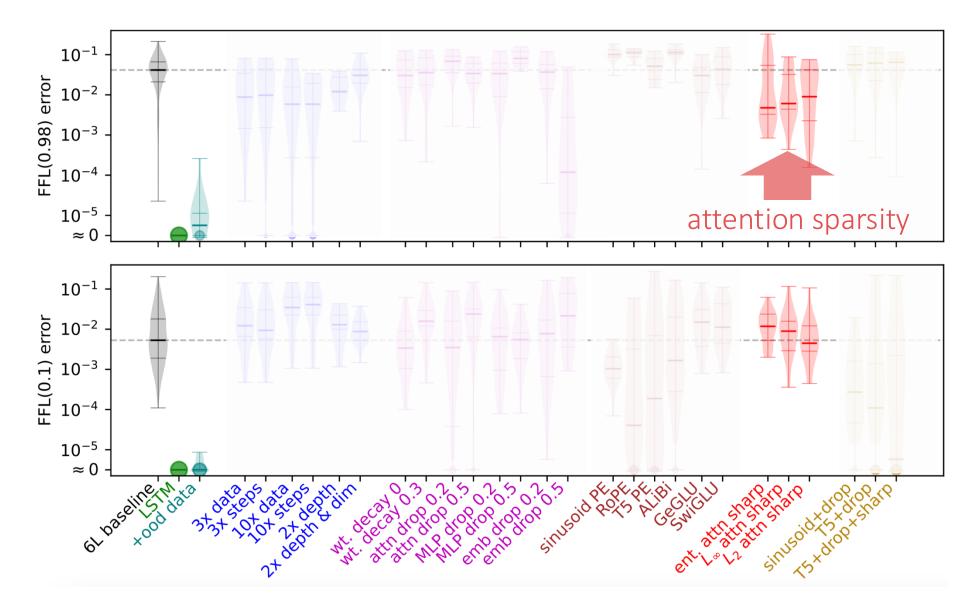
• Architectural choices position encoding, activation.

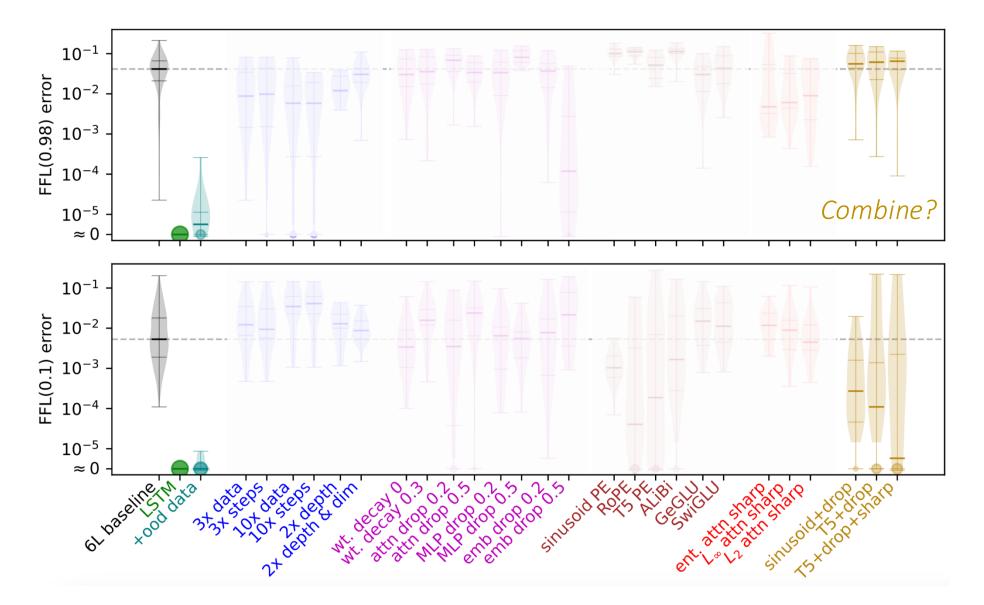








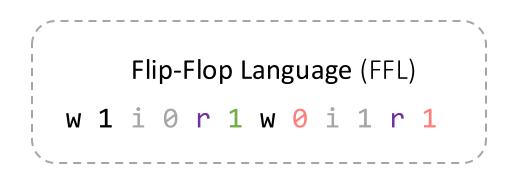


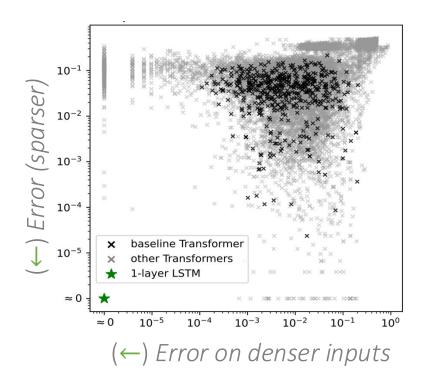


OOD error: attention glitches

Transformer's imperfect hard retrieval.

- Transformers exhibit a long tail of errors, even on an *extremely simple* task.
 - Goal: learn as well as LSTM?
- Two inherent limitations of Transformers.
 - Imply various errors; no good mitigation.
- Scaling is no panacea. Data matters.
 - ... recurring theme in the program.

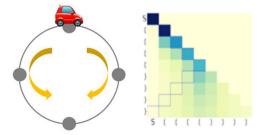




Summary

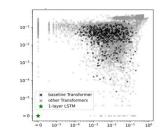
0. Formalizing sequential reasoning. Finite-state automata: $\mathcal{A} = (Q, \Sigma, \delta)$

1. Capabilities – Shallow solutions to sequential tasks. $O(\log T), \tilde{O}(|Q|^2)$ -layer "shortcuts" for T transitions, among infinitely many solutions.



2. Limitations – Imperfect out-of-distribution performance.

Inherent limitations of Transformers. Data is key.



Proper *abstraction/"sandbox"* for bridging theory and practice

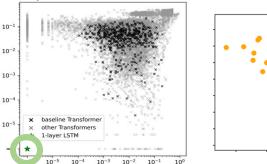
1. Connect to classic theory toolkits for understanding modern ML.

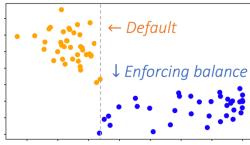
Representability, various design choices.

- Automata theory
- Formal languages
- Circuit complexity
- Communication complexity

 Lightweight experiments for (theory-inspired) practical insights.

Diagnoses and mitigations.



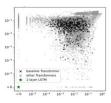


... and vice versa! ... e.g. a O(1)-layer solution

Capabilities & Limitations of Transformers in Sequential Reasoning

0. Formalizing reasoning with $\mathcal{A} = (Q, \Sigma, \delta)$.

- 1. Capabilities Shallow solutions to sequential tasks. $O(\log T), \tilde{O}(|Q|^2)$ -layer "shortcuts", among ∞ solutions.
- 2. Limitations Imperfect out-of-distribution performance. Inherent limitations of Transformers. Data is key.



Jordan T. Ash

Surbhi Goel

Akshay Krishnamurthy

Yuchen Li

Cyril Zhang

