# Capabilities and Limitations of Transformers in sequential reasoning

Bingbin Liu

#### Carnegie Mellon University → Simons → Kempner (Harvard)





Surbhi

Goel

Jordan T. Ash



Akshay Krishnamurthy



Yuchen Li











Cyril Zhang

#### This talk

#### 0. Formalizing reasoning.

Finite-state automata

1. (Theoretical) Capabilities – Shallow solutions to sequential tasks. Tools from Krohn-Rhodes theory and formal languages.

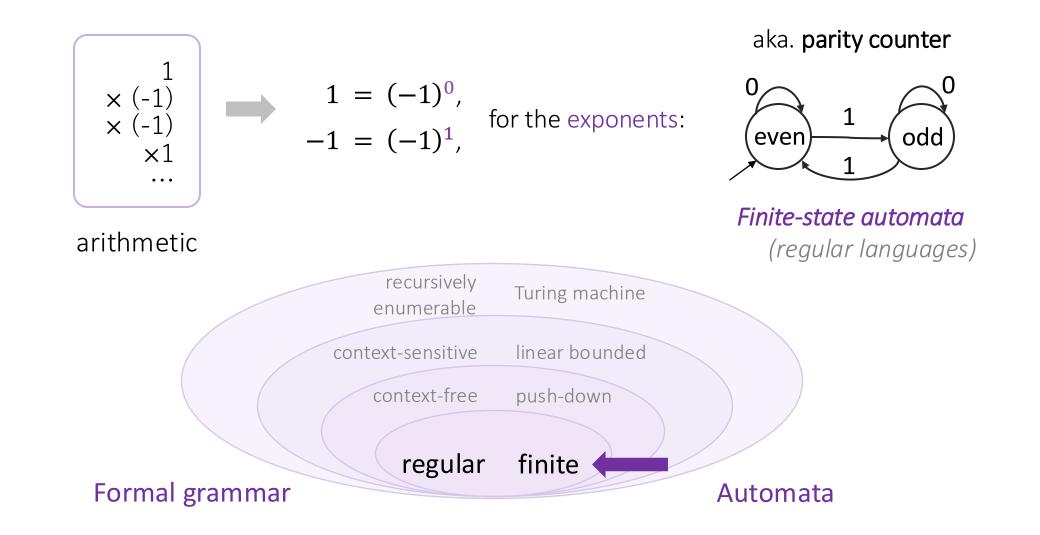
2. (Practical) Limitations – Imperfect out-of-distribution performance. *Causes and mitigations.* 

#### Sequential reasoning tasks

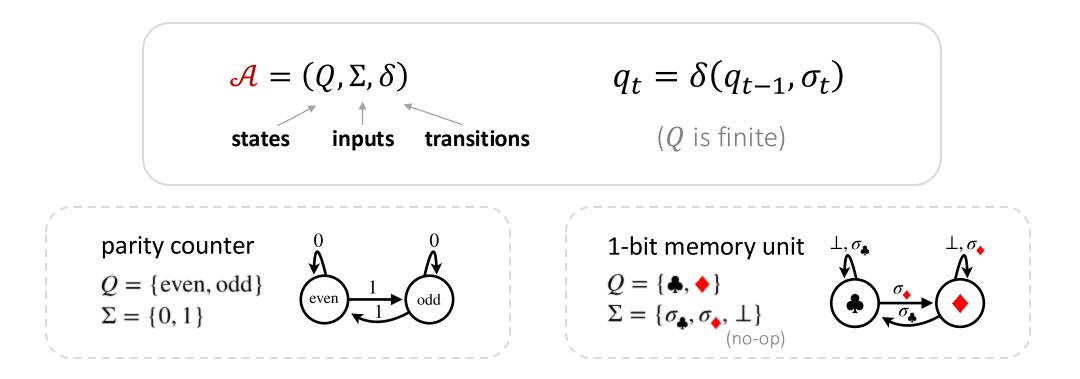


Universal presence in diverse forms.

Formalizing sequential reasoning

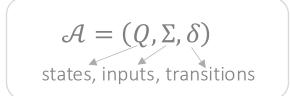


#### Sequential reasoning via automata

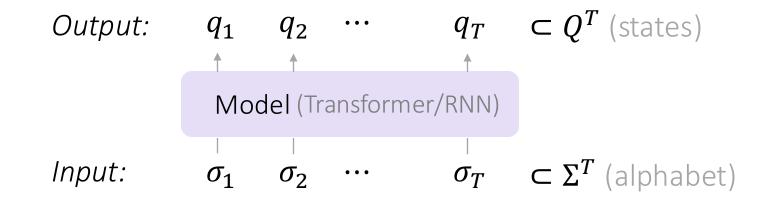


*Reasoning* = simulating the dynamics of  $\mathcal{A}$ .

#### Task: Simulating automata



Simulating  $\mathcal{A}$ : learn a *seq2seq function* for sequence length T.



### The Transformer layer

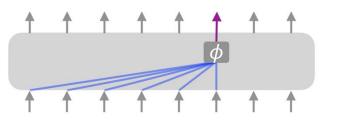
Computation *parallel* across positions.

$$attention \ scores: \sum_{j} \alpha_{ij} = 1$$

$$l^{th} \text{ layer, position } i \in [T]: x_i^{(l)} = \phi(\sum_{j \le i} \alpha_{ij}^{(l)} x_j^{(l-1)})$$

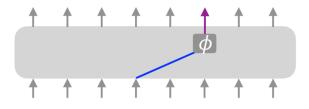
$$parameters \checkmark$$

**1.** uniform attention  $/\overrightarrow{\alpha_i} = \begin{bmatrix} \frac{1}{T}, \frac{1}{T}, \cdots, \frac{1}{T} \end{bmatrix}$ 



e.g. average, sum.

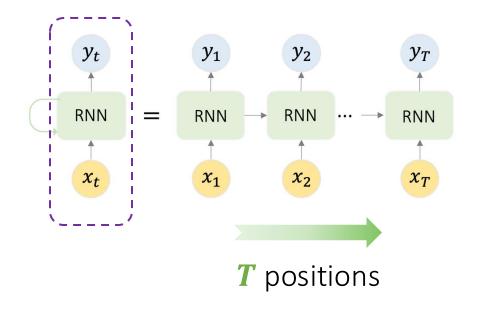
**2.** sparse attention  $/ \overrightarrow{\alpha_i} = [0, \cdots 1, 0, \cdots]$ 



#### Architecture choices

#### Recurrent Neural Nets (RNNs)

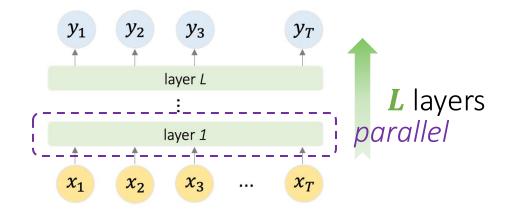
sequential across positions Natural for  $q_t = \delta(q_{t-1}, \sigma_t)$ 



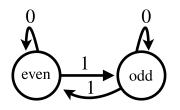
L (#layers)  $\ll T$  (# positions)

#### Transformer

parallel across positions sequential across layers

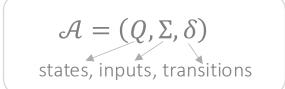


### A <u>parallel</u> model for a <u>sequential</u> task?



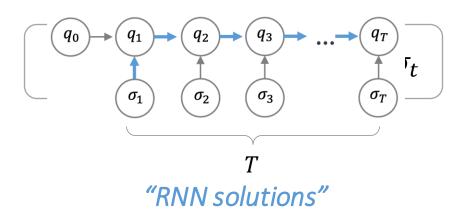
parity

#### Different ways to simulate automata



Simulating = mapping from  $(\sigma_1, \sigma_2, \dots, \sigma_T) \subset \Sigma^T$  to  $(q_1, q_2, \dots, q_T) \subset Q^T$ .

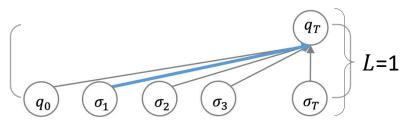
Iterative solution



#### Shortcut

o(T) # sequential steps

Parallel solution

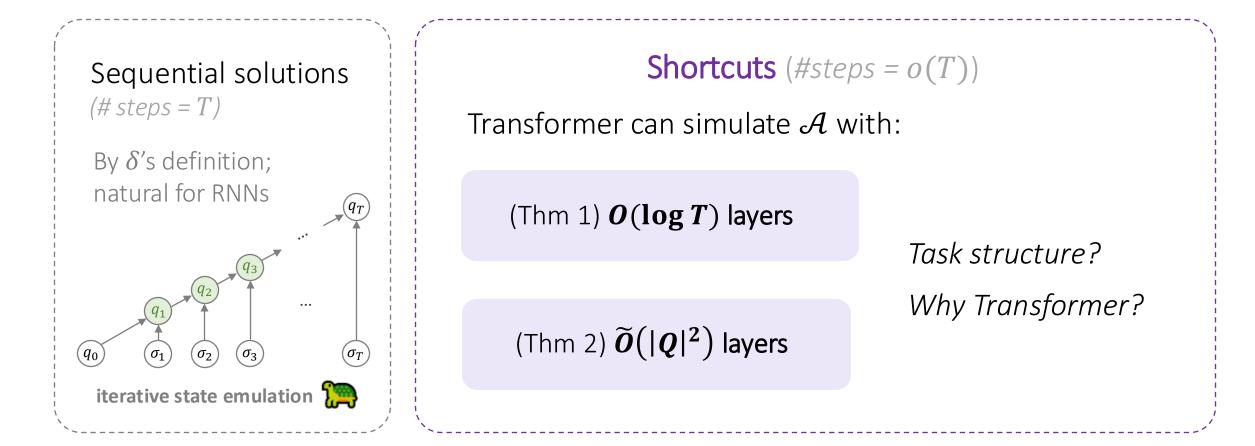


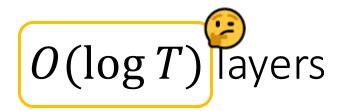
"Transformer solutions"

# Solutions of Reasoning

# steps = # sequential computation steps

$$\mathcal{A} = (Q, \Sigma, \delta), \quad q_t = \delta(q_{t-1}, \sigma_t).$$





$$\begin{aligned} \mathcal{A} &= (Q, \Sigma, \delta), \\ q_t &= \delta(q_{t-1}, \sigma_t). \end{aligned}$$

**Goal**: compute 
$$q_t = (\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1))(q_0), t \in [T].$$
  
 $\delta(\cdot, \sigma): Q \to Q$ 

function  $\longleftrightarrow$  matrix

composition 
$$\longleftrightarrow$$
 multiplication

How to get  $o(\log T)$  layers?

$$q_t = \left(\delta(\cdot, \sigma_t) \circ \cdots \circ \delta(\cdot, \sigma_1)\right)(q_0)$$

We already have positive results.

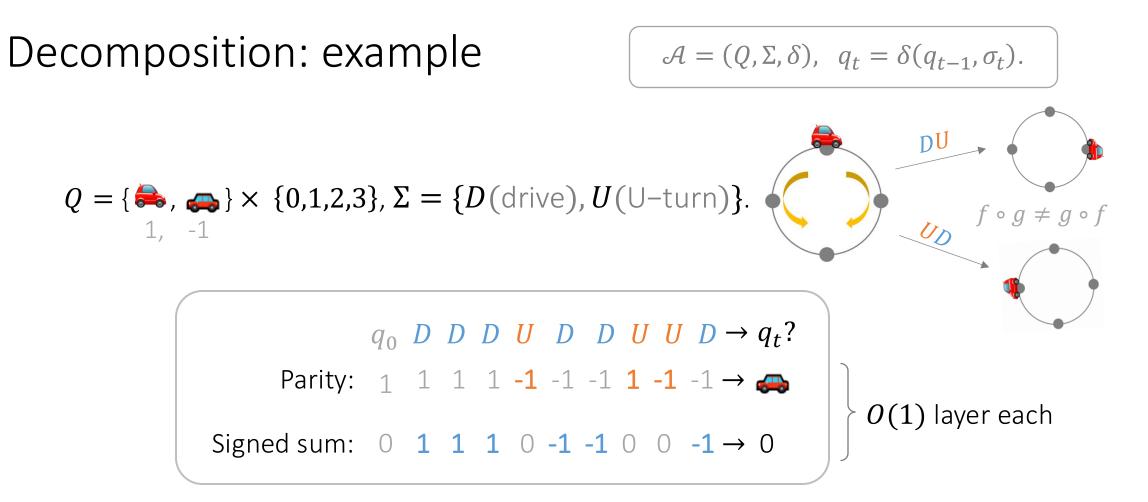
• Parity: only need to count #1s.

 $f \circ g = g \circ f$ Counting works for commutative function composition: O(1) layers.

> $f \circ g \neq g \circ f$ How about *non-commutative* compositions?

> > Decomposition

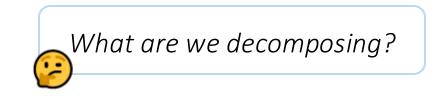




1. Direction = parity (sum) of U. (parity:  $\{1, -1\} \leftrightarrow \{0, 1\}$ )

2. Position = signed sum mod 4 : sign = parity of U.

#### Decomposition: general



**Transformation semigroup:**  $\mathcal{T}(\mathcal{A}) \coloneqq \{\delta(\cdot, \sigma) : \sigma \in \Sigma\}$  under composition.

A generalization of group, satisfying only associativity.

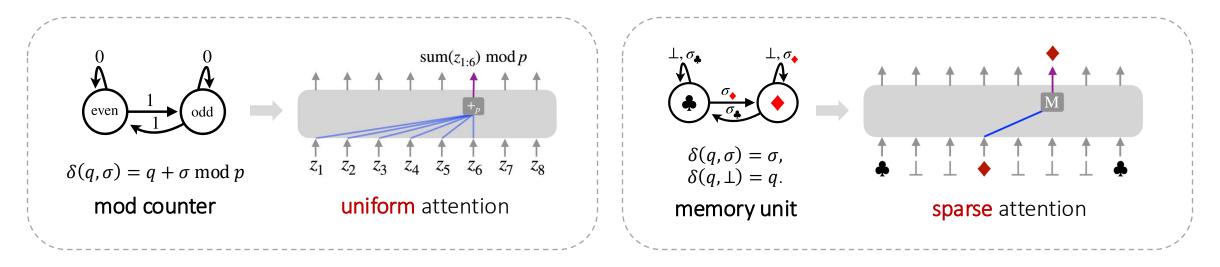
$$\begin{array}{c} \text{parity counter} \\ Q = \{\text{even, odd}\} \\ \Sigma = \{0, 1\} \end{array} \xrightarrow[even]{1} \text{odd} \longrightarrow \\ \end{array} \xrightarrow[even]{1} \text{odd} \longrightarrow \\ \end{array} \xrightarrow{\delta(\cdot, 0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\ \delta(\cdot, 1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}} \xrightarrow[f(\mathcal{A})] \xrightarrow[f(\mathcal{A})]{} \text{cyclic group } C_2$$

$$\begin{array}{c} \text{memory unit} \\ Q = \{ \blacklozenge, \blacklozenge \} \\ \Sigma = \{\sigma_{\clubsuit}, \sigma_{\diamondsuit}, \bot \} \end{array} \xrightarrow{L, \sigma_{\clubsuit}} \xrightarrow[f(\mathcal{A})]{} \xrightarrow[f(\mathcal{A})]{}$$

# Decomposition: $\tilde{O}(|Q|^2)$ layers

 $\mathcal{A} = (Q, \Sigma, \delta),$  $q_t = \delta(q_{t-1}, \sigma_t).$ 

For a subset of  $\mathcal{A}$ , its  $\mathcal{T}(\mathcal{A})$  can be *decomposed* into 2 base factors [Krohn-Rhodes]: (solvable)



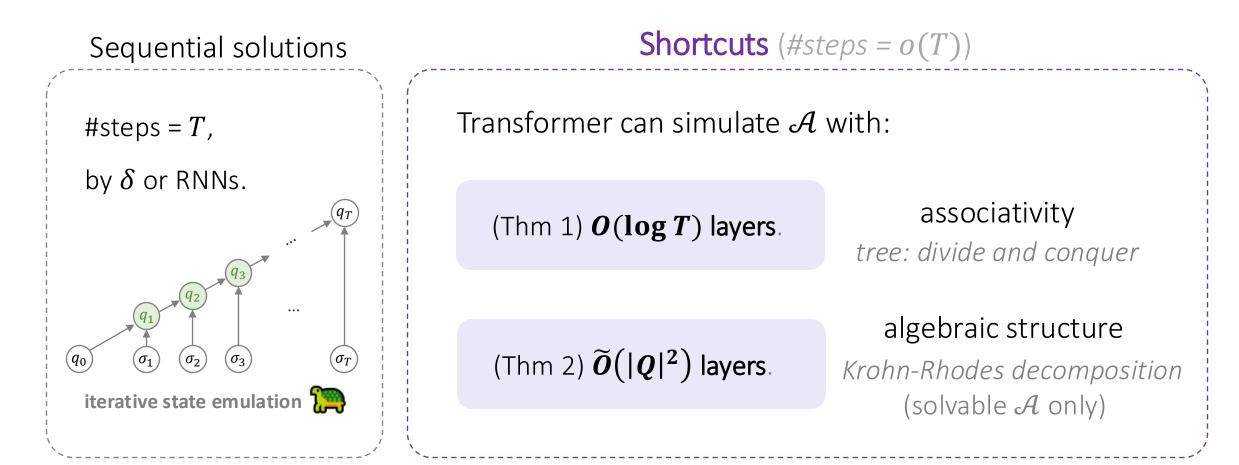
 $\tilde{O}(|Q|^2)$  layers  $\left\{ \right.$ 

- Why Transformer: Each factor representable by 1 Transformer layer.
  Number of factors is Õ(|Q|<sup>2</sup>).

## Solutions of Reasoning

# steps = # sequential computation steps

$$\mathcal{A} = (Q, \Sigma, \delta), \quad q_t = \delta(q_{t-1}, \sigma_t).$$



#### Remarks

All  $\mathcal{A}$ :  $O(\log T)$  layers.

Solvable  $\mathcal{A}:\widetilde{oldsymbol{O}}ig(|oldsymbol{Q}|^2ig)$  layers.

- 1. Can we improve  $O(\log T)$  in general? Likely not.
  - Constant-depth Transformers  $\subset TC^0$  [Merrill et al. 21, Li et al. 24; survey by Strobl et al. 23].
  - Some automata are  $NC^1$  complete (e.g.  $S_5$ ).
  - $\rightarrow \Omega(\log T)$  unless  $TC^0 = NC^1$ .
- 2. What is special about Transformers?
  - Parameter sharing: T times more efficient in size than a circuit.
  - **Parallelism**: can be even shallower than Krohn-Rhodes.
    - O(1)-layer for all abelian groups and a special non-abelian group.

#### Representational results $\rightarrow$ practical insights?

What solutions are found in practice?

#### Transformers can simulate automata in practice

19 automata, across various depths.

- Good in-distribution accuracy.
- Deeper factorization  $\rightarrow$  more layers.
  - Rows ordered by #factorization steps.

#### Constructions ≠ empirical solutions

There are multiple constructions.

Infinitely many

•  $O(\log T)$  for all  $\mathcal{A}$ ;  $\tilde{O}(|Q|^2)$  if solvable.

non-solvable

| Transformer | depth L | (T=100) |
|-------------|---------|---------|
|-------------|---------|---------|

|   |                             | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 12   | 16   |           |
|---|-----------------------------|------|------|------|------|------|------|------|------|------|------|-----------|
|   | Dyck                        | 99.3 | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |           |
|   | Grid9                       | 92.2 | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |           |
|   | <i>C</i> <sub>2</sub>       |      | 99.8 | 99.9 | 100  | 100  | 99.5 | 100  | 99.7 | 100  | 100  |           |
|   | <i>C</i> <sub>3</sub>       | 54.6 | 94.6 | 96.7 | 99.4 | 100  | 100  | 99.8 | 100  | 100  | 100  | a         |
|   | C <sub>2</sub> <sup>3</sup> | 65.0 | 77.9 | 99.9 | 97.9 | 100  | 99.8 | 98.2 | 99.9 | 95.9 | 80.6 | automaton |
|   | $D_6$                       | 25.4 | 27.2 | 47.4 | 75.2 | 100  | 100  | 100  | 100  | 100  | 100  | lato      |
|   | $D_8$                       | 45.6 | 98.0 | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | Ъ         |
|   | Q <sub>8</sub>              | 31.6 | 49.2 | 59.6 | 60.4 | 73.5 | 99.3 | 100  | 100  | 100  | 100  |           |
|   | A <sub>5</sub>              | 12.5 | 23.1 | 32.5 | 46.7 | 71.2 | 98.8 | 100  | 100  | 100  | 100  |           |
| • | <b>S</b> 5                  | 7.9  | 11.8 | 14.6 | 19.7 | 26.0 | 28.4 | 32.8 | 51.8 | 97.2 | 99.9 |           |

# Infinitely many solutions to Dyck

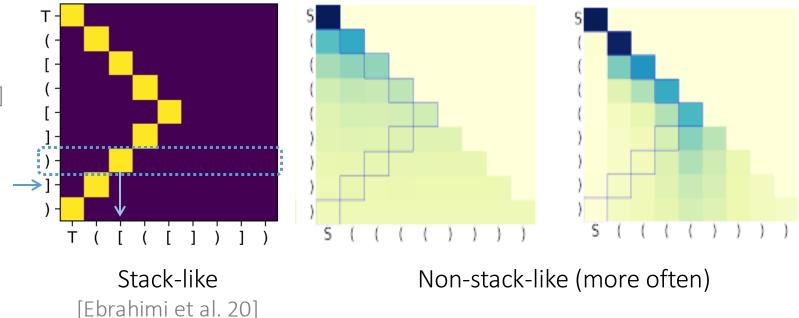
**Dyck language**: balanced parentheses  $\rightarrow$  capturing *hierarchical* structures.

valid ([]) invalid ([)]

The puppy (which my friend (who lives in NYC) adopted) is fluffy.

Processed by a stack or a **2-layer** Transformer. [Ebrahimi et al. 20, Yao et al. 21]

e.g. visualizing 2<sup>nd</sup> layer attention patterns.



### Infinitely many solutions to Dyck

**Dyck language**: balanced parentheses  $\rightarrow$  capturing *hierarchical* structures.

valid ([]) invalid ([)]

Processed by a stack or a **2-layer** Transformer. [Ebrahimi et al. 20, Yao et al. 21]

e.g. visualizing 2<sup>nd</sup> layer attention patterns.

*Infinitely many* solutions, even with a *constrained* 1<sup>st</sup> layer (i.e. output depending only on type and depth).

[WL<u>L</u>R 23]: all 2-layer Transformers solving Dyck suffice and need to satisfy a *balanced condition*.

~ a Transformer's version of the pumping lemma. (informal:  $xyz \in L \rightarrow xy^*z \in L$ .)

Attention maps may not reflect the task structure.

• Including *non-hierarchical* patterns, e.g. uniform attn.

### Infinitely many solutions to Dyck

**Dyck language**: balanced parentheses  $\rightarrow$  capturing *hierarchical* structures.

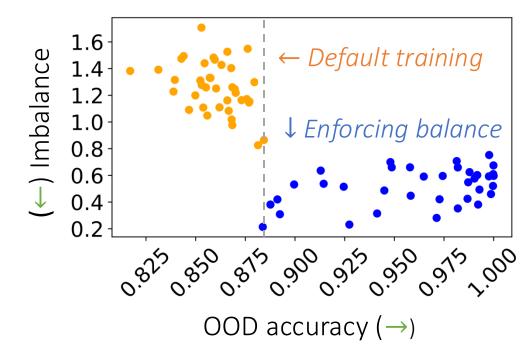
valid ([]) invalid ([)]

Processed by a stack or a **2-layer** Transformer. [Ebrahimi et al. 20, Yao et al. 21]

*e.g. visualizing 2<sup>nd</sup> layer attention patterns.* 

*Infinitely many* solutions, even with a *constrained* 1<sup>st</sup> layer (i.e. output depending only on type and depth).

• The <u>balanced condition</u> as a regularizer.



#### Representational results $\rightarrow$ practical insights?

- Constructions ≠ Practical solutions.
   [WLLR23] Infinitely many solutions even for a 2-layer model on Dyck.
- Why does Transformer struggle OOD? [LAGKZ23]

### A simple(st) language based on the memory unit

Recall: one (of the 2) base factor of automata decomposition.

**1-bit memory unit**   $Q = \{0,1\}, \Sigma = \{\sigma_0, \sigma_1, \bot\}$   $\downarrow, \sigma_\bullet$   $\downarrow,$ 

Flip-Flop Language (FFL): sequences of instruction-value pairs.

- 3 instructions: w (write), i (ignore), r (read).
- 2 values:  $\{0, 1\} Constraint$ : the value for **r** must be the same as the last **w**.

# Flip-Flop Language Modeling (FFLM)

Flip-Flop Language (FFL): instruction-value pairs; **r** recalls the most recent **w**.

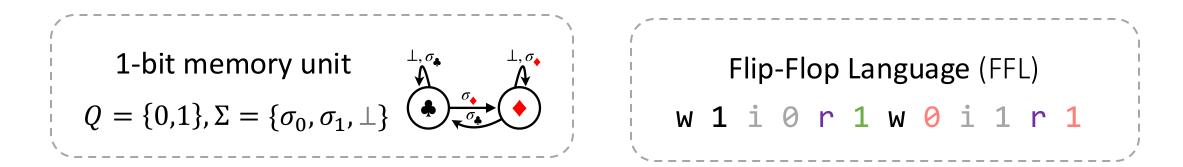
Task: supervise & evaluate only on the values following r.

• Deterministic task; training signals not "drawn" by irrelevant tokens.

**Data distribution**: FFL( $p_i$ ), where  $p_i$  can vary across train/test.

• 
$$p_w = p_r = (1 - p_i)/2$$
,  $p_0 = p_1 = 0.5$ . Fix length  $T = 512$ .

# Why Flip-Flop?

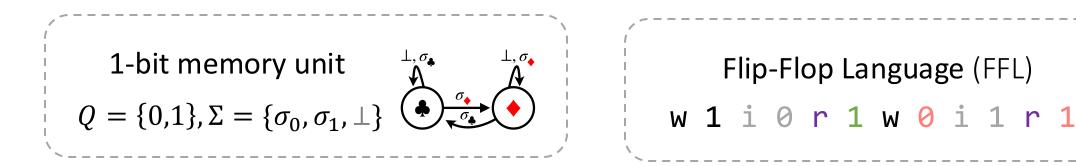


An atomic unit embedded in many reasoning tasks (e.g. automata).

• (1-hop) Induction head [Olsson et al. 22]

w1i0r1w0i1r1

# Why Flip-Flop?

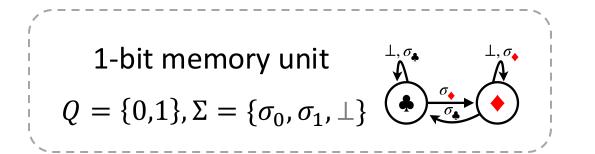


An atomic unit embedded in many reasoning tasks (e.g. automata).

- (1-hop) Induction head [Olsson et al. 22]
- Long-range dependency

```
w1i0r1...i1r
```

# Why Flip-Flop?



```
Flip-Flop Language (FFL)
w 1 i 0 r 1 w 0 i 1 r 1
```

An atomic unit embedded in many reasoning tasks (e.g. automata).

- (1-hop) Induction head [Olsson et al. 22] Irrele
- Long-range dependency
- Closed-domain hallucination [Dziri et al. 22, OpenAl 23]

```
[Shi et al. 23]
Alice put the keys
```

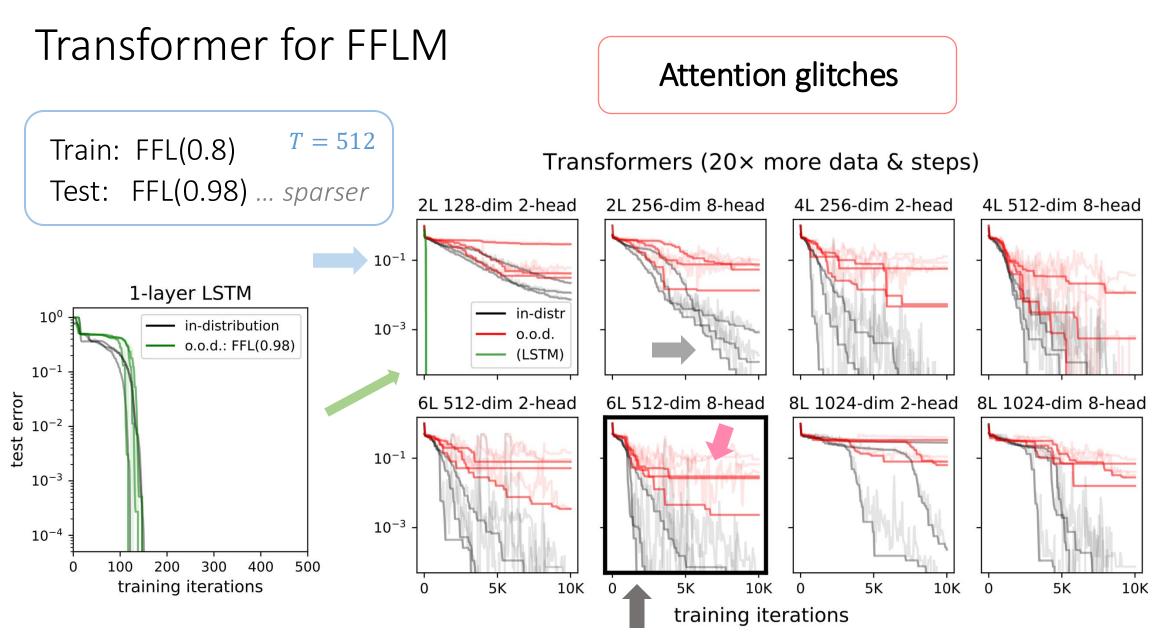
on the table.

```
Bob came in later.
...
Bob left and took
```

the keys from

```
Updated semantics
[Miceli-Barone et al. 23]
```

```
def f():
    sum = len
    . . .
    x = [1,2,3]
    . .
    assert(sum(x))==3
```

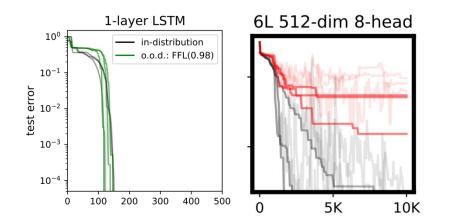


#### Attention Glitches

Def: imperfect hard retrieval.

- Transformers exhibit a long tail of errors.
- 1-layer LSTMs extrapolate *perfectly*.
- Even commercial models are not robust.

FFL(
$$p_i$$
):  $p_w = p_r = (1 - p_i)/2$ .



```
User: Hi, let's play a game. There are 3
instructions: "write", "read", and "ignore".
...
For example, ...
Now, please answer the following sequence: ...
```

| <u>GP</u>            | T 40 | <u>2: 5</u> | 50%  | aco | 2   |    |    |    |   |
|----------------------|------|-------------|------|-----|-----|----|----|----|---|
| 1,                   | 0,   | 0,          | 1,   | 1,  | 0,  | 0, | 1, | 1, | 0 |
| _                    | -    | _           | -    | _   | _   | _  | _  | _  |   |
| <u>GPT o1-mini</u> : |      |             | 100% |     | aco |    |    |    |   |

#### Cause of attention glitches?

FFL(
$$p_i$$
):  $p_w = p_r = (1 - p_i)/2$ .

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

2 potential causes, each related to 1 type of OOD error.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

$$a_{\max} = \underbrace{\frac{\exp(z_{\max})}{\exp(z_{1}) + \dots + \exp(z_{t})} + \exp(z_{\max})}_{to \ be \ ignored}$$

- Also identified in prior work [Hahn 20, Chiang & Cholak 22].
- Possible mitigation: Switching to hard attention.

#### Cause of attention glitches?

$$FFL(p_i): p_w = p_r = (1 - p_i)/2.$$

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

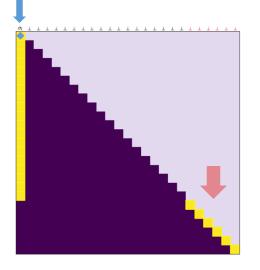
2 potential causes, each related to 1 type of OOD error.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

Position over content: lead to wrong argmax. (e.g. sparser w, length gen)

1-bit memory unit  $Q = \{0,1\}, \Sigma = \{\sigma_0, \sigma_1, \bot\}$ 

Experiments: 1-layer, 1-head models.



# Mitigating attention glitches

#### Data & scale

• Incorporating OOD data.

Performance ceiling; a few samples can help. e.g. "priming" [Jelassi et al. 23]

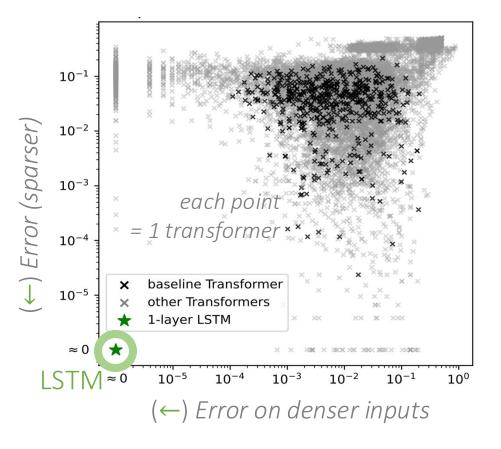
• Resource scaling: larger, train for longer. Fresh samples → better coverage.

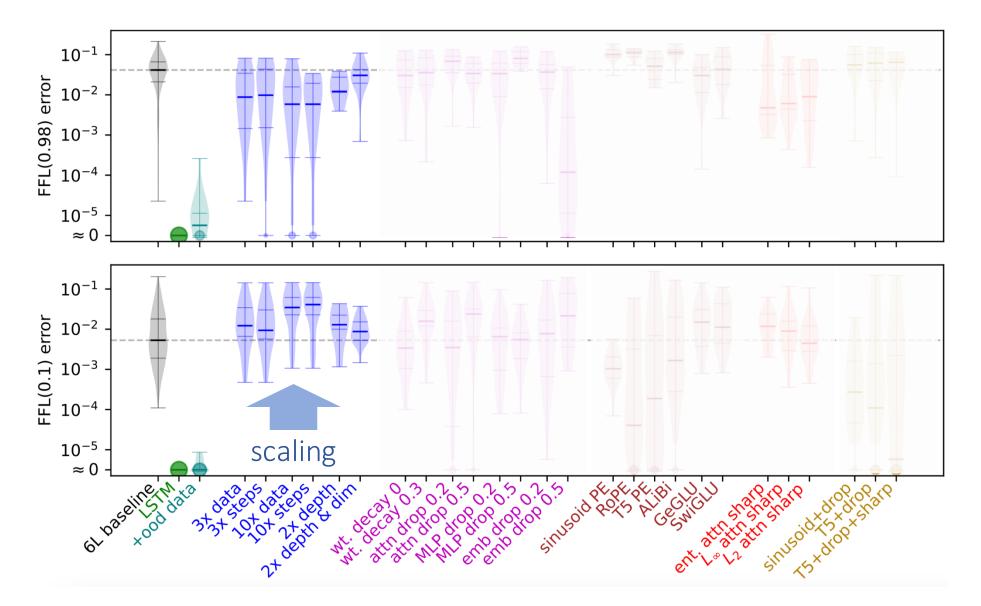
#### Algorithmic control

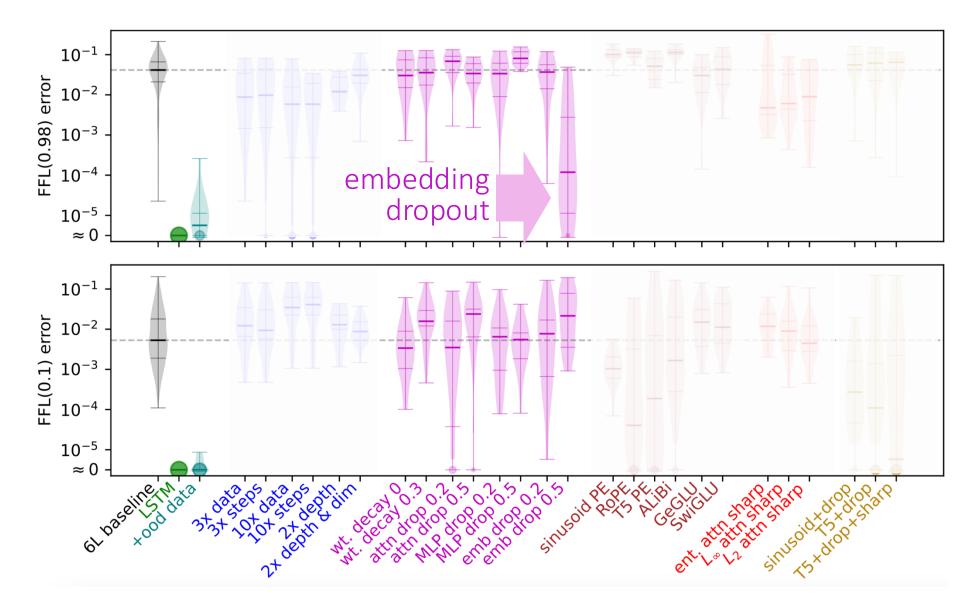
• Regularization

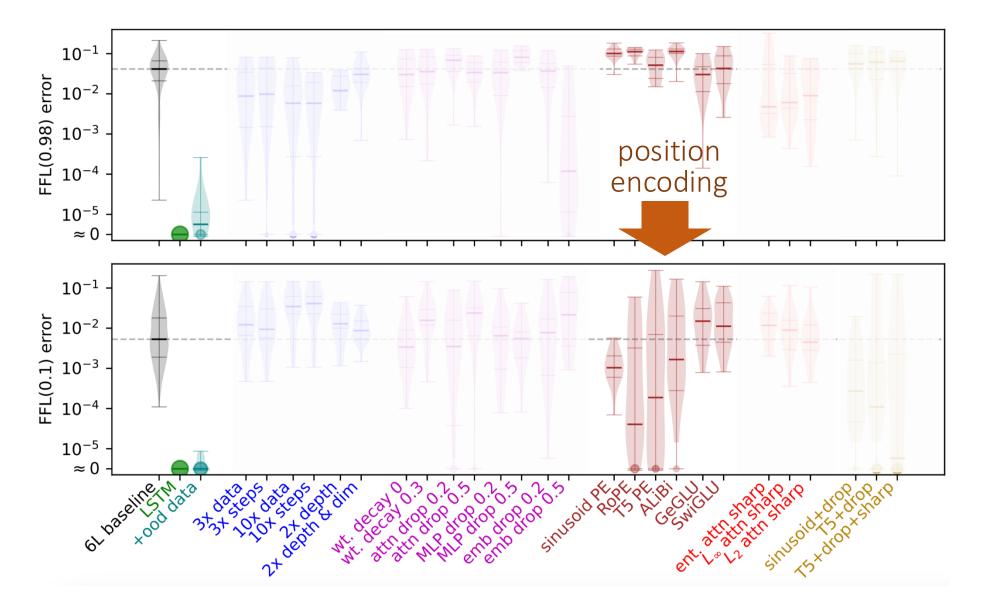
weight decay, dropout, attention sparsity.

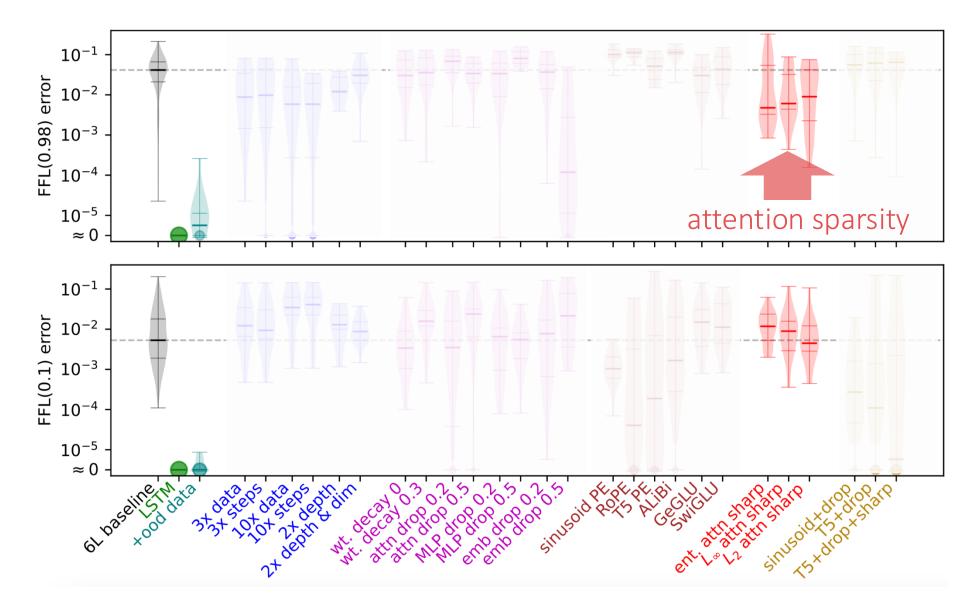
• Architectural choices position encoding, activation.

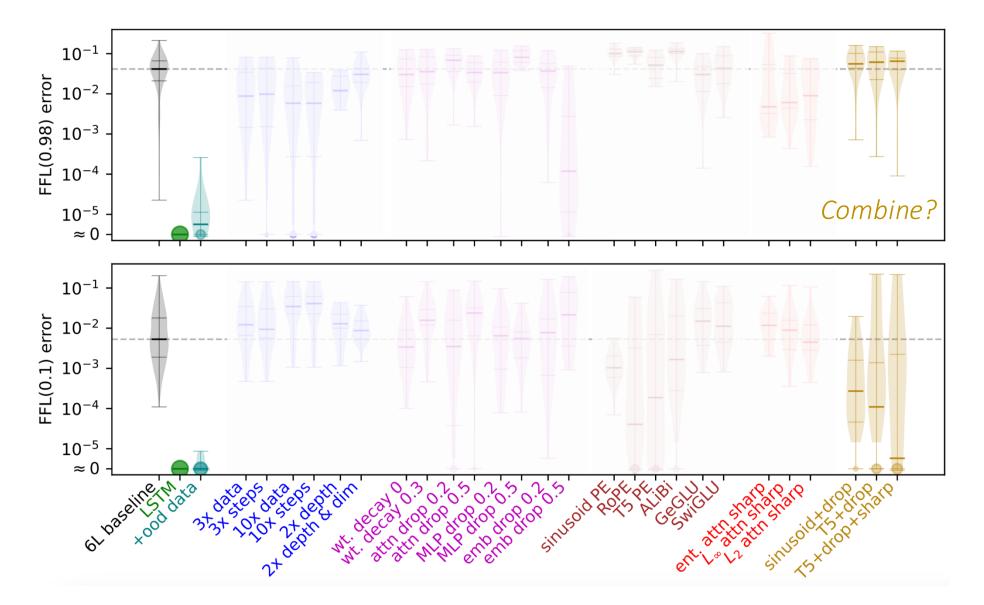








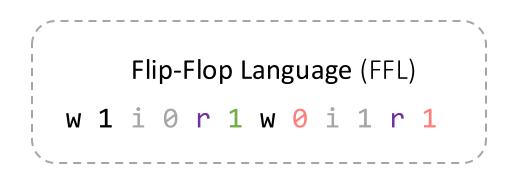


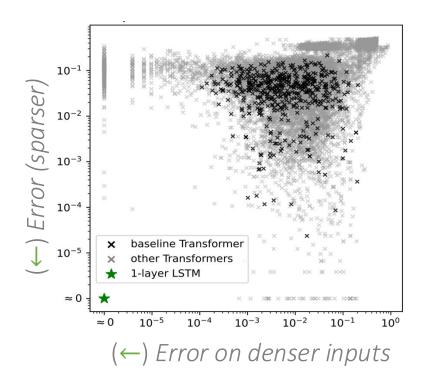


#### OOD error: attention glitches

Transformer's imperfect hard retrieval.

- Transformers exhibit a long tail of errors, even on an *extremely simple* task.
  - Goal: learn as well as LSTM?
- Two inherent limitations of Transformers.
  - Imply various errors; no good mitigation.
- Scaling is no panacea. Data matters.
  - ... recurring theme in the program.

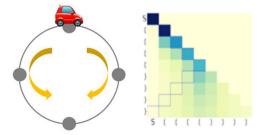




#### Summary

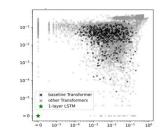
0. Formalizing sequential reasoning. Finite-state automata:  $\mathcal{A} = (Q, \Sigma, \delta)$ 

1. Capabilities – Shallow solutions to sequential tasks.  $O(\log T), \tilde{O}(|Q|^2)$ -layer "shortcuts" for T transitions, among infinitely many solutions.



2. Limitations – Imperfect out-of-distribution performance.

Inherent limitations of Transformers. Data is key.



Proper *abstraction/"sandbox"* for bridging theory and practice

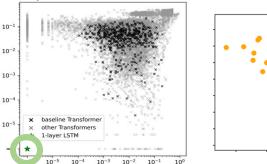
1. Connect to classic theory toolkits for understanding modern ML.

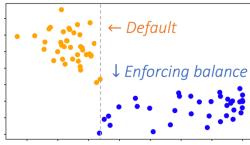
Representability, various design choices.

- Automata theory
- Formal languages
- Circuit complexity
- Communication complexity

 Lightweight experiments for (theory-inspired) practical insights.

Diagnoses and mitigations.



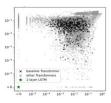


... and vice versa! ... e.g. a O(1)-layer solution

#### Capabilities & Limitations of Transformers in Sequential Reasoning

0. Formalizing reasoning with  $\mathcal{A} = (Q, \Sigma, \delta)$ .

- 1. Capabilities Shallow solutions to sequential tasks.  $O(\log T), \tilde{O}(|Q|^2)$ -layer "shortcuts", among  $\infty$  solutions.
- 2. Limitations Imperfect out-of-distribution performance. Inherent limitations of Transformers. Data is key.







Jordan T. Ash

Surbhi Goel

Akshay Krishnamurthy



Yuchen Li











Cyril Zhang

