Capabilities and Limitations of Transformers
in sequential reasoning

Bingbin Liu

Carnegie Mellon University = Simons — Kempner (Harvard)

¥)
Jordan Surbhi Akshay Andrej Kaiyue Cyril
T. Ash Goel Krishnamurthy Risteski Wen Zhang

This talk

0. Formalizing reasoning.
Finite-state automata

1. (Theoretical) Capabilities — Shallow solutions to sequential tasks.

Tools from Krohn-Rhodes theory and formal languages.

2. (Practical) Limitations — Imperfect out-of-distribution performance.

Causes and mitigations.

Sequential reasoning tasks

1 Bobo is a corgi. x =1
x (-1) A corgi is a dog. for _in range(10):
X (_12 A dog is a mammal. X = x**2 + 1
X s Bobo a mammal? print(x)
arithmetic multi-hop reasoning program
(polysyllogism)

Universal presence in diverse forms.

Formalizing sequential reasoning

1
— 0
x (-1) , . for the exponents:
X]. - - (_) 4
arithmetic
EEElyEl) Turing machine
enumerable
context-sensitive linear bounded
context-free push-down

regular finite <=

Formal grammar

aka. parity counter

Finite-state automata
(regular languages)

Automata

Sequential reasoning via automata

A =(0Q,%,6) qr = 6(q¢-1,0¢)
states inputs transitions (Q is finite)
parity counter 0 0 1-bit memory unit L. 1.0,
Q = {even, odd} @ 1 @ O={d& ¢} c,
> =1{0,1) 1 2 = {0,,0,, L} O
(no-op)

Reasoning = simulating the dynamics of A.

A =1(0,%95)

states, inputs, transitions

Task: Simulating automata

Simulating A: learn a seqg2seq function for sequence length T.

Output: 91 42 - qr < Q”

Model (Transformer/RNN)

Input: gy 0Oy - or cXxT

The Transformer layer

Computation parallel across positions.
attention scores: 3,; a;; = 1

T

[t" layer, position i € [T]: x (l) = ¢pXj<i a(l) gl_l))

(pa ra meters>

| =

1. uniform attention / a; = [=,

.
T'T" 'T
(G . O . S rftj/tr[jtf
I rrrerred

e.g. average, sum. e.g. selection.

| 2. sparse attention / a; = [0, -

1,0,

Architecture choices I &T

Recurrent Neural Nets (RNNs) Transformer
sequential across positions parallel across positions
Natural for q; = 6(q¢—q,0¢) sequential across layers
i Yt i Y1 Y2 yr vay Q2 Y3 v
I A I A A A A T A A
: : layer L
1 RNN | = RNN > NN e — RNN L | ayers
VoL ‘ T ‘ Ir layer 1 \ parallel
Lo Xy X3 X7 S R - eaEkt - -
' , X1 X2 X3 X

—— o — -

positions

A parallel model for a sequential task?

A =(Q,Z%06)

states, inputs, transitions

Different ways to simulate automata

Simulating = mapping from (o,, 05, -, o) € 2 to (g, 95, -+, q7) € QT.

0 0
- 1 Shortcut
e.g. parity

Iterative solution Parallel solution

“RNN solutions” “Transformer solutions”

10

Solutions of Reasoning A=(Q.%08), q=06(qe-1,00).

steps = # sequential computation steps

Sequential solutions Shortcuts

Transformer can simulate A with:
By &’s definition; o
natural for RNNs /@ o

Rk (Thm 1) O(log T) layers
(%) | Task structure?
| (@) 7 Why Transformer?
@ @ @ @ || (Thm 2) 0(1Q|?) layers

iterative state emulation m

N e e e - - - - ——— N e M e e e e e e e e e e M e e e e e e e e e e e e e e e e e e e

11

(jq — (Q’ Z’ 5))
0 (log T)%ye 'S qc = 6(q¢-1,0¢)-

Goal: compute g = (6(-,0,) o ++=0 6(-,3,)) (qo), t € [T].

6(,0): Q ~>0Q
function matrix composition multiplication
associativity
u 5¢.0 =[5 7],
SEE SN 0008

parity counter

12

How to get o(logT) layers? (8C,00) o0 80, 07))

We already have positive results.

= (Q7<¢ 07) mod 2 T
 Parity: only need to count #1s. e = (Ziest o) (a)

Counting works for commutative function composition: O(1) layers.

How about non-commutative compositions?

Decomposition

13

Decomposition: example A =(Q,%6), q=05(qe-1,00).

Q ={&s, g} x {0,1,2,3}, 2 = {D(drive), U(U-turn)}.

DDDUD DUUD-=q?
Parity: -1 1-1 -1 -

} O (1) layer each

Signed sum: 111 -1 -1 -1-> 0

1. Direction = parity (sum) of U.
2. Position = signed sum mod 4 : sign = parity of U.

14

DECOmpOSitiOnI general What are we decomposing?

©)

Transformation semigroup: 7(A) := {8(:,0) : o € X} under composition.

7

A generalization of group, satisfying only associativity.

’ T(tﬂ) @ .
cyclic group C,
©
memory unit 1,

Oa J_,G‘
Q=1{h ¢} c, O(-, 04) = 01 singular = semigrou
S = (04,04 L) K/é G2 =lo 1] o o

parity counter 0 0 5(-0) =

SR OS O

6(,1) =

_o O R
o= 2<S

15

Decomposition: O(|Q]?) layers

A =(0,%,9),
qt = 6(q¢—1, 0p).

For a subset of A, its T (A) can be decomposed into 2 base factors [Krohn-Rhodes]:

(solvable)

OO
1

6(q,0) =q+ omodp
mod counter

0(1Q1%) layers {

sum(z;.¢) mod p 1.0, 1.0, ¢
- ; Og
] ‘ —
\ 1 ‘\ 1 1 1 T 5(q’ o') = 0, ! . ! .
2 % B %4 % L I %
1 2 B % 5L L4 % 5(q, 1) = q. & | L & L 1 I &
uniform attention memory unit sparse attention

 Why Transformer: Each factor representable by 1 Transformer layer.

« Number of factors is 0(|Q]?).

16

Solutions of Reasoning = (Q,%8), q¢=08(qe-1,0¢).

steps = # sequential computation steps

Sequential solutions Shortcuts

= = = = e = = = e e e e e e e e e e e e e e = e o T e e e Em e e e e e e e e e e mm e e e M M e e e e mm e e e mm M M e e e e M e

#tsteps =T, . Transformer can simulate A with:

by 6 or RNNs.

o (Thm 1) 0(log T) layers. associativity
o tree: divide and conquer

./v: | I algebraic structure
@ (Thm 2) O(|QI?) layers. Krohn-Rhodes decomposition

iterative state emulation Tg- | i (solvable A only)

~

17

Remarks All A: 0(log T) layers. Solvable A : 0(|Q|?) layers.

1. Can we improve O(log T) in general? Likely not.
* Constant-depth Transformers € TC° [Merrill et al. 21, Li et al. 24: survey by Strobl et al. 23],

e Some automata are NC! complete (e.g. S:).

- Q(logT) unlessTCY = NC?.

2. What is special about Transformers?

* Parameter sharing: T times more efficient in size than a circuit.

* Parallelism: can be even shallower than Krohn-Rhodes.

* O(1)-layer for all abelian groups and a special non-abelian group.

18

Representational results = practical insights?

What solutions are found in practice?

19

Transformers can simulate automata in practice

uojewojne

19 automata, across various depths. 1 Tzrans;‘orr?er ?Eptﬁh L7 L

. GOOd in-distribution accuracy. ‘ Dyck 99.3 100 100 100 100 100 100 100 100 100

Gridg 92.2 100 100 100 100 100 100 100 100 100

* Deeper factorization = more layers.) |95 | 200 | 100 1o | 200 | 997 | 200 | 200

* Rows ordered by #factorization steps.

Cs 99.4 100 100 99.8 100 100 100

. .. . C23 100 99.8 98.2 99.9 959 80.6
Constructions # empirical solutions

Dsg 100 100 100 100 100

There are multiple constructions. . 100 | 100

Inﬁnitely many 6 492 59.6 60.4 . 100 100

« 0(logT) for all A; O(1Q|?) if solvable. 5 231 325 467 - 100 100

14.6 19.7 26.0 . . = 97.2 99.9

non-solvable

26

Infinitely many solutions to Dyck

Dyck language: balanced parentheses — capturing hierarchical structures.

]) (cond) { ((

valid [
[} [1] \ \

(
(

Processed by a stack or

a 2-layer Transformer.
[Ebrahimi et al. 20, Yao et al. 21]

e.qg. visualizing 2" layer
attention patterns.

Stack-like Non-stack-like (more often)

[Ebrahimi et al. 20] 21

Infinitely many solutions to Dyck

Dyck language: balanced parentheses — capturing hierarchical structures.

valid 1) Infinitely many solutions, even with a constrained 1%

(1
([layer (i.e. output depending only on type and depth).
[WLLR 23]: all 2-layer Transformers solving Dyck

Processed by a stack or : , %
suffice and need to satisfy a balanced condition.

a 2-layer Transformer.
[Ebrahimi et al. 20, Yao et al. 21]

~a Transformer’s version of the pumping lemma.
(informal: xyz € L - xy*z € L.)

e.qg. visualizing 2" layer
attention patterns. Attention maps may not reflect the task structure.

* Including non-hierarchical patterns, e.g. uniform attn.

22

Infinitely many solutions to Dyck

Dyck language: balanced parentheses — capturing hierarchical structures.

valid 1) Infinitely many solutions, even with a constrained 1%

(1
([layer (i.e. output depending only on type and depth).

» The balanced condition as a reqularizer.

Processed by a stack or L6
a 2-layer Transformer. § 1.4
[Ebrahimi et al. 20, Yao et al. 21] © 1.2
& 1.04 \ Enforcing balance
. _ nd E 08‘ ®
e.qg. visualizing 2"% layer = 06l . So, . 898
attention patterns. 1 04 . O ° MR o8
0.21 ¢ e .

D D A D o D Ao O
A S A

OOD accuracy (=) 23

Representational results = practical insights?

e Constructions # Practical solutions.
[WLLR23] Infinitely many solutions even for a 2-layer model on Dyck.

* Why does Transformer struggle OOD? [LAGKZ23]

24

A simple(st) language based on the memory unit

Recall: one (of the 2) base factor of automata decomposition.

1-bitmemoryunit §* 3° | “flip-flop”
Q =1{0,1}, X = {0y, 04, L } @)%R/’é automata

(FFL): sequences of instruction-value pairs.
* 3instructions: w (write), 1 (ignore), r (read)

e 2 values: {0, 1} — Constraint: the value for r must be the same as the last w.

w 1l rlow r

X

25

Flip-Flop Language Modeling (FFLM)

Flip-Flop Language (FFL): instruction-value pairs; r recalls the most recent w.

w 1 rlw r
X
Task: supervise & evaluate only on the values following r.

* Deterministic task; training signals not “drawn” by irrelevant tokens.

Data distribution: FFL(p;), where p; can vary across train/test.

vy =P, =1 —1p;)/2,py =y = 0.5. Fixlength T = 512.

26

Why Flip-Flop?

1-bit memory unit 4 Flip-Flop Language (FFL)
Q ={0,1},X = {0¢, 01, 1} él&/é' w 1 rlw r
An embedded in many reasoning tasks (e.g. automata).

* (1-hop) Induction head [Olsson et al. 22]

w 1 rlow r

Why Flip-Flop?

1-bit memory unit 4 Flip-Flop Language (FFL)
Q ={0,1},X = {0¢, 01, 1} él&/é' w 1 rlw r
An embedded in many reasoning tasks (e.g. automata).

* (1-hop) Induction head [Olsson et al. 22]

* Long-range dependency

w 1 r

Why Flip-Flop?

1-bit memory unit

W v Flip-Flop Language (FFL)
Q ={0,1},X = {0¢, 01, 1} é)é/é' w 1 rlw r

An atomic unit embedded in many reasoning tasks (e.g. automata).

* (1-hop) Induction head [Olsson et al. 22] |rrelevant context Updated semantics

[Shi et al. 23] [Miceli-Barone et al. 23]

* Long-range dependency Alice put the keys

. . . on the table. sum = len
e Closed-domain hallucination Sob came in later y
[Dziri et al. 22, OpenAl 23] '
W 1 r 1 W P Bob left and took

the keys from . assert(sum(x))==

29

test error

Transformer for FFLM

Train: FFL(0.8)
Test: FFL(0.98) ... sparser

1l-layer LSTM

0
10 — in-distribution
] \ — 0.0.d.: FFL(0.98)
1025
1072 -
1072 5
1074 4
0 100 200 300 400

training iterations

500

T =512

Attention glitches

Transformers (20X more data & steps)

2L 128-dim 2-head

2L 256-dim 8-head

4L 256-dim 2-head

4L 512-dim 8-head

10—3 n

— in-distr
— 0.0.d.
= (LSTM)

kﬁt- :
| “1.‘\\1 -—
L LB

6L 512-dim 2-head

107~ H N
\ \ N 'l ;tl—u——-—————— :
N Th \\C
.‘ ;L‘ Al' 3 \ llL L4 ;‘ﬂ,
10-24 |4 ‘ \,\ :
T \l T l = L\" T T T
0 5K 10K O 5K 10K

10K 61 5K

training iterations

30

Attention Glitches FELD:): oy = D = (1 — p;)/2.

Def: imperfect hard retrieval. Llayer LSTM 6L 512-dim 8-head

0
10 4\% —— in-distribution
—— 0.0.d.: FFL(0.98)
1071 A \

NI L
1 4

e Even commercial models are not robust. o a0 zo o a0 soo o g 10K

* Transformers exhibit a long tail of errors.

test error
=
o

H
S

e 1-layer LSTMs extrapolate perfectly.

._.
Q
=

User: Hi, let's play a game. There are 3

instructions: "write", "read", and "ignore". GPT 40: 50% acc
1, 0, 0, 1, 1, 0, 0, 1, 1, ©

For example, ..
GPT ol-minui:

Now, please answer the following sequence: ..

31

Cause of attention glitches? FELL): pu = Pr = (1 — P1)/2.

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

2 potential causes, each related to 1 type of OOD error.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

exp(Zmax)
/+exp Zmax)

amax e

» Also identified in prior work [Hahn 20, Chiang & Cholak 22].

* Possible mitigation: Switching to hard attention.

32

Cause of attention glitches? FELL): pu = Pr = (1 — P1)/2.

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

2 potential causes, each related to 1 type of OOD error.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

Position over content: lead to wrong argmax. |

1-bit memory unit ~ “y* Loe
Q =1{0,1},2 = {0y, 04, L} é_‘;'u;é

Experiments: 1-layer, 1-head models.

33

Mitigating attention glitches

Data & scale
* Incorporating OOD data.

Performance ceiling; a few samples can help.

e.g. “priming” [Jelassi et al. 23]

* Resource scaling: larger, train for longer.
Fresh samples — better coverage.

Algorithmic control
* Regularization
weight decay, dropout, attention sparsity.

* Architectural choices
position encoding, activation.

() Error (sparser)

g g
1075 i
10—+ E
107 5 e o AR S

each point %5 e

10-4] = 1transformer X x 3 .

& X baseline Transformer i
L - % other Transformers

1 % 1l-layer LSTM
=0 * x > x

|STM =0 10 10 10— 102 10 1¢

(<) Error on denser inputs

10°

34

Surprisingly hard to fix: no mitigation helps with both

1071 + I

1

1072 - SR 0

103 - ¥

FFL(0.98) error

FFL(0.1) error
'—I
<

% BV scaling

°’*‘\fa ‘@ A 0’ q’Q‘" 0’1’06’ q’g‘" FLEL Y SRR
LA ?a PR RR SR SL BBL IS
& $ ”>°>+°o+ X 60&&6&&6 N

0 .
Qv X GQ'Q \?\ & @’é @\%‘\Q ((\ @ &

’L+ e

Surprisingly hard to fix: no mitigation helps with both

10-14{ | = IS
S1024 | T reT
@ |
Q1073 ~
=)
-4 H -
z 10 embedding
1054 dropout ‘
10-14 |
5102 T 11y
5 i =TT
= 1073 -+
Sl
o 1074 -
L
10—5 .
=~ (0 ’ é | T T 1T T | I — | B —
0 QD
\\‘l‘;\i’b 55 % 2 3°°;°1°°; ’;@ LR (BB RS
& 00&} ’b+f>>*‘ Q 0*‘ ‘(\ 8% 0’0 b‘ &0 S & oo &\6‘?@% ‘\‘5?’(&6’)((2)((9
R 6‘?’ Q\& K,& S Q@@ Ny CECOMIROING
ot PR\ Q}’\“"\ﬁ VoS /\@X

Surprisingly hard to fix: no mitigation helps with both

FFL(0.98) error

FFL(0.1) error

1004 L + ¥ ;F ?m
& TV BT
1024 | |
1073 - -
posItion

—4 .
10 encoding
1014 |
1024 =
1034 | T
1074 ~ - T
10—5 .

= 0 - I 1 I 1) 1 g’_ l 1 1 I 1 1 I I
& S are” & % X &O & &0 b‘obo 0‘90 0")\?\ S O
QX ~ & Q\& % NN @@ AN K’é“fé‘fé“ & ©
ot D WX VAV 8 &

37

Surprisingly hard to fix: no mitigation helps with both

FFL(0.98) error

FFL(0.1) error

1014 L =T
1024 AL
1073 ~
1074 -
10° 1 * o attention sparsity
10714 |
1024 | :E__
10734 |
107 ~
=5
o- qé
SV 5 % s 5 ORI RS R e
’L+ ’o ﬁ“ A ((\ & VANV S /\%x

38

Surprisingly hard to fix: no mitigation helps with both

FFL(0.98) error

FFL(0.1) error

10—1 i
10—2 .

1073 A

Combine?

0t . |

’0‘
*S%gﬁﬁ B8 sg

Roeaneng

@\,

2 'b+o,+ S 0*‘ AR % 0 &2 £ OO

~ b?’ & & ,;}«‘& §\\, A\ (o @)
0% ¢

39

OOD error: attention glitches

Transformer’s imperfect hard retrieval. w 1

* Transformers exhibit a long tail of errors,
even on an extremely simple task.

10—1 .

* Goal: learn as well as LSTM? R

U 102

S 0

. o o s
* Two inherent limitations of Transformers. =
o

. - . ~ 10
* Imply various errors; no good mitigation. &

T 1073 5

» Scaling is no panacea. Data matters. L

* ... recurring theme in the program.

Flip-Flop Language (FFL)

rlow r

X baseline Transformer
% other Transformers
% 1l-layer LSTM

=0 10~3 1074 1073 1072 1071 100

(<) Error on denser inputs

40

summary

0. Formalizing sequential reasoning. o
Finite-state automata: A = (Q,%,6) (=)

1. Capabilities — Shallow solutions to sequential tasks.

0(logT), 0(|Q|?)-layer “shortcuts” for T transitions,
among infinitely many solutions.

2. Limitations — Imperfect out-of-distribution performance.

Inherent limitations of Transformers. Data is key.

41

Proper abstraction/“sandbox”
for bridging theory and practice

1. Connect to classic theory toolkits 2. Lightweight experiments for
for understanding modern ML. (theory-inspired) practical insights.
Representability, various design choices. Diagnoses and mitigations.

* Automata theory

< Default
°
Formal |anguage5 \ Enforcing balance
° Se
Lo te S

« Communication complexity A

e Circuit complexity

... and vice versal! ...e.g. a 0(1)-layer solution

42

Capabilities & Limitations of Transformers in Sequential Reasoning

0. Formalizing reasoning with <A = (0, 2, 6).

1. Capabilities — Shallow solutions to sequential tasks. '-._-
0(logT), 0(|Q|?)-layer “shortcuts”, among oo solutions.

2. Limitations — Imperfect out-of-distribution performance. S
Inherent limitations of Transformers. Data is key.

Jordan Akshay Yuchen Andrej Kaiyue Cyril
T Ash Krishnamurthy Li Risteski Wen Zhang

	Slide 1: Capabilities and Limitations of Transformers
	Slide 2: This talk
	Slide 3: Sequential reasoning tasks
	Slide 4: Formalizing sequential reasoning
	Slide 5: Sequential reasoning via automata
	Slide 6: Task: Simulating automata
	Slide 7: The Transformer layer
	Slide 8: Architecture choices
	Slide 9: A parallel model for a sequential task?
	Slide 10: Different ways to simulate automata
	Slide 11: Solutions of Reasoning
	Slide 12
	Slide 13: How to get o log T layers?
	Slide 14: Decomposition: example
	Slide 15: Decomposition: general
	Slide 16: Decomposition: O Q layers
	Slide 17: Solutions of Reasoning
	Slide 18: Remarks
	Slide 19
	Slide 20: Transformers can simulate automata in practice
	Slide 21: Infinitely many solutions to Dyck
	Slide 22: Infinitely many solutions to Dyck
	Slide 23: Infinitely many solutions to Dyck
	Slide 24
	Slide 25: A simple(st) language based on the memory unit
	Slide 26: Flip-Flop Language Modeling (FFLM)
	Slide 27: Why Flip-Flop?
	Slide 28: Why Flip-Flop?
	Slide 29: Why Flip-Flop?
	Slide 30: Transformer for FFLM
	Slide 31: Attention Glitches
	Slide 32: Cause of attention glitches?
	Slide 33: Cause of attention glitches?
	Slide 34: Mitigating attention glitches
	Slide 35: Surprisingly hard to fix: no mitigation helps with both
	Slide 36: Surprisingly hard to fix: no mitigation helps with both
	Slide 37: Surprisingly hard to fix: no mitigation helps with both
	Slide 38: Surprisingly hard to fix: no mitigation helps with both
	Slide 39: Surprisingly hard to fix: no mitigation helps with both
	Slide 40: OOD error: attention glitches
	Slide 41: Summary
	Slide 42
	Slide 43
	Slide 44: Appendix
	Slide 45: Transformation semigroups
	Slide 46: What about semigroups?
	Slide 47: Krohn-Rhodes Intuitions
	Slide 48: Decomposition: the glue
	Slide 49: The gridworld automata
	Slide 50: O 1 layer for
	Slide 51: Parallel boundary detector for
	Slide 52: OOD Generalization - Parity
	Slide 53: Autoregressive mode of Transformers
	Slide 54: Autoregressive mode of Transformers
	Slide 55: Training with limited supervision
	Slide 56: Direct mitigations
	Slide 57: Indirect mitigations
	Slide 58: Indirect mitigations
	Slide 59: Mitigations to Attention Glitches
	Slide 60: What solutions are found?

