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Overview



The legibility problem can be fully understood to the extent that any possible 
errors would be spotted



How to make LLM outputs more legible?

● Reinforcement Learning from Human Feedback (RLHF) [Christiano et al. 
2017]
○ Human labels

● This work: Optimize LLM chain-of-thoughts (CoTs) to be more verifiable by 
smaller LLMs ⇒ more legible by humans.
○ CoTs [Wei et al. 2022]: natural justifications for final answers
○ Small models as proxies for humans

■ Scalable oversight 
■ Continuously parameterize capability gap



Verifiability (verifier V, prover model family F)

● Completeness
○ Exists helpful prover H such that for any input in domain, it generates a correct 

solution AND verifier recognizes it as correct.
○ Empirical: H: high pass rates; verifier: high recall

● Soundness
○ For any input in domain, for any sneaky prover in F, V rejects incorrect solutions 

from S.
○ Empirical: V: high precision on (compute-limited) adversarial attacks

Inspired by Probably-Approximately Correct (PAC) verification and interactive 
proof systems (Goldwasser et al., 2021; Mutreja and Shafer, 2023)!



Verifiability training

A version of Prover-verifier games (PVG; Anil et al. 2021)

● Verifier plays first, assuming prover best response

Theorem (Informal): For unconstrained model class, finding a verifier-leading 
Stackelberg equilibrium is equivalent to finding a complete and sound protocol.



Verifiability training (empirical)

● Grade-school math dataset (GSM8k, Cobbe et al. 2021)
● Two models

○ Verifier: smaller LLM
■ (problem, CoT, answer) -> score

○ Prover: weight-shared larger LLM prompted to be either helpful or sneaky
■ (problem, role) -> (CoT, answer)

● Iterative PVG training:
○ Verifier training: Supervised training on balanced mixtures of samples from previous provers
○ Prover: Reinforcement learning on combined objective of (in)correctness and verifier score



Main results



● The verifiers show increasing soundness over training rounds
● The sneaky prover generates increasingly subtle flaws
● The helpful prover achieves higher pass rates, and human trainers judge 

them correctly more often at high rounds

Surprising: small model verifiability transfers to human legibility

Promising candidate for scalable oversight method



Setup



Notations

● Domain (X, Y)
● Problem x, Unique ground truth answer y, Proposed solution z.
● Prover policy 𝛑(z|x) from model family F.
● Verifier v(x, z) →[0, 1] “convincingness score”.

● Completeness: Exists 𝛑 in F, such that for all x in X, is_correct(x, 𝛑(x))=1 and v(x, 𝛑
(x)) = 1

● Soundness: Forall 𝛑’ in F, for all x in X, is_correct(x, 𝛑’(x))=0 implies v(x, 𝛑(x)) = 0.



From verifiability to PVG

Game setup

● Verifier’s utility: negative classification loss on uniform mixture between 
helpful and sneaky samples

● Prover’s utility: conditioned on role (with equal prob), combined reward

r satisfies: (1) any role-aligned solution > any role-misaligned solution;
(2) for any role-aligned solution, higher verifier score means higher reward



Main theorem

Assuming that H is the set of all deterministic mappings from X to Z, in the PVG 
where verifier’s utility is RV and the prover’s utility is RP , the existence of a 
verifier-leading Stackelberg equilibrium (v*, h*, s*) is necessary and sufficient for 
the completeness and soundness properties to hold for (v*, 𝛑*).

Compare to Theorem 2 of [Anil et al, 2021]: relaxed assumption on reward and 
loss.



Verifiability training
in practice



Empirical setup

● Augment GSM: 100k synthetically generated and validated samples from 
ChatGPT

● Split train dataset in half, DV and D𝝅
● Multiple rounds:

○ Verifier: relative loss based on comparisons between correct and incorrect 
solutions for each question [Bradley and Terry, 1952] [Ouyang et al. 2022]

○ Prover: Proximal policy optimization (PPO)



Reward variants

● Signed relative convincingness

● Correctness-gated convincingness

● Iterative goodharting



Results



Baseline: Optimizing for correctness leads to decrease in 
human legibility





Dynamics of verifiability training



Verifiers become more robust





Sneaky provers make more subtle mistakes





Helpful prover becomes increasingly legible





Ablations: alternative rewards



Separation may inhibit verifiability training





Ablations: relative verifier size 



Conclusion



● One way to measure and address 
the tension between model 
performance and legibility

● Future work: semi-supervised / 
unsupervised methods
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