
Capabilities and Limitations of Transformers
in sequential reasoning

Bingbin Liu

Carnegie Mellon University → Simons → Kempner (Harvard)

Jordan
T. Ash

Surbhi
Goel

Akshay
Krishnamurthy

Andrej
Risteski

Yuchen
Li

Kaiyue
Wen

Cyril
Zhang

This talk

2

2. (Practical) Limitations – Imperfect out-of-distribution performance.

Causes and mitigations.

1. (Theoretical) Capabilities – Shallow solutions to sequential tasks.

Tools from Krohn-Rhodes theory and formal languages.

0. Formalizing reasoning.

Finite-state automata

Sequential reasoning tasks

3

x = 1

for _ in range(10):

 x = x**2 + 1

print(x)

program

1
× (-1)

 × (-1)
×1
…

arithmetic

Bobo is a corgi.

A corgi is a dog.

A dog is a mammal.

Is Bobo a mammal?

multi-hop reasoning
(polysyllogism)

Universal presence in diverse forms.

Formal grammar Automata

context-sensitive

Formalizing sequential reasoning

4

1 = −1 0,

−1 = −1 1,
for the exponents:

Finite-state automata
(regular languages)

aka. parity counter
1

× (-1)
 × (-1)

×1
…

arithmetic

0 0
1

1
even odd

regular

context-free

recursively
enumerable

finite

push-down

linear bounded

Turing machine

Sequential reasoning via automata

states inputs transitions

𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡

(𝑄 is finite)

𝒜 = 𝑄, Σ, 𝛿

parity counter 1-bit memory unit

Reasoning = simulating the dynamics of 𝒜.

5

(no-op)

Task: Simulating automata

Simulating 𝒜: learn a seq2seq function for sequence length 𝑇.

𝒜 = 𝑄, Σ, 𝛿

states, inputs, transitions

6

𝜎1 𝜎2 ⋯ 𝜎𝑇

⊂ 𝑄𝑇 (states)

Input:

𝑞1 𝑞2 ⋯ 𝑞𝑇

⊂ Σ𝑇 (alphabet)

Output:

Model (Transformer/RNN)

The Transformer layer

7

𝑙𝑡ℎ layer, position 𝑖 ∈ 𝑇 : 𝑥𝑖
(𝑙)

= 𝜙(σ𝑗≤𝑖 𝛼𝑖𝑗
𝑙 𝑥𝑗

𝑙−1)

1. uniform attention / 𝜶𝒊 = [
1

T
,

1

T
, ⋯ ,

1

𝑇
] 2. sparse attention / 𝜶𝒊 = [0, ⋯ 1, 0, ⋯]

Computation parallel across positions.
attention scores: σ𝑗 𝛼𝑖𝑗 = 1

e.g. average, sum. e.g. selection.

parameters

𝜙 𝜙

Architecture choices

Recurrent Neural Nets (RNNs)

sequential across positions

Natural for 𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡

𝑻 positions

8

Transformer

parallel across positions

𝑳 layers

sequential across layers

𝐿 (#layers) ≪ 𝑇 (# positions)

parallel

A parallel model for a sequential task?

9

parity

Different ways to simulate automata

Simulating = mapping from (𝜎1, 𝜎2, ⋯ , 𝜎𝑇) ⊂ Σ𝑇 to 𝑞1, 𝑞2, ⋯ , 𝑞𝑇 ⊂ 𝑄𝑇.

e.g. parity

Iterative solution

𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡 = 𝑞𝑡−1 ⊕ 𝜎𝑡

Parallel solution

𝑞𝑡 = σ𝜏≤𝑡 𝜎𝜏 mod 2

“RNN solutions” “Transformer solutions”

𝒜 = 𝑄, Σ, 𝛿

states, inputs, transitions

𝑇

𝐿=1

Shortcut
𝑜(𝑇) # sequential steps

10

Solutions of Reasoning

𝑞1

𝑞2

𝑞0 𝜎1 𝜎2 𝜎3 𝜎𝑇

𝑞3

𝑞𝑇

…

iterative state emulation

Sequential solutions

(Thm 1) 𝑶(𝐥𝐨𝐠 𝑻) layers

By 𝛿’s definition;
 natural for RNNs

Shortcuts (#steps = 𝑜(𝑇))

𝒜 = 𝑄, Σ, 𝛿 , 𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡 .

steps = # sequential computation steps

11

Transformer can simulate 𝒜 with:

(Thm 2) ෩𝑶 𝑸 𝟐 layers

(# steps = 𝑇)

Task structure?

Why Transformer?

𝑂(log 𝑇) layers

Goal: compute 𝑞𝑡 = 𝛿 ⋅, 𝜎𝑡 ∘ ⋯ ∘ 𝛿 ⋅, 𝜎1 (𝑞0), 𝑡 ∈ [𝑇].

parity counter

𝛿 ⋅, 0 =
1 0
0 1

 ,

function matrix

𝛿 ⋅, 𝜎 : 𝑄 → 𝑄

composition multiplication

𝛿 ⋅, 1 =
0 1
1 0

𝒜 = 𝑄, Σ, 𝛿 ,
𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡 .

12

associativity

1+0 1+1

1+0

𝑂 log2 𝑇

depth-width tradeoff

How to get 𝑜(log 𝑇) layers?

13

We already have positive results.

• Parity: only need to count #1s.

Counting works for commutative function composition: 𝑂 1 layers.

How about non-commutative compositions?

𝑓 ∘ 𝑔 = 𝑔 ∘ 𝑓

𝑓 ∘ 𝑔 ≠ 𝑔 ∘ 𝑓

𝑞𝑡 = σ𝜏≤𝑡 𝜎𝜏 mod 2

Decomposition

𝑞𝑡 = 𝛿 ⋅, 𝜎𝑡 ∘ ⋯ ∘ 𝛿 ⋅, 𝜎1 (𝑞0)

14

Decomposition: example

1. Direction = parity (sum) of 𝑈. (parity: {1, -1} {0, 1})

2. Position = signed sum mod 4 : sign = parity of 𝑈.

𝑂(1) layer each

𝑞0 𝐷 𝐷 𝐷 𝑈 𝐷 𝐷 𝑈 𝑈 𝐷

Parity: 1 1 1 1 -1 -1 -1 1 -1 -1 →

Signed sum: 0 1 1 1 0 -1 -1 0 0 -1 → 0

𝑄 = { , } × 0,1,2,3 , Σ = {𝐷(drive), 𝑈(U−turn)}.
1, -1

1

0

→ 𝑞𝑡?

𝒜 = 𝑄, Σ, 𝛿 , 𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡 .

𝑓 ∘ 𝑔 ≠ 𝑔 ∘ 𝑓

15

Decomposition: general

Transformation semigroup: 𝒯 𝒜 ≔ 𝛿 ⋅, 𝜎 ∶ 𝜎 ∈ Σ under composition.

What are we decomposing?

A generalization of group, satisfying only associativity.

𝛿 ⋅, 0 =
1 0
0 1

 ,

𝛿 ⋅, 1 =
0 1
1 0

cyclic group 𝐶2

𝒯 𝒜
0

1

parity counter

memory unit

𝛿(⋅, 𝑑𝑓) =
0 1
0 1

… singular → semigroup

16

Decomposition: ෨𝑂 𝑄 2 layers

For a subset of 𝒜, its 𝒯(𝒜) can be decomposed into 2 base factors [Krohn-Rhodes]:

uniform attention sparse attention

𝛿 𝑞, 𝜎 = 𝑞 + 𝜎 mod 𝑝
𝛿 𝑞, 𝜎 = 𝜎,
𝛿 𝑞, ⊥ = 𝑞.

mod counter memory unit

• Why Transformer: Each factor representable by 1 Transformer layer.

• Number of factors is ෨𝑂(𝑄 2).

෨𝑂(𝑄 2) layers

𝒜 = 𝑄, Σ, 𝛿 ,
𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡 .

(solvable)

Solutions of Reasoning

𝑞1

𝑞2

𝑞0 𝜎1 𝜎2 𝜎3 𝜎𝑇

𝑞3

𝑞𝑇

…

iterative state emulation

Sequential solutions

(Thm 1) 𝑶(𝐥𝐨𝐠 𝑻) layers.

Shortcuts (#steps = 𝑜(𝑇))

𝒜 = 𝑄, Σ, 𝛿 , 𝑞𝑡 = 𝛿 𝑞𝑡−1, 𝜎𝑡 .

steps = # sequential computation steps

17

Transformer can simulate 𝒜 with:

(Thm 2) ෩𝑶 𝑸 𝟐 layers.

associativity
tree: divide and conquer

algebraic structure

Krohn-Rhodes decomposition

by 𝛿 or RNNs.

#steps = 𝑇,

(solvable 𝒜 only)

18

1. Can we improve 𝑂(log 𝑇) in general? Likely not.

• Constant-depth Transformers ⊂ 𝑇𝐶0 [Merrill et al. 21, Li et al. 24; survey by Strobl et al. 23].

• Some automata are 𝑁𝐶1 complete (e.g. 𝑆5).

→ Ω(log 𝑇) unless 𝑇𝐶0 = 𝑁𝐶1.

2. What is special about Transformers?

• Parameter sharing: 𝑇 times more efficient in size than a circuit.

• Parallelism: can be even shallower than Krohn-Rhodes.

All 𝒜: 𝑶(𝐥𝐨𝐠 𝑻) layers. Solvable 𝒜 : ෩𝑶 𝑸 𝟐 layers.Remarks

• 𝑂(1)-layer for all abelian groups and a special non-abelian group.

19

Representational results → practical insights?

What solutions are found in practice?

Transformers can simulate automata in practice

19 automata, across various depths.

26

• Good in-distribution accuracy.

• Rows ordered by #factorization steps.

• Deeper factorization → more layers.

Transformer depth 𝑳 (𝑇=100)

au
to

m
ato

n

non-solvable

Constructions ≠ empirical solutions

There are multiple constructions.

• 𝑂(log 𝑇) for all 𝒜; ෨𝑂(𝑄 2) if solvable.

Infinitely many

Infinitely many solutions to Dyck

21

([])

([)]

valid

invalid

for (cond) {
 x[i] = …
}

Dyck language: balanced parentheses

Processed by a stack or
a 2-layer Transformer.
[Ebrahimi et al. 20, Yao et al. 21]

The puppy (which my friend (who lives
in NYC) adopted) is fluffy.

→ capturing hierarchical structures.

Stack-like
[Ebrahimi et al. 20]

Non-stack-like (more often)

e.g. visualizing 2nd layer
attention patterns.

Infinitely many solutions, even with a constrained 1st
layer (i.e. output depending only on type and depth).

Infinitely many solutions to Dyck

22

([])

([)]

valid

invalid

Dyck language: balanced parentheses

Processed by a stack or
a 2-layer Transformer.
[Ebrahimi et al. 20, Yao et al. 21]

→ capturing hierarchical structures.

e.g. visualizing 2nd layer
attention patterns.

[WLLR 23]: all 2-layer Transformers solving Dyck
suffice and need to satisfy a balanced condition.

~ a Transformer’s version of the pumping lemma.
(informal: 𝑥𝑦𝑧 ∈ 𝐿 → 𝑥𝑦∗𝑧 ∈ 𝐿.)

• Including non-hierarchical patterns, e.g. uniform attn.

Attention maps may not reflect the task structure.

Infinitely many solutions to Dyck

23

([])

([)]

valid

invalid

Dyck language: balanced parentheses

Processed by a stack or
a 2-layer Transformer.
[Ebrahimi et al. 20, Yao et al. 21]

→ capturing hierarchical structures.

e.g. visualizing 2nd layer
attention patterns.

OOD accuracy (→)

(←
)

Im
b

al
an

ce ← Default training

↓ Enforcing balance

• The balanced condition as a regularizer.

Infinitely many solutions, even with a constrained 1st
layer (i.e. output depending only on type and depth).

24

Representational results → practical insights?

• Why does Transformer struggle OOD? [LAGKZ23]

• Constructions ≠ Practical solutions.
[WLLR23] Infinitely many solutions even for a 2-layer model on Dyck.

A simple(st) language based on the memory unit

Recall: one (of the 2) base factor of automata decomposition.

1-bit memory unit

𝑄 = 0,1 , Σ = {𝜎0, 𝜎1, ⊥}

Flip-Flop Language (FFL): sequences of instruction-value pairs.

• 3 instructions: w (write), i (ignore) , r (read).

• 2 values: {0, 1}

w 1 i 0 i 1 r 1 w 0 i 1 r 1

“flip-flop”
automata

25

– Constraint: the value for r must be the same as the last w.

Flip-Flop Language Modeling (FFLM)

Flip-Flop Language (FFL): instruction-value pairs; r recalls the most recent w.

w 1 i 0 i 1 r 1 w 0 i 1 r 1

Task: supervise & evaluate only on the values following r.

• Deterministic task; training signals not “drawn” by irrelevant tokens.

Data distribution: FFL(𝑝𝑖), where 𝑝𝑖 can vary across train/test.

• 𝑝𝑤 = 𝑝𝑟 = 1 − 𝑝𝑖 /2, 𝑝0 = 𝑝1 = 0.5. Fix length 𝑇 = 512.

26

Why Flip-Flop?

Flip-Flop Language (FFL)

w 1 i 0 r 1 w 0 i 1 r 1

An atomic unit embedded in many reasoning tasks (e.g. automata).

27

1-bit memory unit

𝑄 = 0,1 , Σ = {𝜎0, 𝜎1, ⊥}

w 1 i 0 r 1 w 0 i 1 r 1

• (1-hop) Induction head [Olsson et al. 22]

Why Flip-Flop?

Flip-Flop Language (FFL)

w 1 i 0 r 1 w 0 i 1 r 1

An atomic unit embedded in many reasoning tasks (e.g. automata).

28

1-bit memory unit

𝑄 = 0,1 , Σ = {𝜎0, 𝜎1, ⊥}

• (1-hop) Induction head [Olsson et al. 22]

• Long-range dependency

w 1 i 0 r 1 . . . i 1 r

Why Flip-Flop?

Flip-Flop Language (FFL)

w 1 i 0 r 1 w 0 i 1 r 1

An atomic unit embedded in many reasoning tasks (e.g. automata).

29

1-bit memory unit

𝑄 = 0,1 , Σ = {𝜎0, 𝜎1, ⊥}

def f():
 sum = len
 . . .
 x = [1,2,3]
 . . .
 assert(sum(x))==3

Alice put the keys
on the table.

Bob came in later.
….
Bob left and took
the keys from .

Irrelevant context
[Shi et al. 23]

Updated semantics
[Miceli-Barone et al. 23]

• (1-hop) Induction head [Olsson et al. 22]

• Long-range dependency

• Closed-domain hallucination
[Dziri et al. 22, OpenAI 23]

w 1 i 0 r 1 w 0 i 1 r 1

Transformer for FFLM

Train: FFL(0.8)

Test: FFL(0.98) … sparser

Attention glitches

𝑇 = 512

30

Attention Glitches FFL(𝑝𝒊): 𝑝𝑤 = 𝑝𝑟 = (1 − 𝑝𝑖)/2.

• Transformers exhibit a long tail of errors.

• Even commercial models are not robust.

• 1-layer LSTMs extrapolate perfectly.

Def: imperfect hard retrieval.

31

User: Hi, let's play a game. There are 3
instructions: "write", "read", and "ignore".

. . .
For example,

Now, please answer the following sequence: …

GPT 4o: 50% acc
1, 0, 0, 1, 1, 0, 0, 1, 1, 0

GPT o1-mini: 100% acc

Cause of attention glitches?

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

32

FFL(𝑝𝒊): 𝑝𝑤 = 𝑝𝑟 = (1 − 𝑝𝑖)/2.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

• Also identified in prior work [Hahn 20, Chiang & Cholak 22].

𝑎max =
exp(𝑧max)

exp 𝑧1 +⋯+exp 𝑧𝑡 +exp(𝑧𝑚𝑎𝑥)

to be ignored

• Possible mitigation: Switching to hard attention.

2 potential causes, each related to 1 type of OOD error.

Cause of attention glitches?

Not due to representation power: 2-layer 1-head suffices (Bietti et al. 23, Sanford et al. 24).

33

FFL(𝑝𝒊): 𝑝𝑤 = 𝑝𝑟 = (1 − 𝑝𝑖)/2.

Diluted soft attention: caused by more items (e.g. denser w) in the softmax.

Position over content: lead to wrong argmax.

1-bit memory unit

𝑄 = 0,1 , Σ = {𝜎0, 𝜎1, ⊥}

Experiments: 1-layer, 1-head models.

(e.g. sparser w, length gen)

2 potential causes, each related to 1 type of OOD error.

Mitigating attention glitches

• Incorporating OOD data.

 Performance ceiling; a few samples can help.
 e.g. “priming” [Jelassi et al. 23]

• Regularization
 weight decay, dropout, attention sparsity.

Data & scale

Algorithmic control

• Resource scaling: larger, train for longer.
 Fresh samples → better coverage.

• Architectural choices
position encoding, activation.

34

(←) Error on denser inputs

(←
)

Er
ro

r
(s

pa
rs

er
)

each point
= 1 transformer

LSTM

Surprisingly hard to fix: no mitigation helps with both

35

scaling

Surprisingly hard to fix: no mitigation helps with both

36

embedding
dropout

Surprisingly hard to fix: no mitigation helps with both

37

position
encoding

Surprisingly hard to fix: no mitigation helps with both

38

attention sparsity

Surprisingly hard to fix: no mitigation helps with both

39

Combine?

OOD error: attention glitches

• Transformers exhibit a long tail of errors,
even on an extremely simple task.

• Goal: learn as well as LSTM?

Transformer’s imperfect hard retrieval.

40

• Scaling is no panacea. Data matters.

• … recurring theme in the program.

• Two inherent limitations of Transformers.

• Imply various errors; no good mitigation.

Flip-Flop Language (FFL)

w 1 i 0 r 1 w 0 i 1 r 1

(←) Error on denser inputs

(←
)

Er
ro

r
(s

pa
rs

er
)

Summary

41

2. Limitations – Imperfect out-of-distribution performance.

Inherent limitations of Transformers. Data is key.

1. Capabilities – Shallow solutions to sequential tasks.

𝑂(log 𝑇), ෨𝑂 𝑄 2 -layer “shortcuts” for 𝑇 transitions,

among infinitely many solutions.

0. Formalizing sequential reasoning.

Finite-state automata: 𝒜 = (𝑄, Σ, 𝛿)

42

2. Lightweight experiments for
 (theory-inspired) practical insights.

Diagnoses and mitigations.

… and vice versa! … e.g. a 𝑂(1)-layer solution

Proper abstraction/“sandbox”
for bridging theory and practice

1. Connect to classic theory toolkits
 for understanding modern ML.

Representability, various design choices.

• Circuit complexity

• Communication complexity

• Formal languages

• Automata theory

0. Formalizing reasoning with 𝒜 = (𝑄, Σ, 𝛿).

2. Limitations – Imperfect out-of-distribution performance.

Inherent limitations of Transformers. Data is key.

1. Capabilities – Shallow solutions to sequential tasks.

𝑂(log 𝑇), ෨𝑂 𝑄 2 -layer “shortcuts”, among ∞ solutions.

Jordan
T. Ash

Surbhi
Goel

Akshay
Krishnamurthy

Andrej
Risteski

Yuchen
Li

Kaiyue
Wen

Capabilities & Limitations of Transformers in Sequential Reasoning

Cyril
Zhang

	Slide 1: Capabilities and Limitations of Transformers
	Slide 2: This talk
	Slide 3: Sequential reasoning tasks
	Slide 4: Formalizing sequential reasoning
	Slide 5: Sequential reasoning via automata
	Slide 6: Task: Simulating automata
	Slide 7: The Transformer layer
	Slide 8: Architecture choices
	Slide 9: A parallel model for a sequential task?
	Slide 10: Different ways to simulate automata
	Slide 11: Solutions of Reasoning
	Slide 12
	Slide 13: How to get o log T layers?
	Slide 14: Decomposition: example
	Slide 15: Decomposition: general
	Slide 16: Decomposition: O Q layers
	Slide 17: Solutions of Reasoning
	Slide 18: Remarks
	Slide 19
	Slide 20: Transformers can simulate automata in practice
	Slide 21: Infinitely many solutions to Dyck
	Slide 22: Infinitely many solutions to Dyck
	Slide 23: Infinitely many solutions to Dyck
	Slide 24
	Slide 25: A simple(st) language based on the memory unit
	Slide 26: Flip-Flop Language Modeling (FFLM)
	Slide 27: Why Flip-Flop?
	Slide 28: Why Flip-Flop?
	Slide 29: Why Flip-Flop?
	Slide 30: Transformer for FFLM
	Slide 31: Attention Glitches
	Slide 32: Cause of attention glitches?
	Slide 33: Cause of attention glitches?
	Slide 34: Mitigating attention glitches
	Slide 35: Surprisingly hard to fix: no mitigation helps with both
	Slide 36: Surprisingly hard to fix: no mitigation helps with both
	Slide 37: Surprisingly hard to fix: no mitigation helps with both
	Slide 38: Surprisingly hard to fix: no mitigation helps with both
	Slide 39: Surprisingly hard to fix: no mitigation helps with both
	Slide 40: OOD error: attention glitches
	Slide 41: Summary
	Slide 42
	Slide 43
	Slide 44: Appendix
	Slide 45: Transformation semigroups
	Slide 46: What about semigroups?
	Slide 47: Krohn-Rhodes Intuitions
	Slide 48: Decomposition: the glue
	Slide 49: The gridworld automata
	Slide 50: O 1 layer for
	Slide 51: Parallel boundary detector for
	Slide 52: OOD Generalization - Parity
	Slide 53: Autoregressive mode of Transformers
	Slide 54: Autoregressive mode of Transformers
	Slide 55: Training with limited supervision
	Slide 56: Direct mitigations
	Slide 57: Indirect mitigations
	Slide 58: Indirect mitigations
	Slide 59: Mitigations to Attention Glitches
	Slide 60: What solutions are found?

