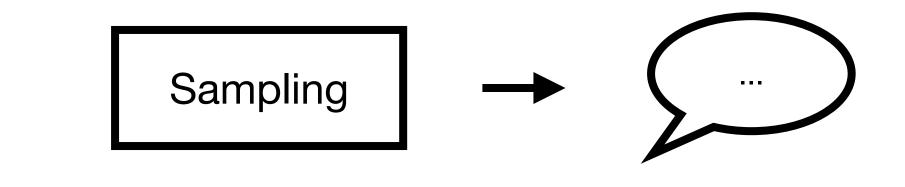
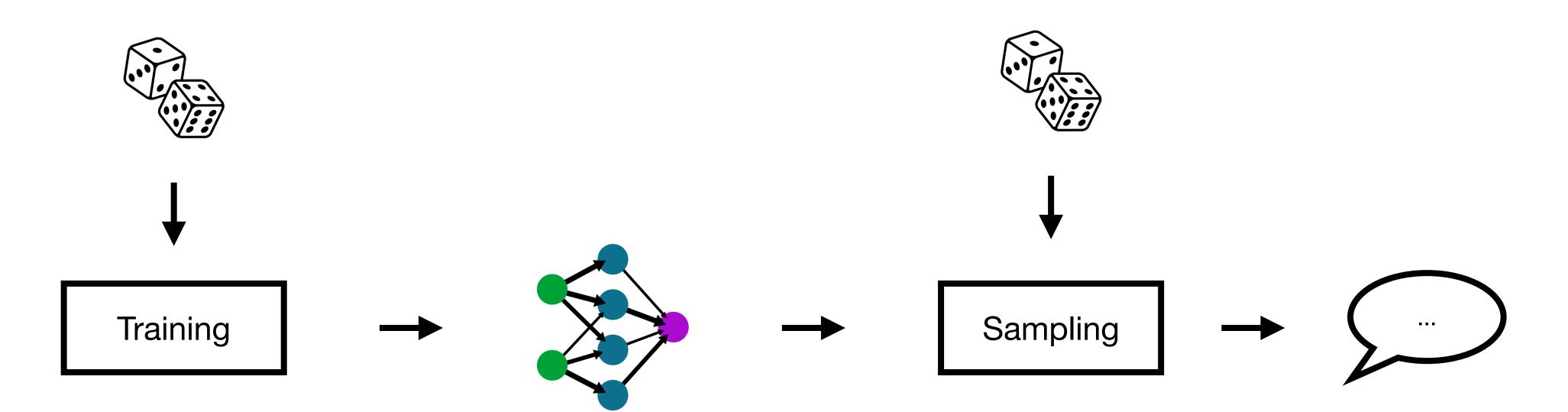
## Distortion-free mechanisms for language model provenance

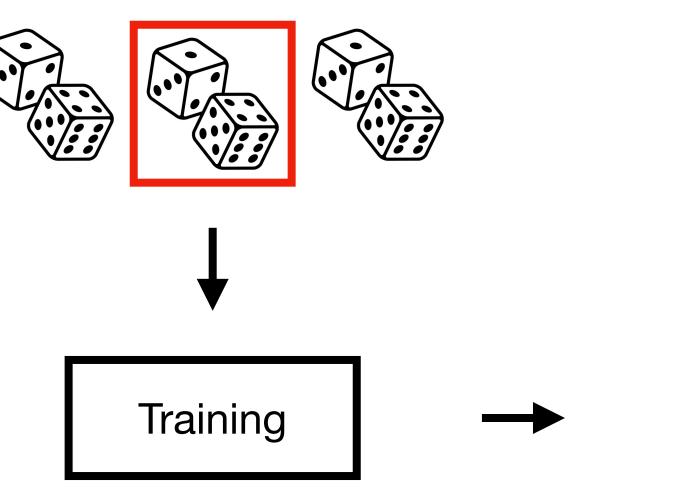
based on joint work with Sally Zhu, Ahmed Ahmed, John Thickstun, Tatsu Hashimoto, and Percy Liang

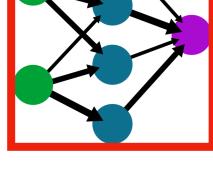
### The lifecycle of a language model

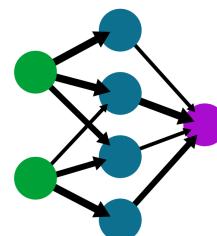


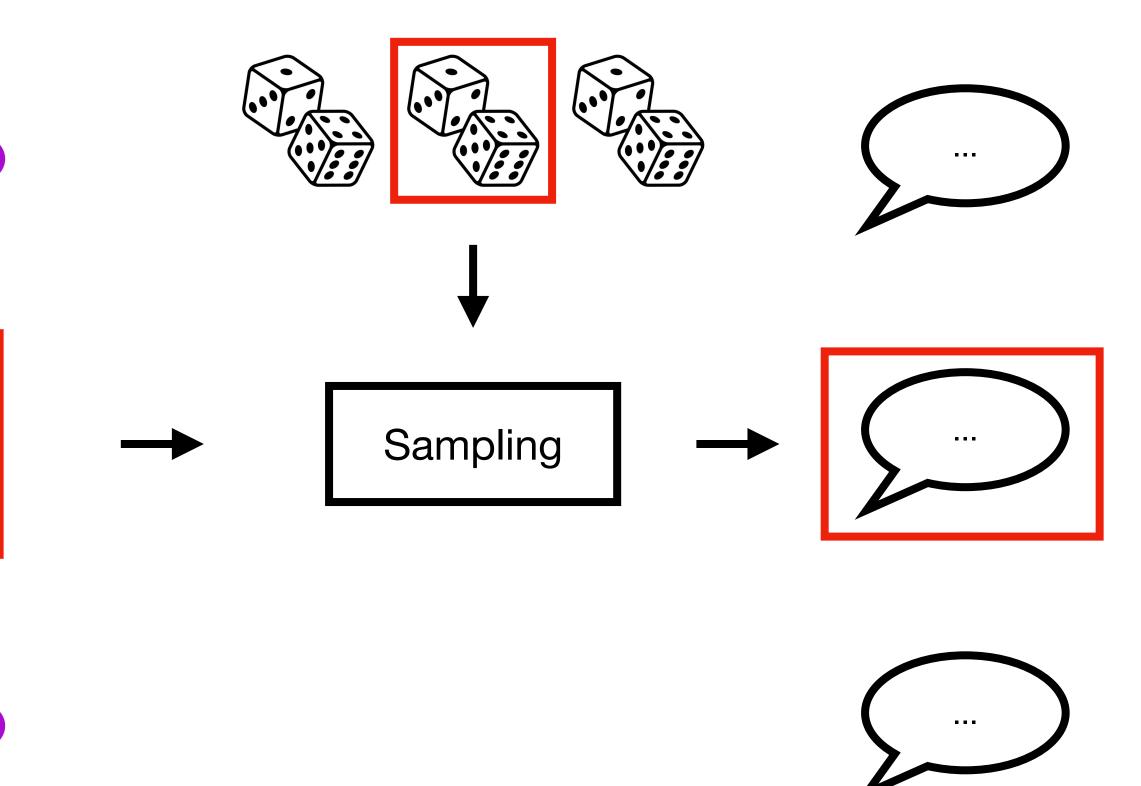


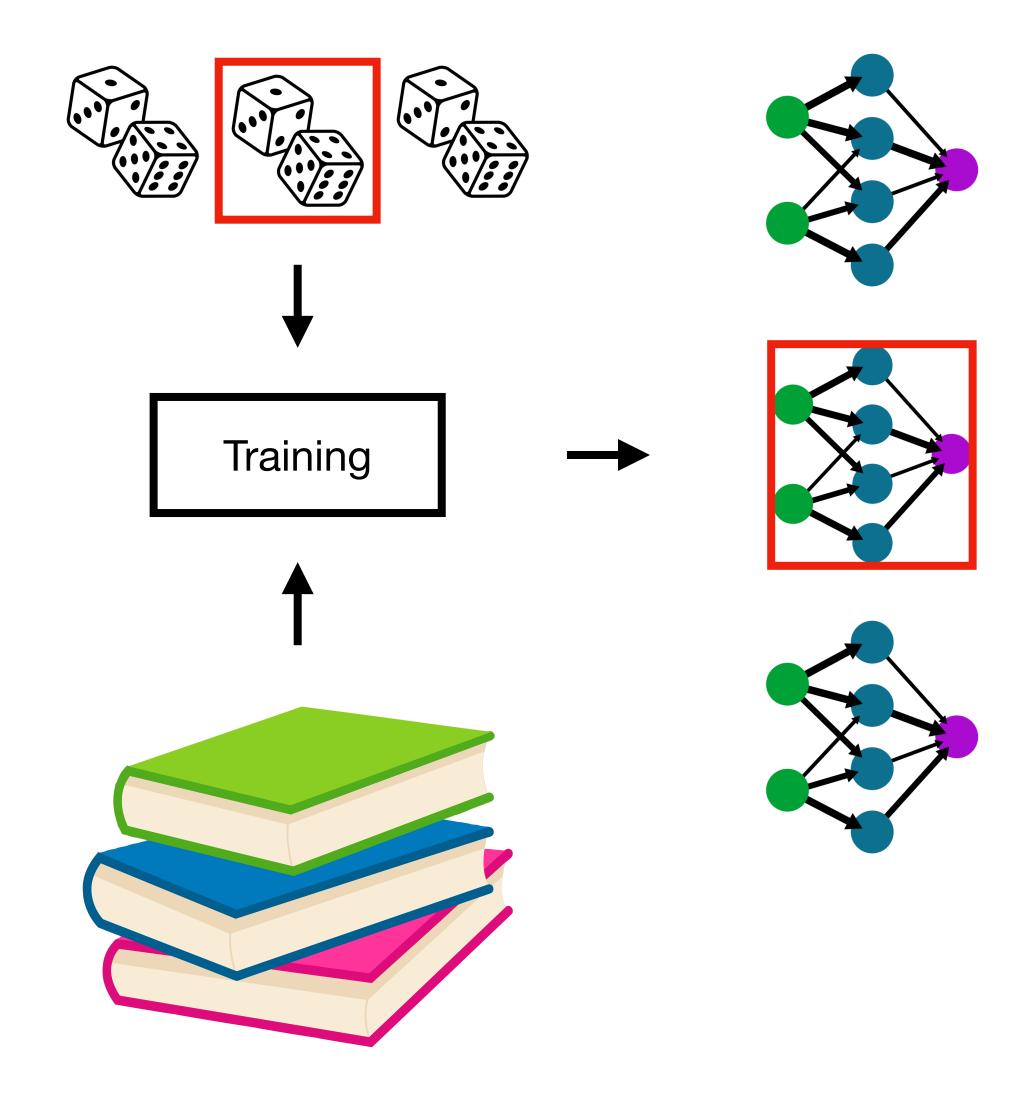


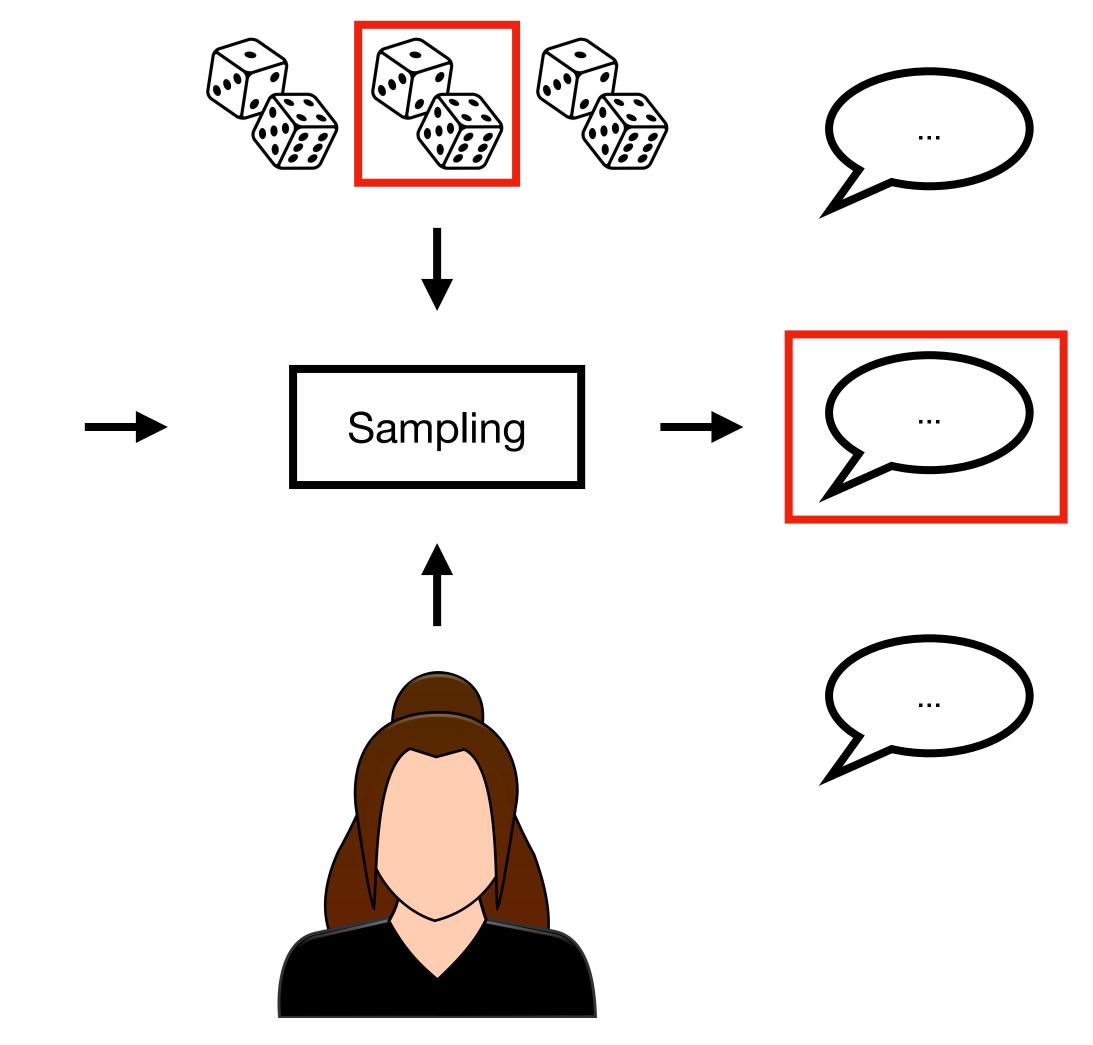
















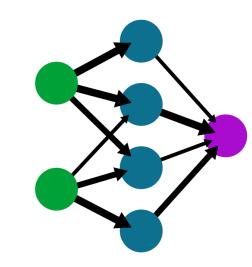


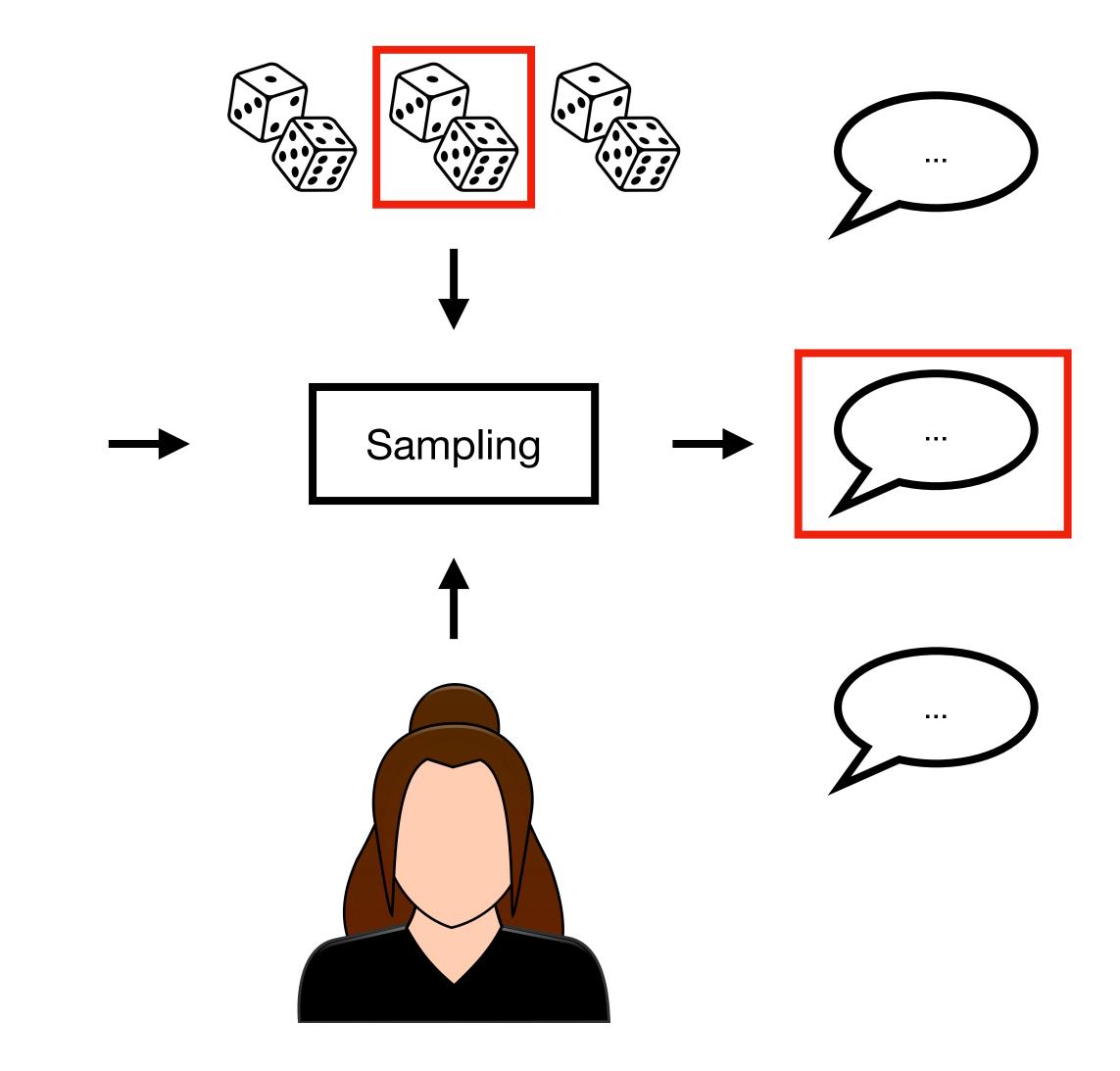
## Part 1: Text

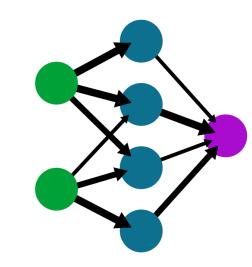


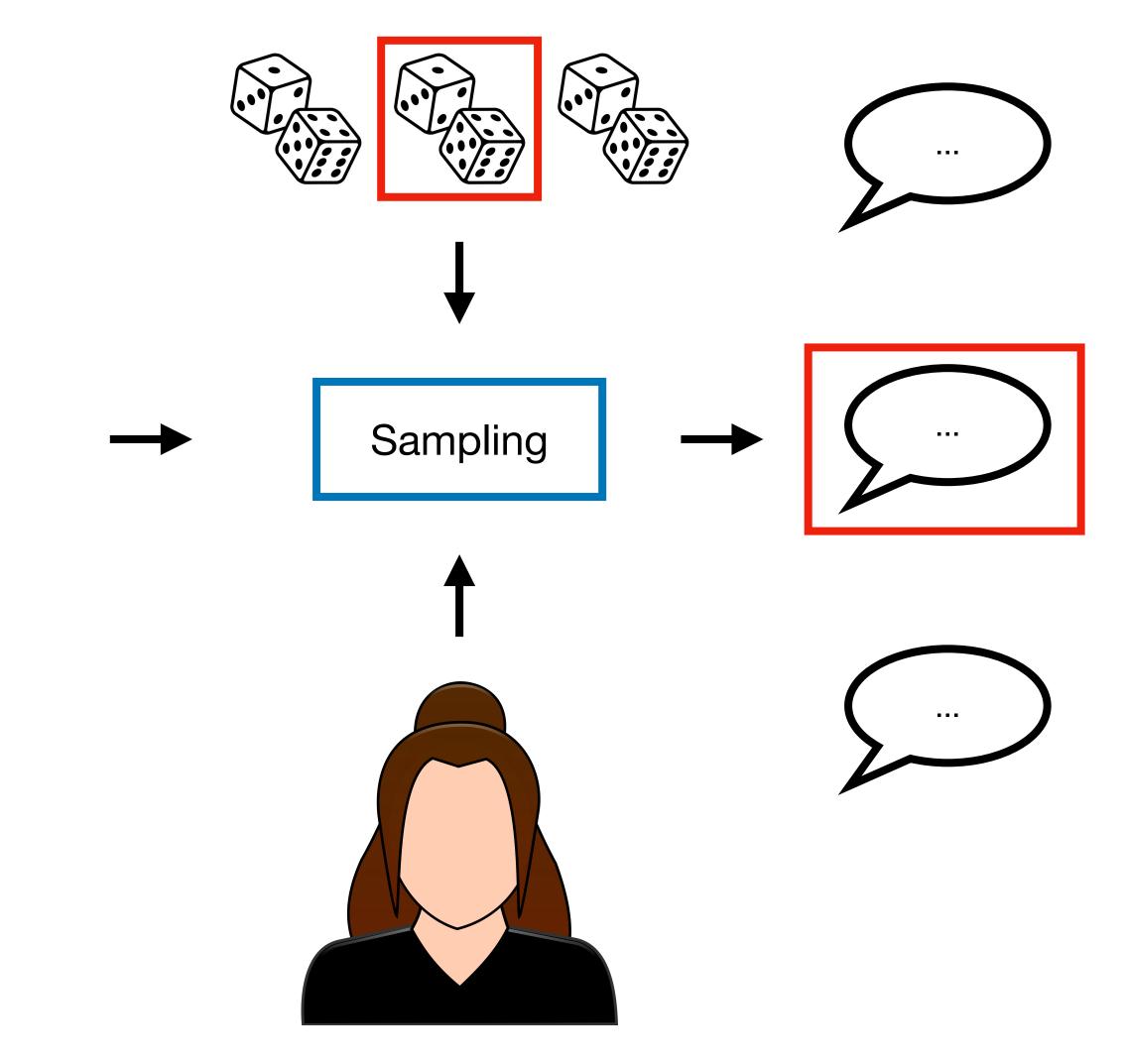
#### Tatsu Hashimoto

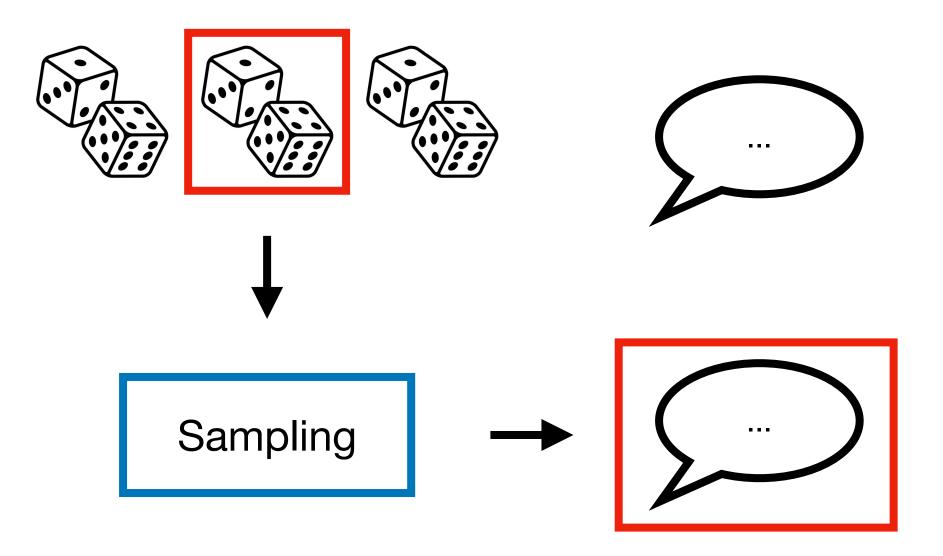
#### Percy Liang





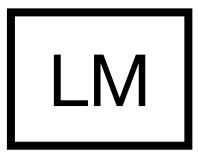




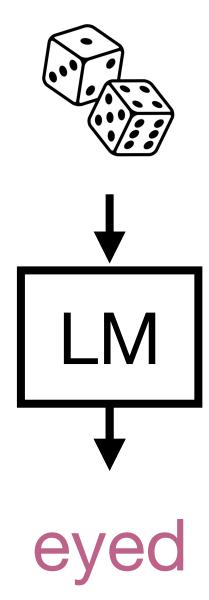




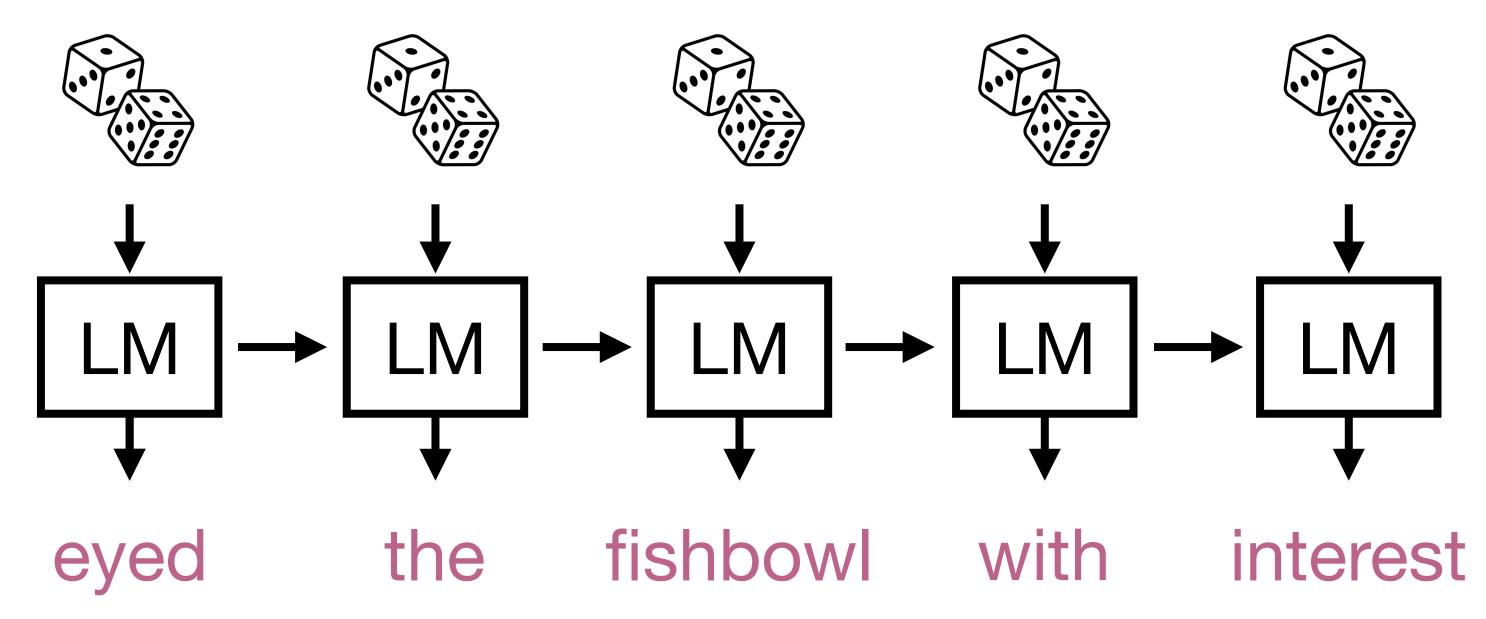
### Sampling from a language model



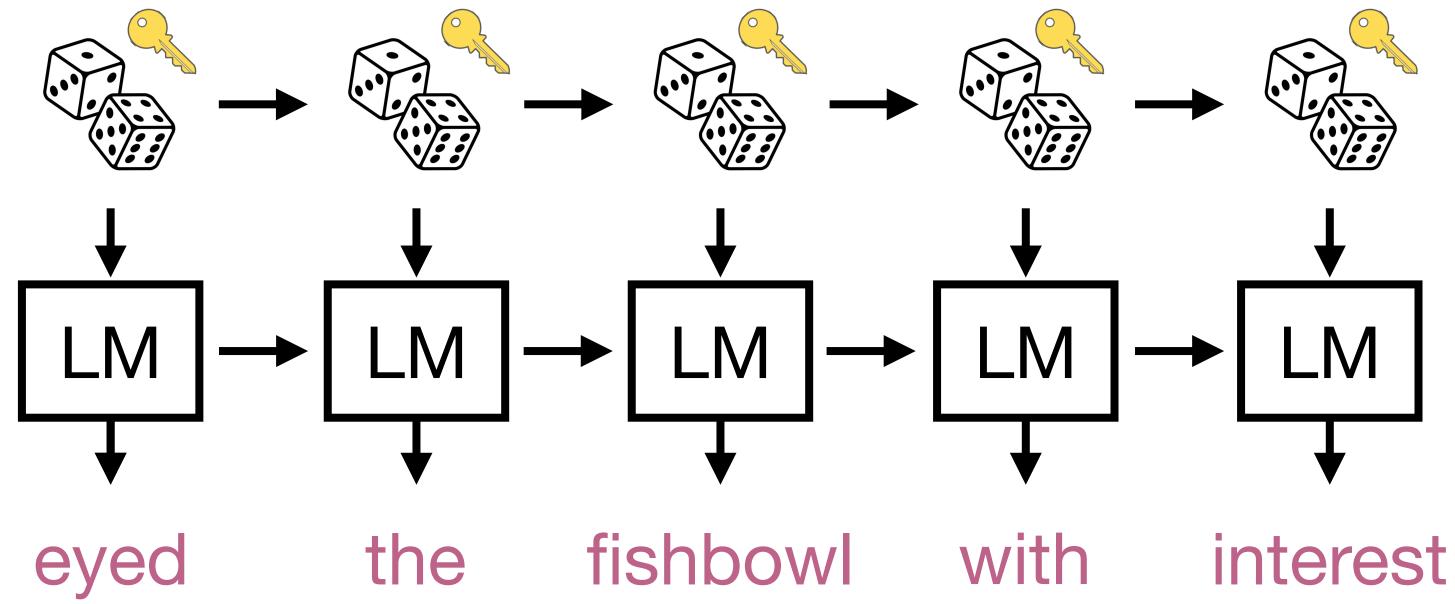
### Sampling from a language model

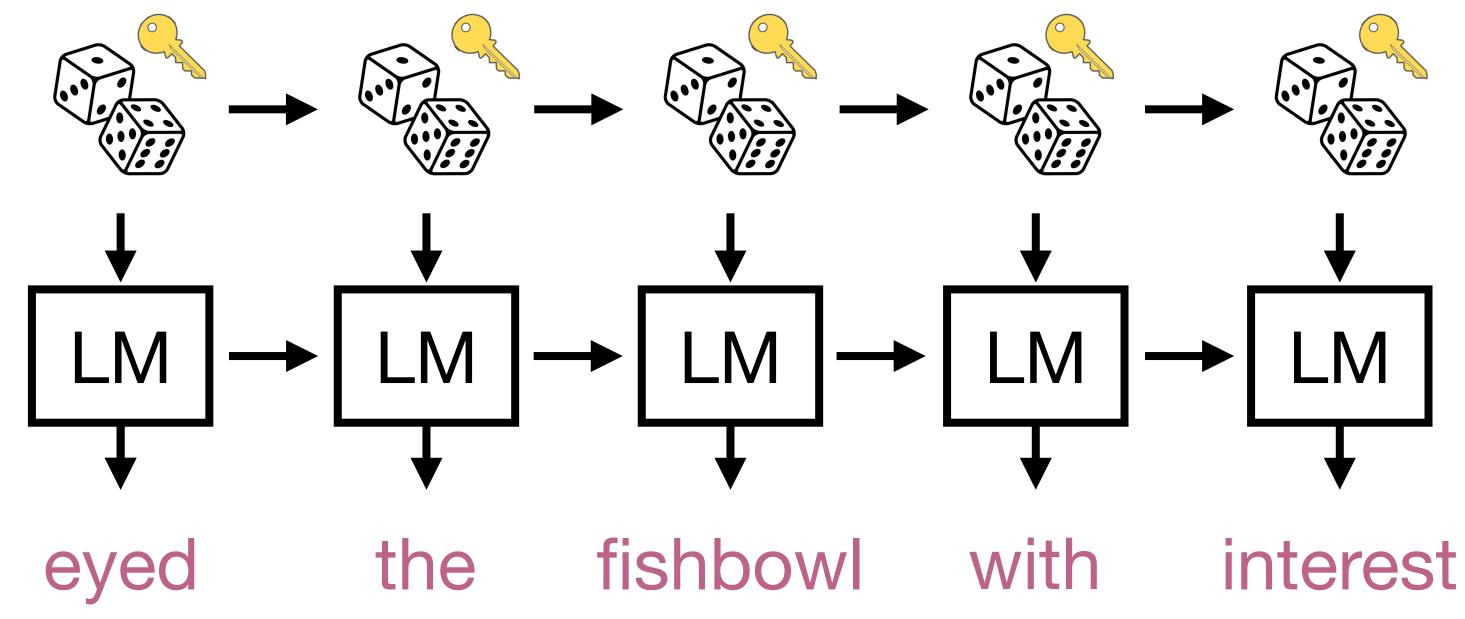


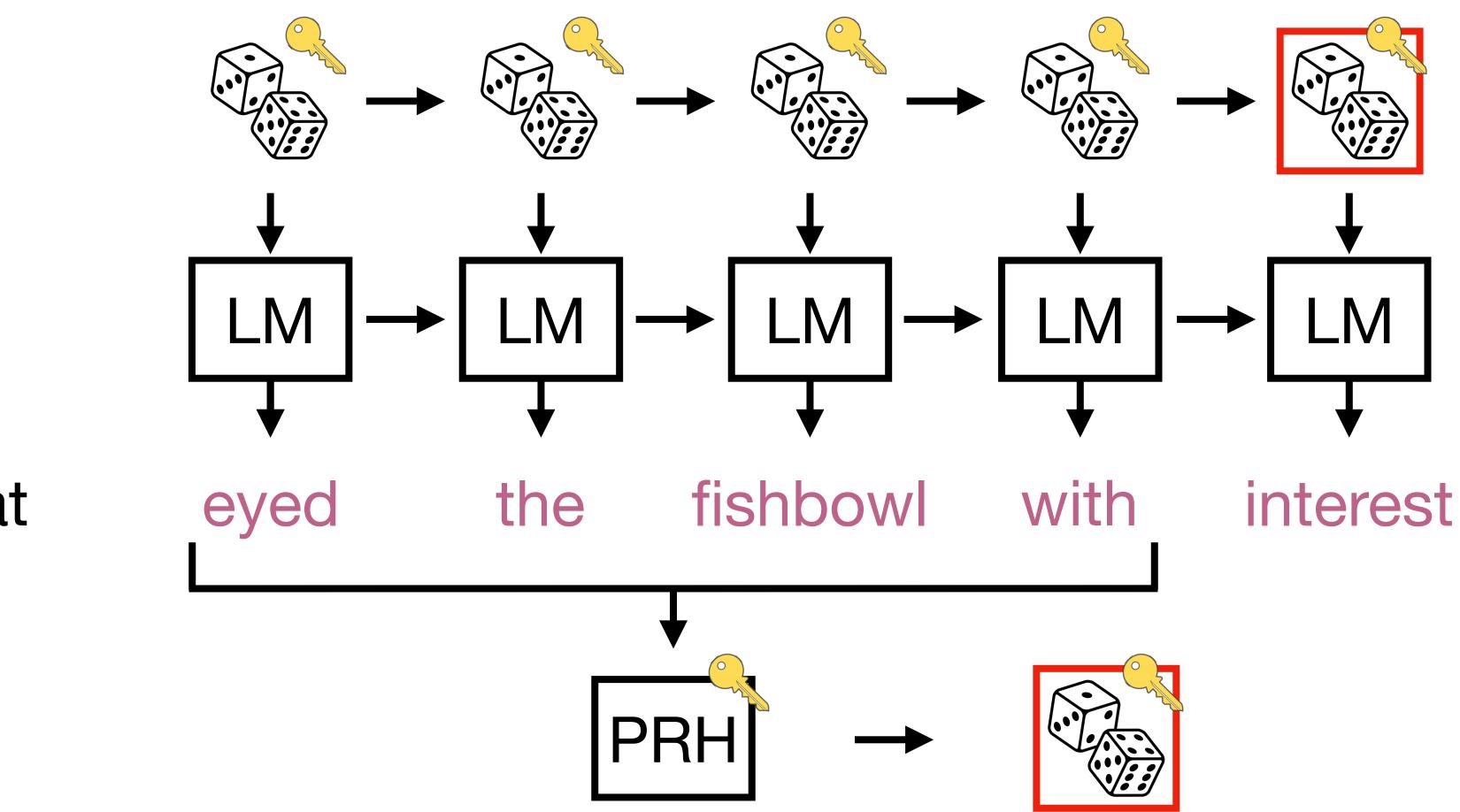
### Sampling from a language model

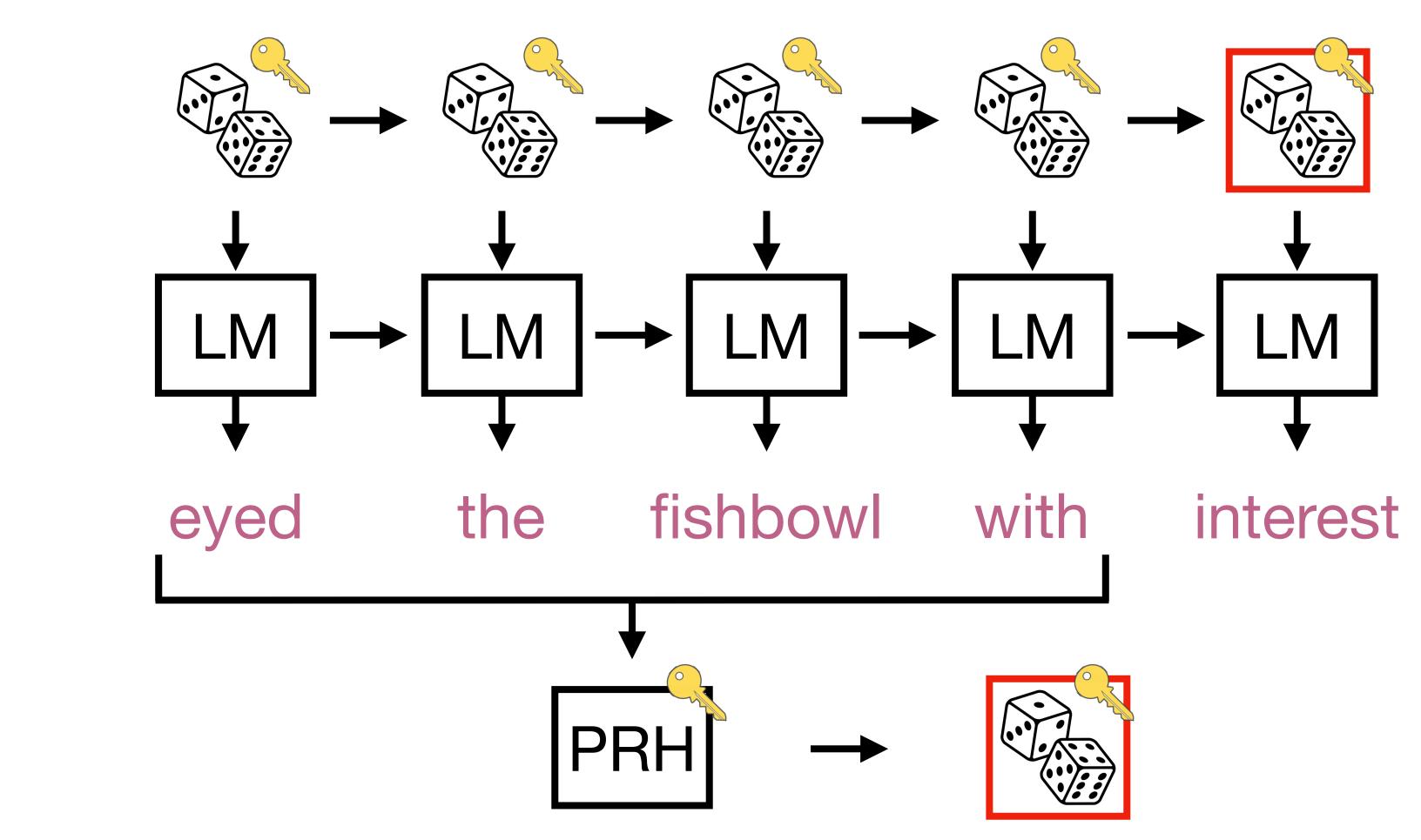


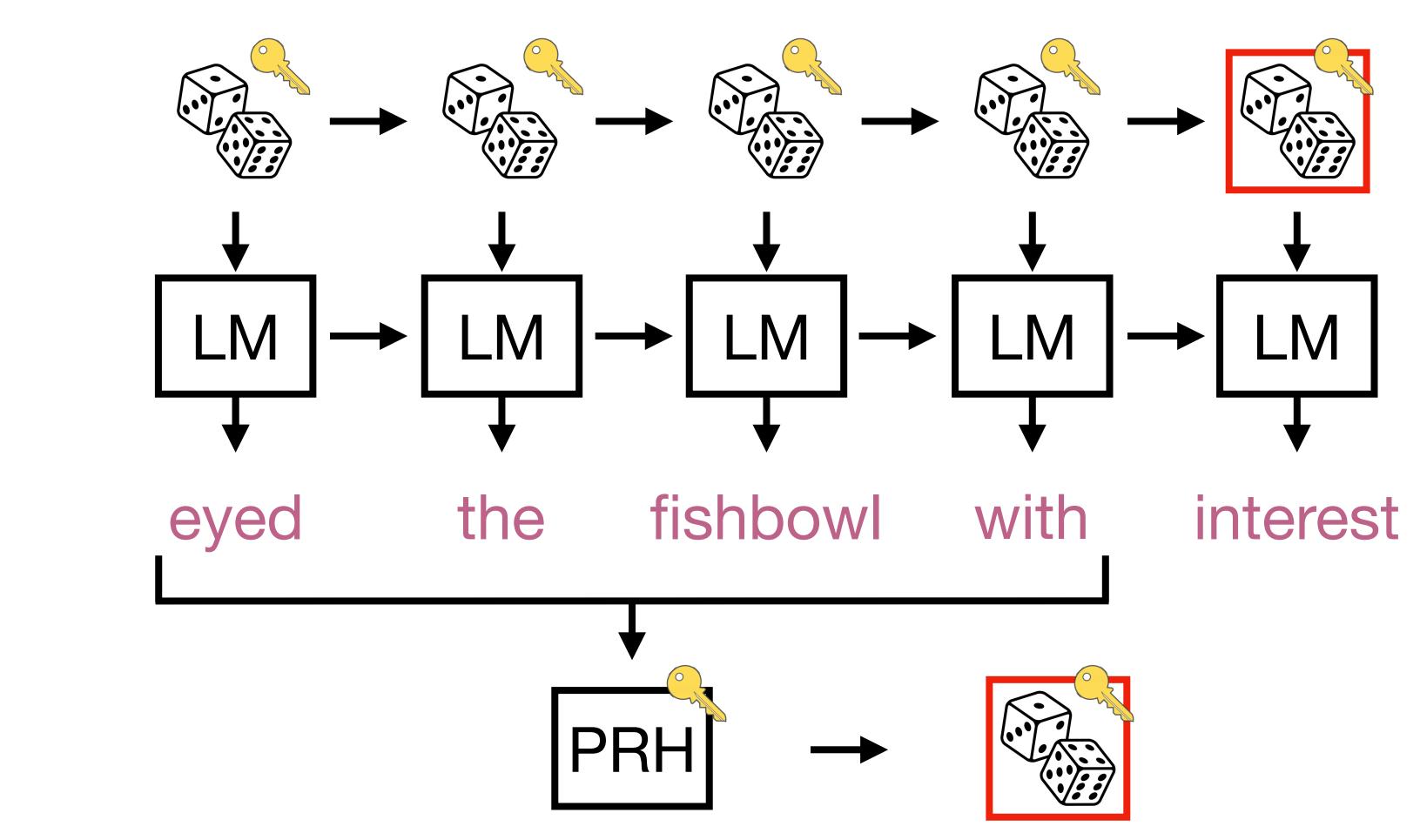
#### Watermarking a language model



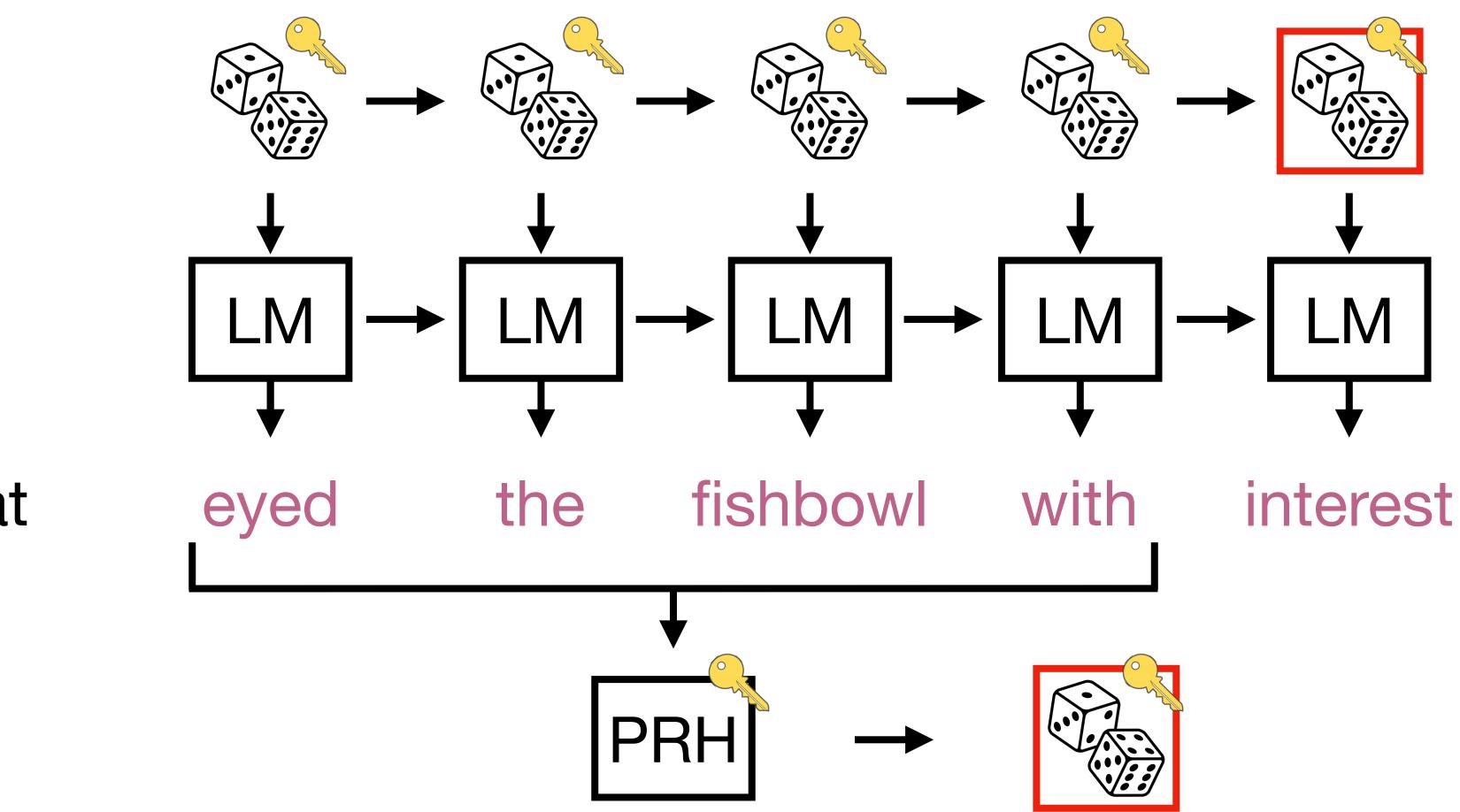












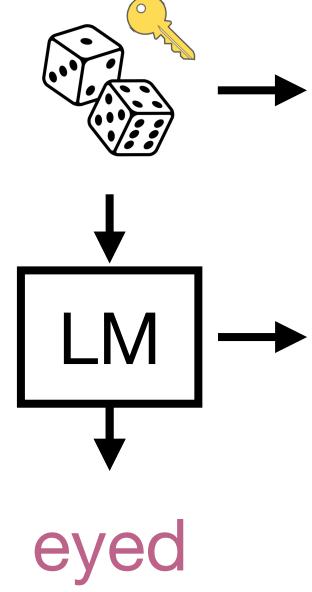
#### Prompt: Give me a list of 20 movies.

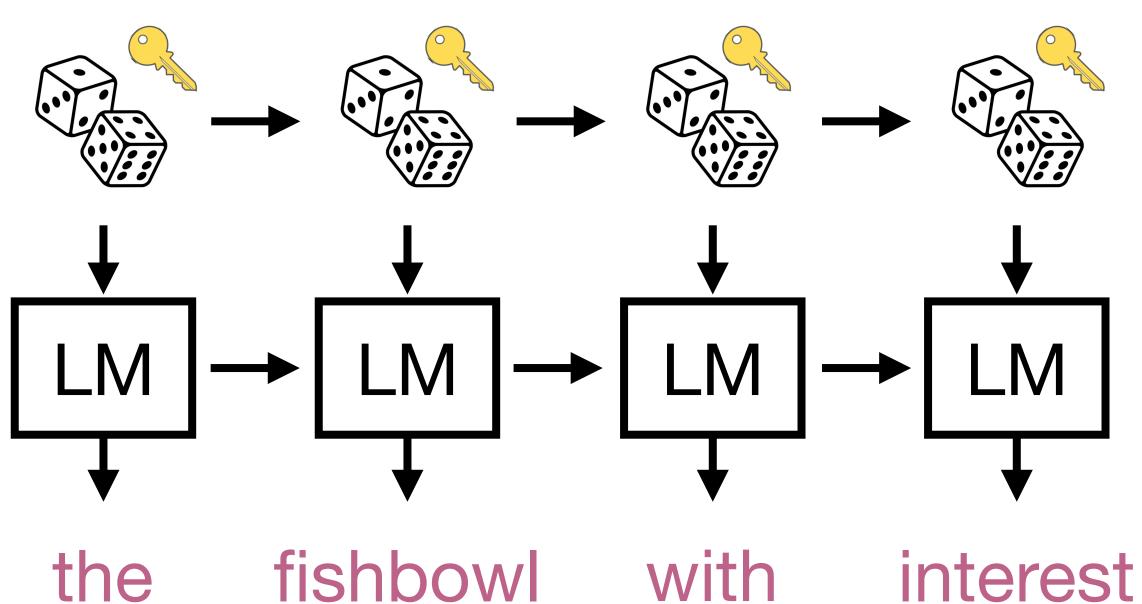
. . .

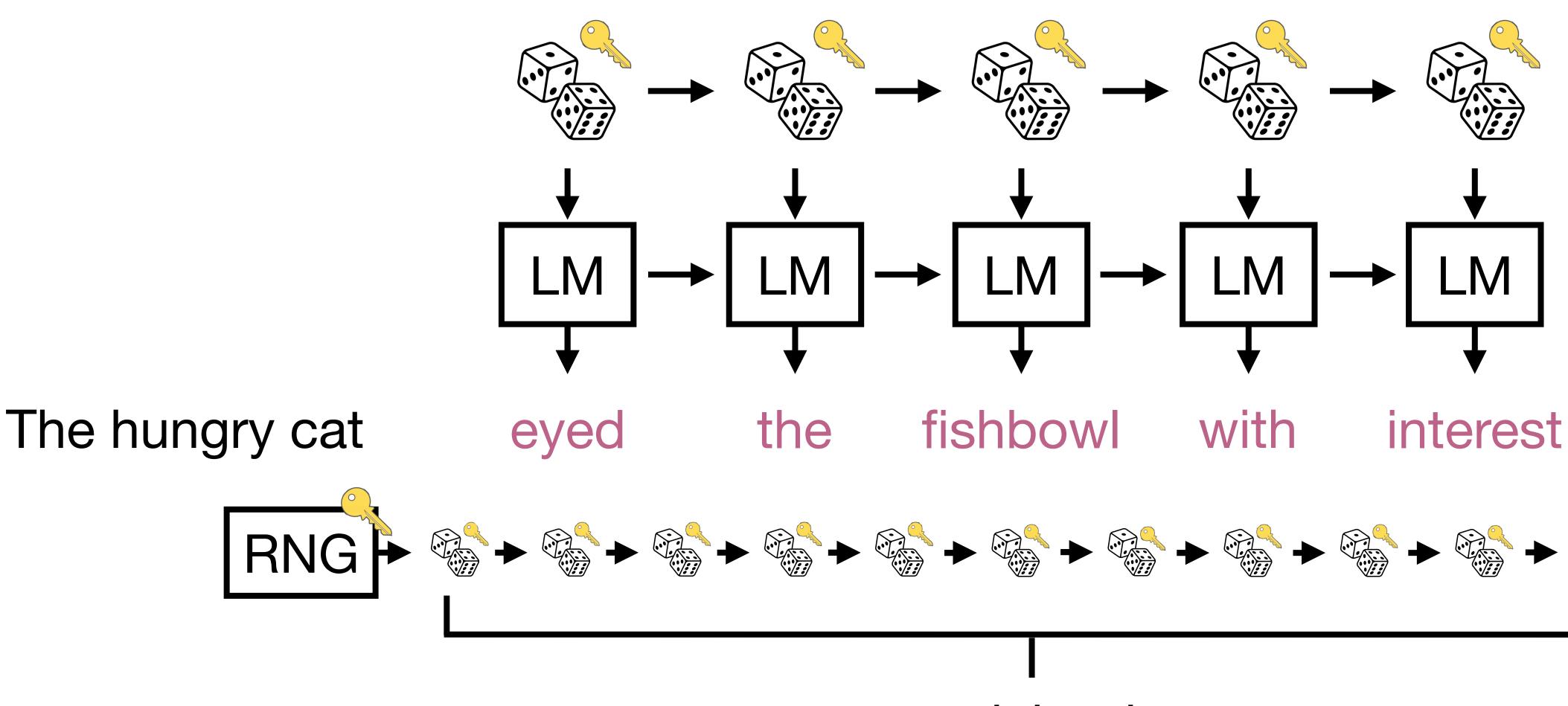
5. The Lord of the Rings: The Fellowship of the Ring 6. The Lord of the Rings: The Two Towers 7. The Lord of the Rings: The Return of the King 8. The Imitation Game 9. The Matrix **10. The Matrix Reloaded 11. The Matrix Revolutions** 12. The Lord of the Rings: The Animated Version 13. The Lord of the Rings: The Angmar Wars 14. The Lord of the Rings: The Angmar Wars II 15. The Lord of the Rings: The Angmar Wars III

# Model: Alpaca 7B (hash-based watermark)

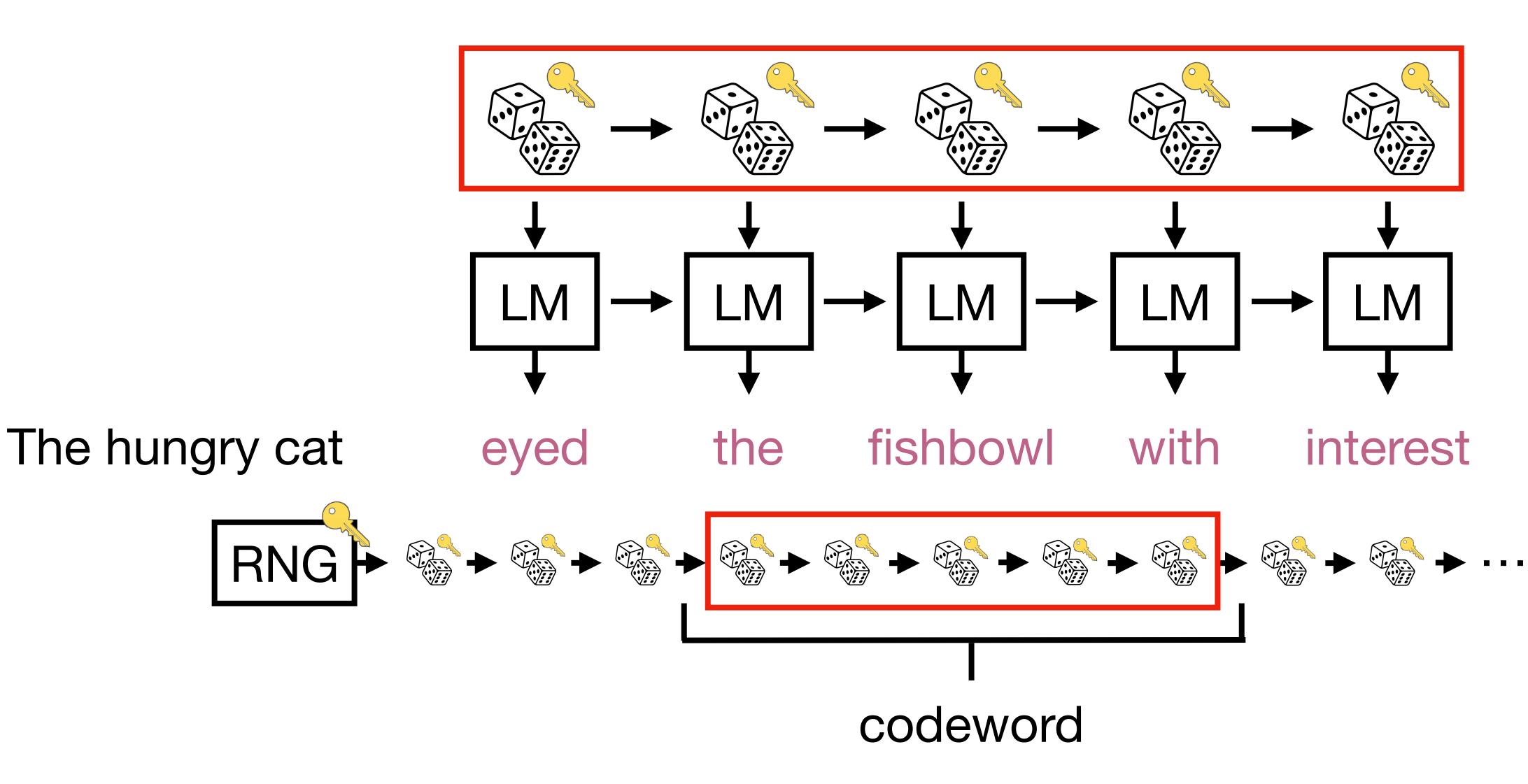


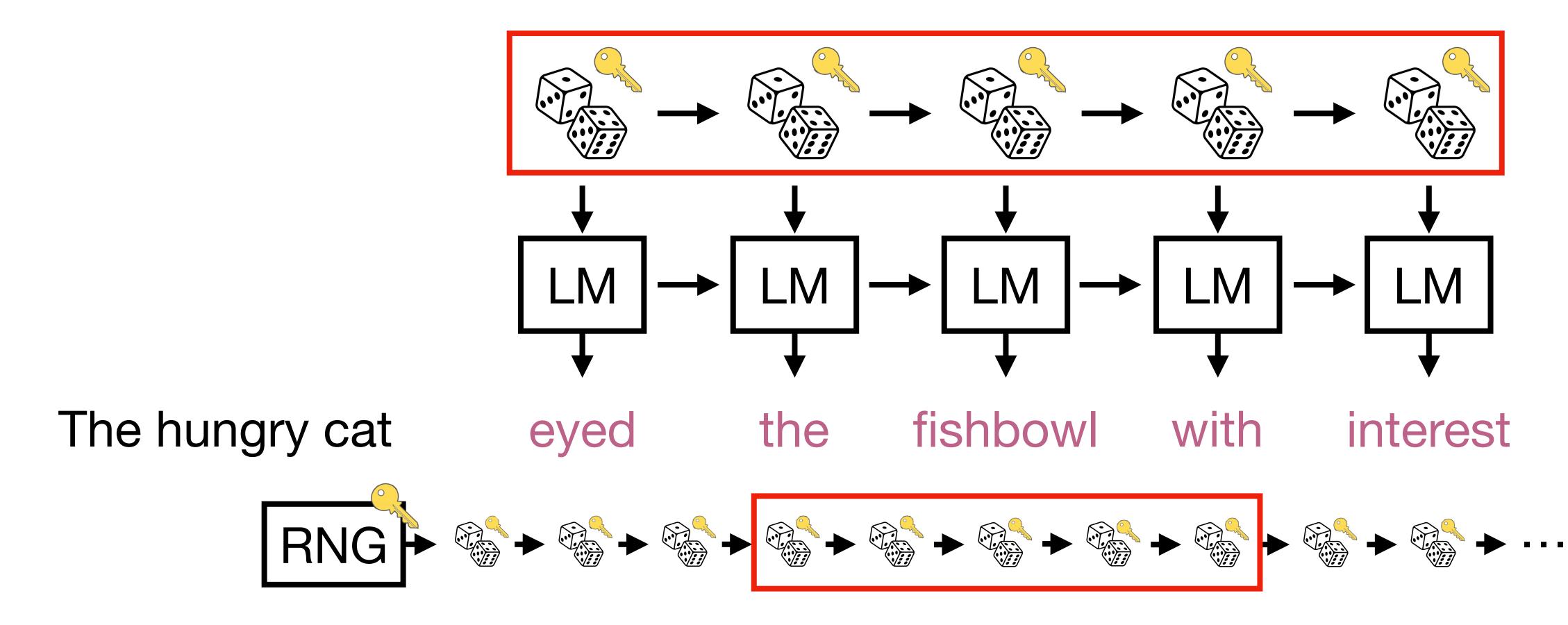




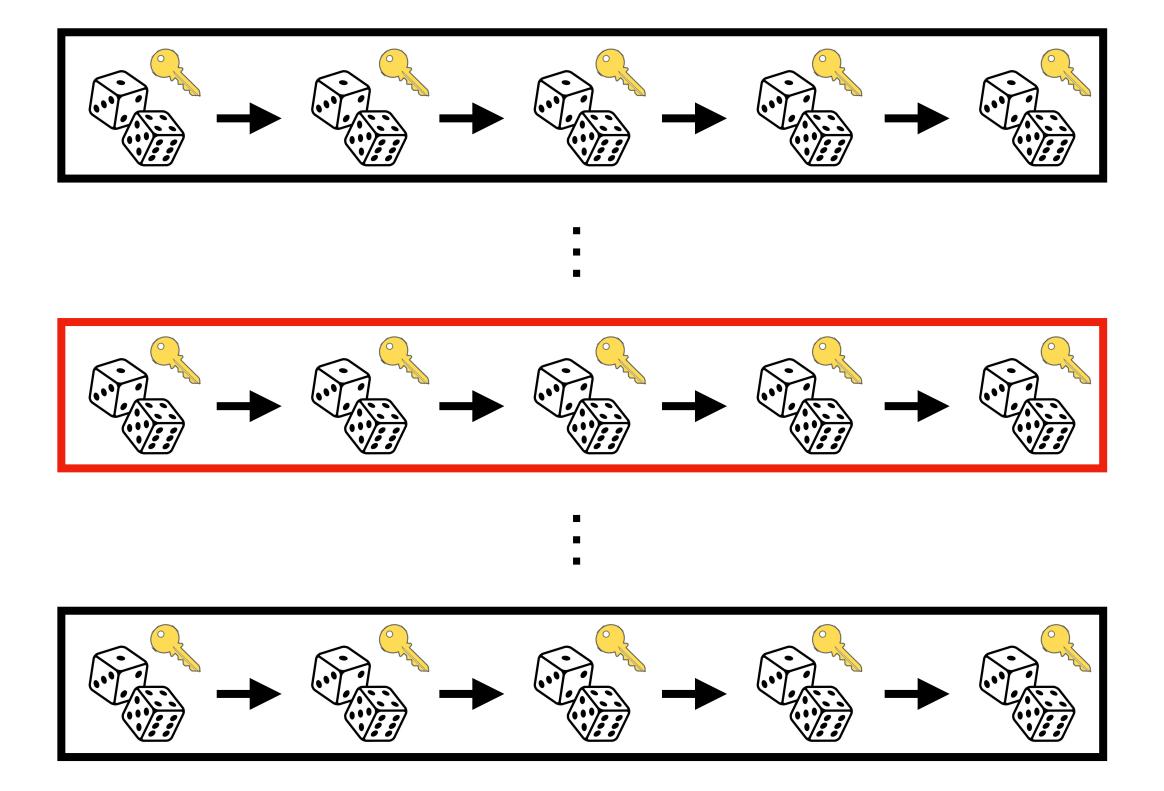


codebook

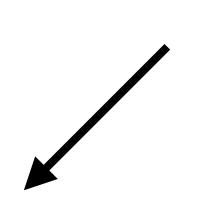


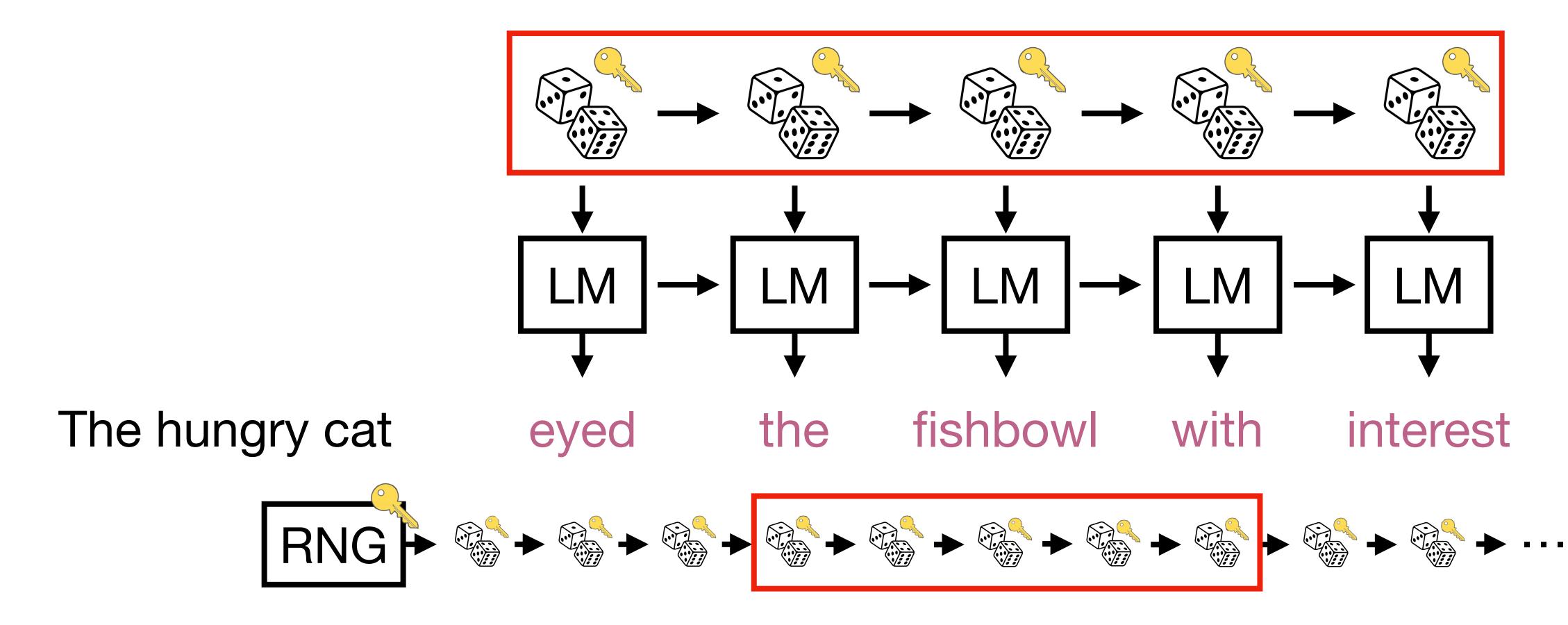


Generation is distortion-free until you re-use the dice.

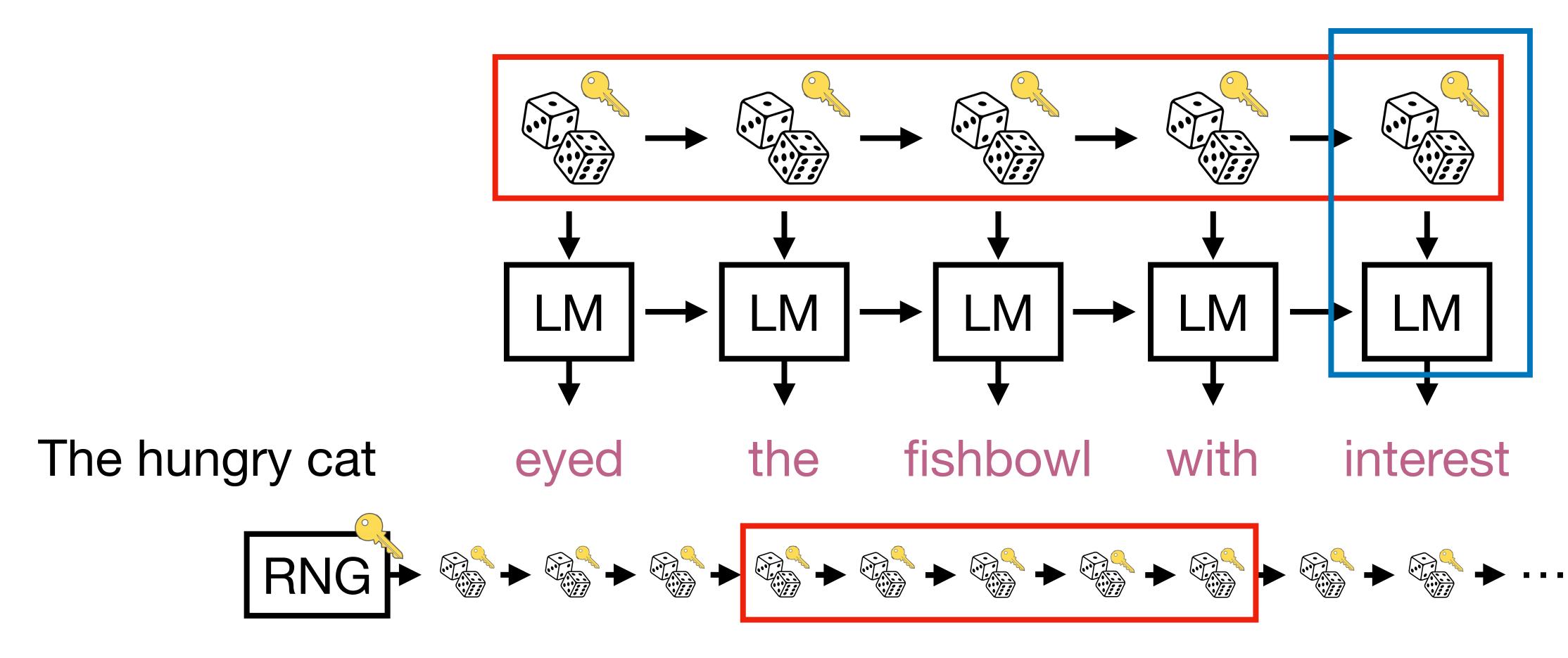






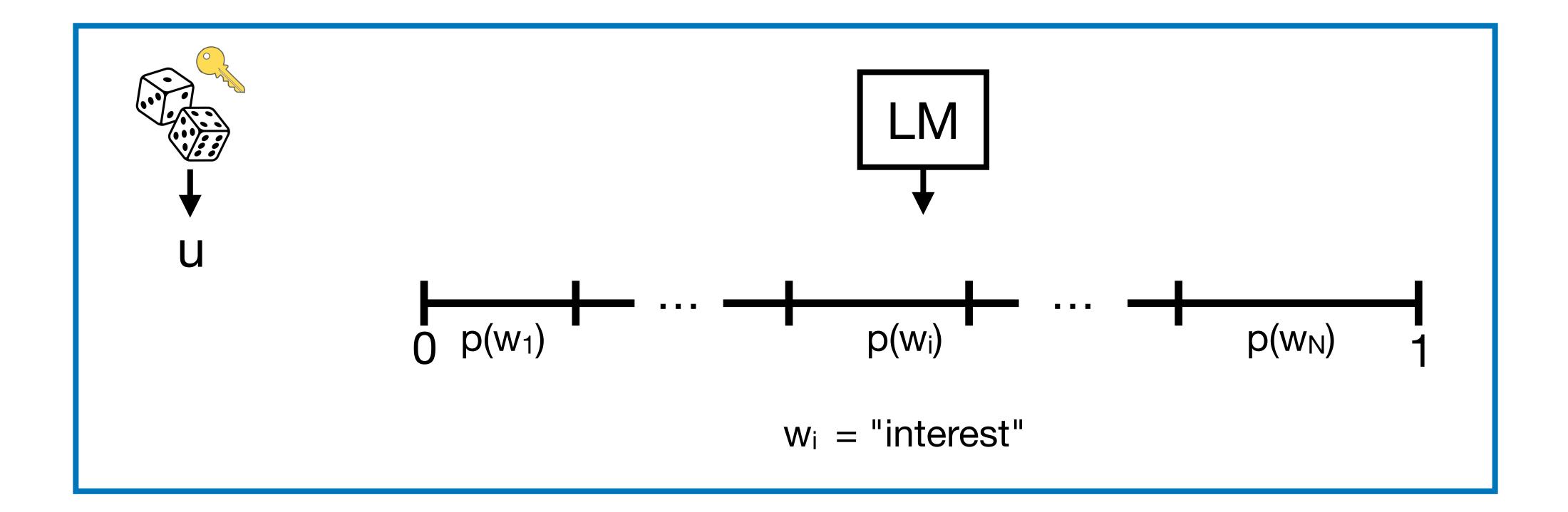


Generation is distortion-free until you re-use the dice.

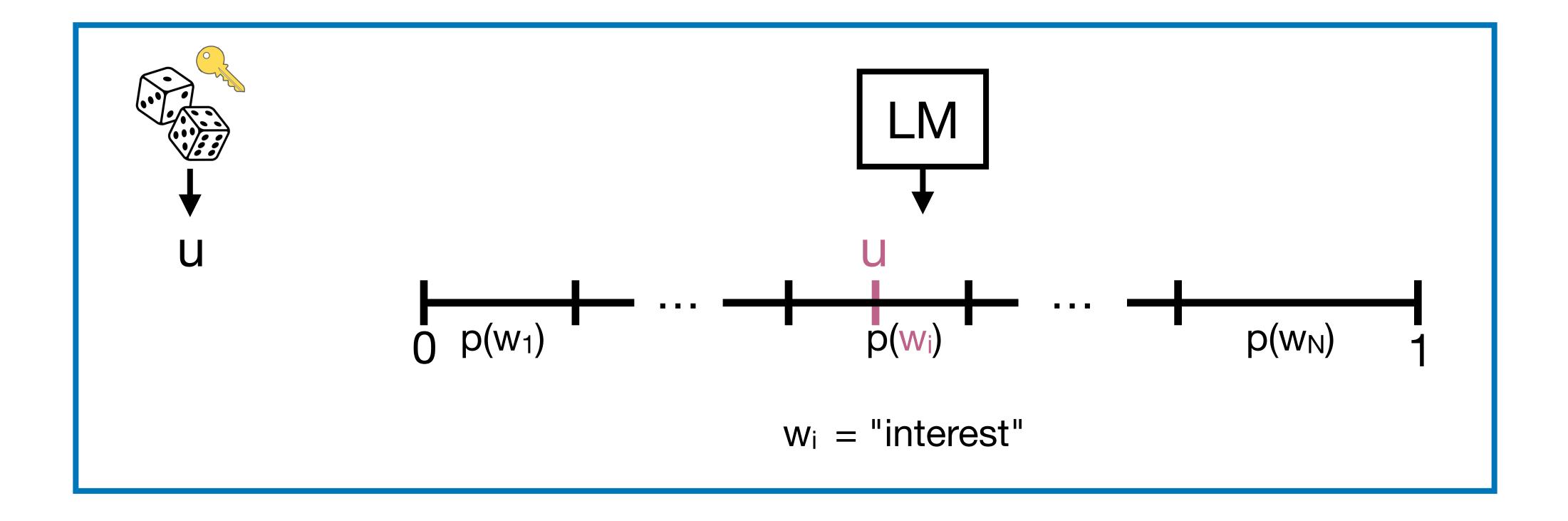


Generation is distortion-free until you re-use the dice.

#### Generating watermarked text



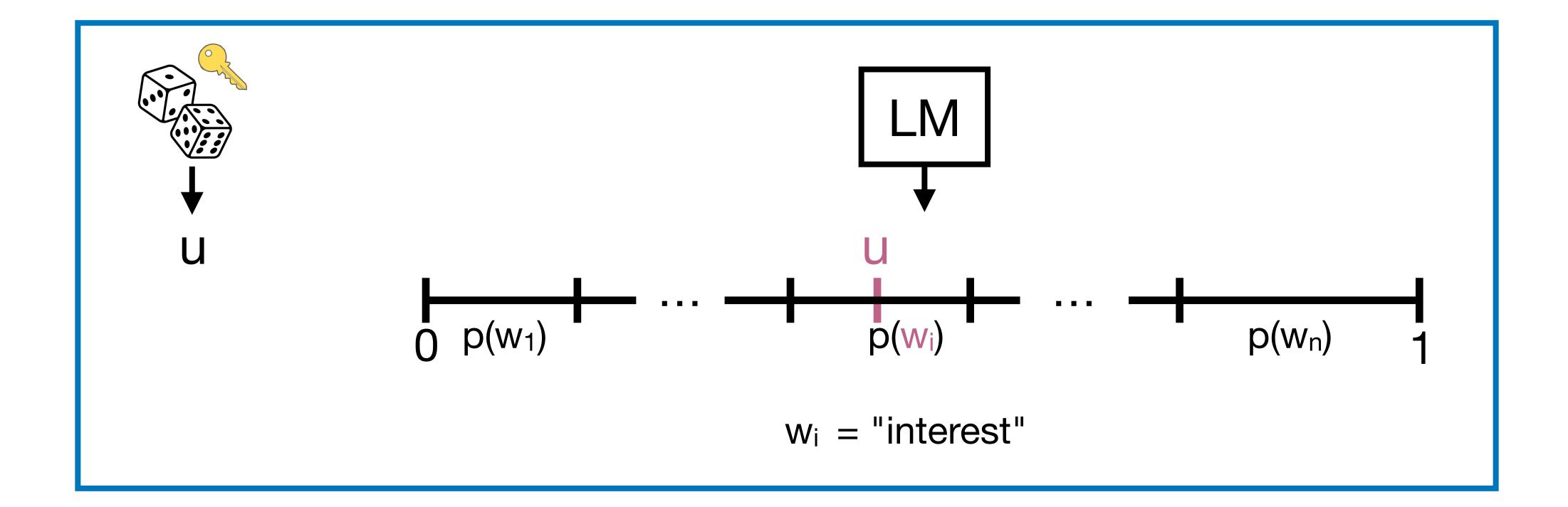
#### Generating watermarked text





#### interest

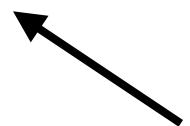
#### **Detecting watermarked text**



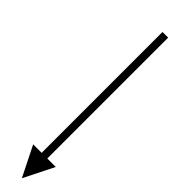
#### index\_of("interest") correlates with u

#### **Detecting watermarked text**

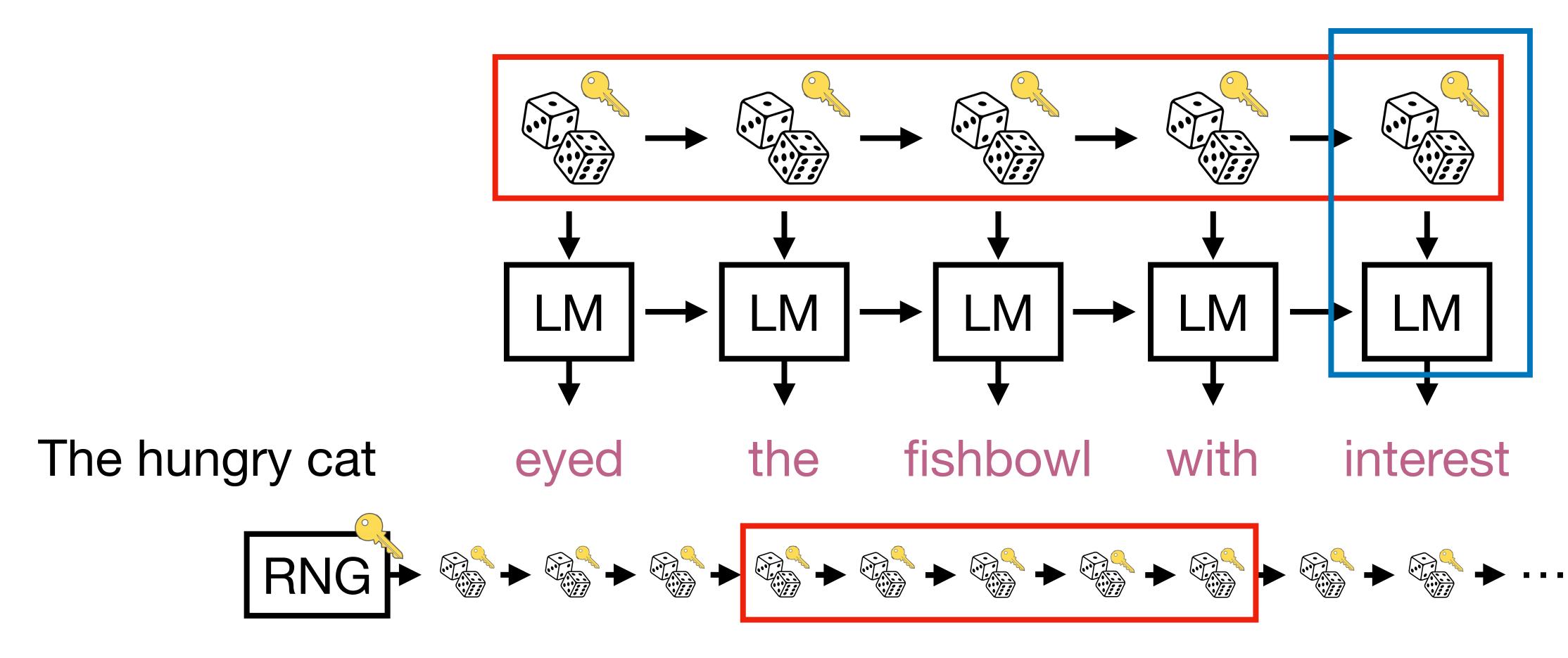




index\_of(eyed the fishbowl with interest)







Generation is distortion-free until you re-use the dice.

Our watermark is distortion-free and robust...

Our watermark is distortion-free and robust...

...but detection is expensive.

Our watermark is distortion-free and robust...

...but detection is expensive.

Can we have all three?

Our watermark is distortion-free and robust...

...but detection is expensive.

Can we have all three? [CG'24; GM'24; GG'24]

Our watermark is distortion-free and robust...

...but detection is expensive.

Can we have all three? [CG'24; GM'24; GG'24]

## Watermarking: what works and what doesn't

Our watermark is distortion-free and robust...

...but detection is expensive.

Can we have all three? [CG'24; GM'24; GG'24]





### Sally Zhu

Ahmed Ahmed

## Part 2: Weights

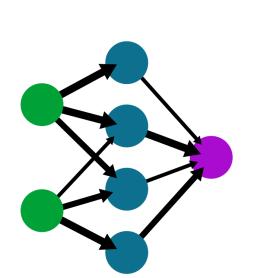


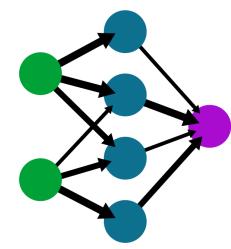
### Percy Liang

## Model independence testing

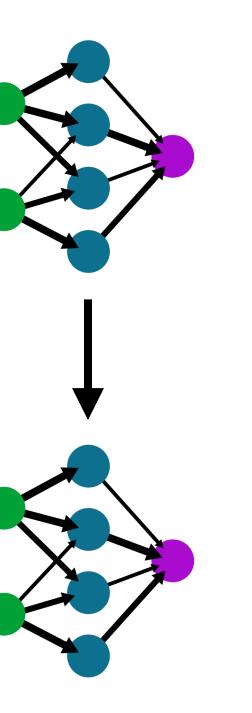
Can a third party infer the relationship between two models from their weights?

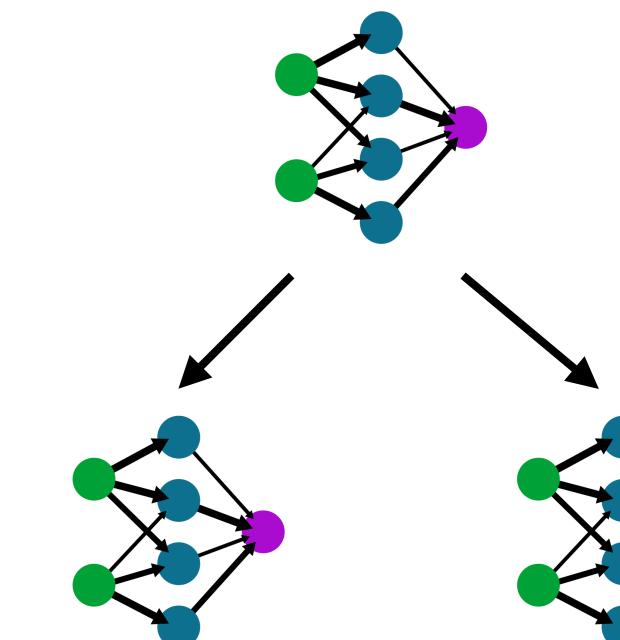
## Model independence testing

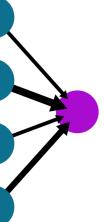




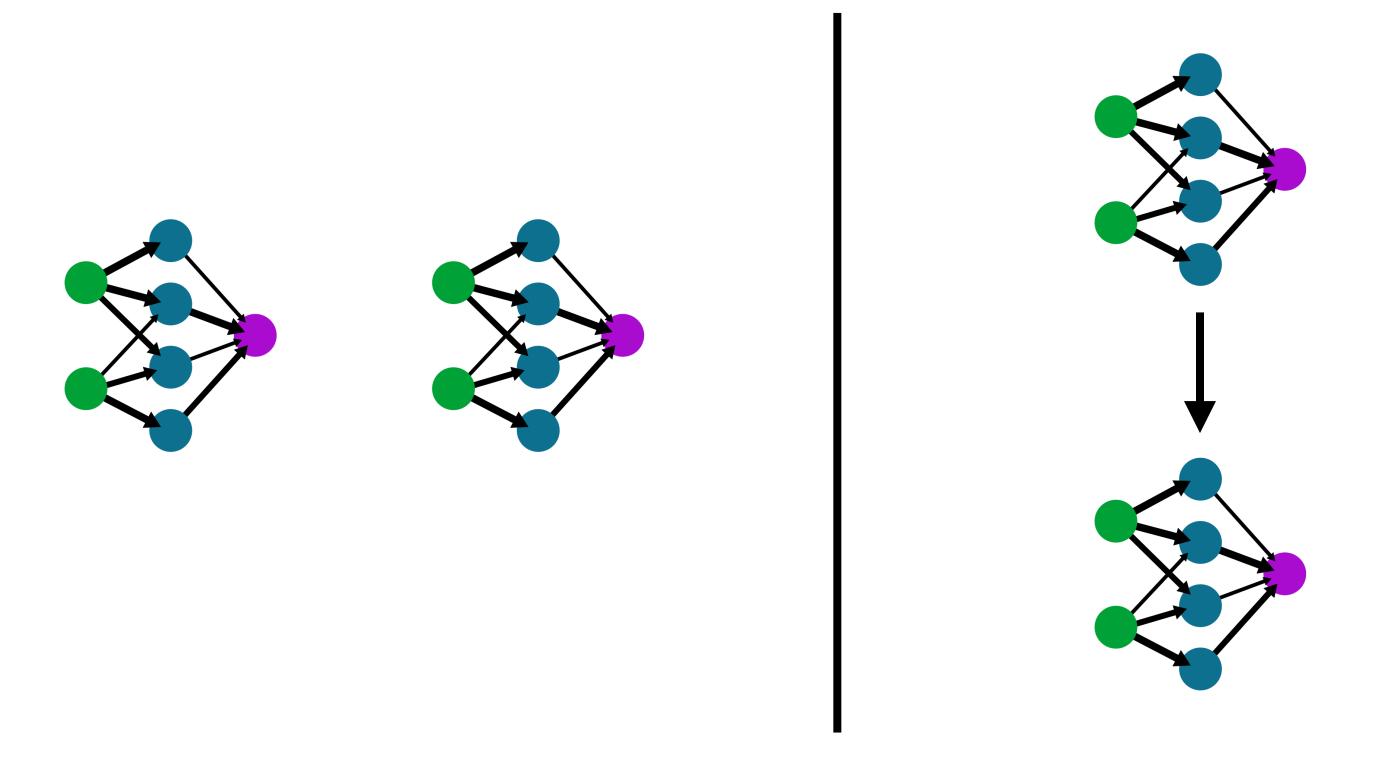
### Can a third party infer the relationship between two models from their weights?





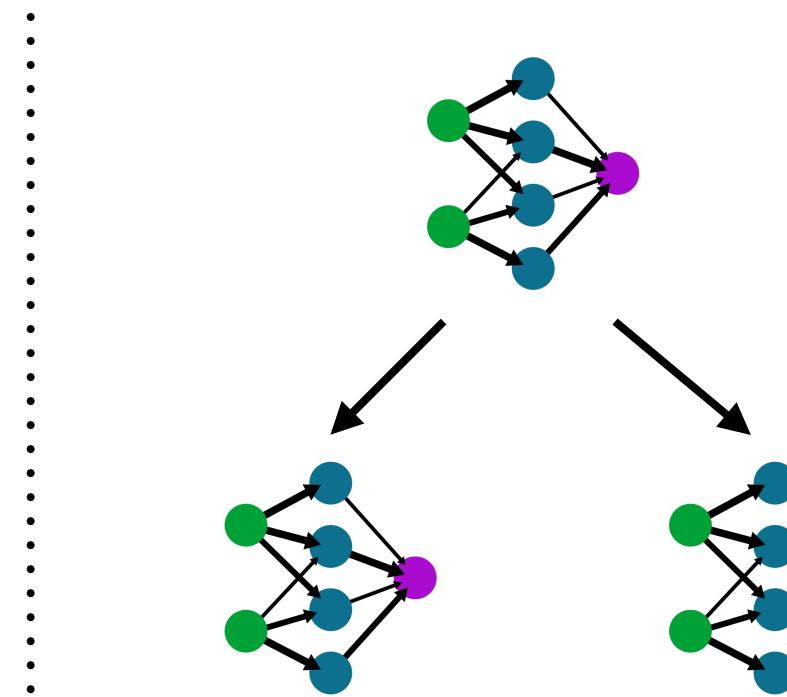


## Model independence testing

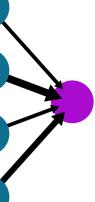


### Independent

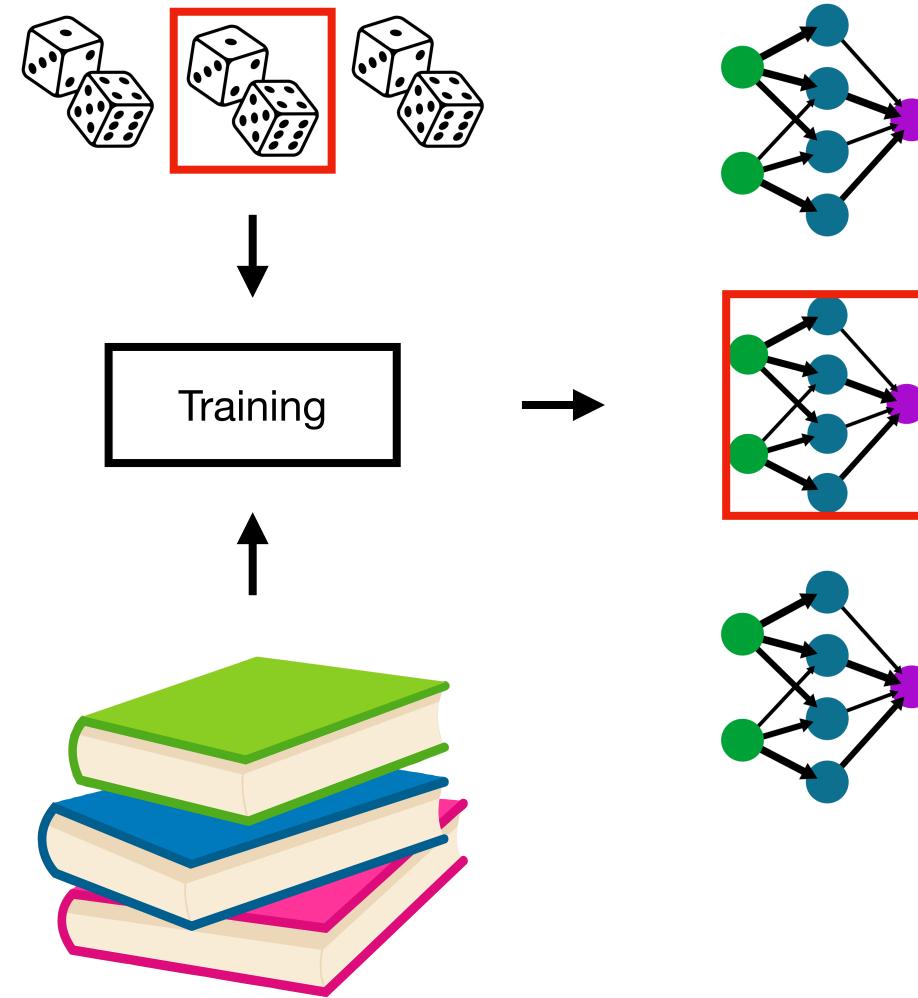
### Can a third party infer the relationship between two models from their weights?



### Dependent



## Provenance via independence testing



## **Assumptions on training**

### $A: \Theta \to \Theta$ is $\Pi$ -equivariant if $\pi(A(\theta_0)) = A(\pi(\theta_0))$ for any $\theta_0 \in \Theta$ and $\pi \in \Pi$ .

## **Assumptions on training**

## $A: \Theta \to \Theta$ is $\Pi$ -equivariant if $\pi(A(\theta_0)) = A(\pi(\theta_0))$ for any $\theta_0 \in \Theta$ and $\pi \in \Pi$ . $\mu \in \mathscr{P}(\Theta)$ is $\Pi$ -invariant if we have $\mu(\theta_0) = \mu(\pi(\theta_0))$ for any $\theta_0 \in \Theta$ and $\pi \in \Pi$ .

## **Assumptions on training**

- **Example (2-layer MLP)**:

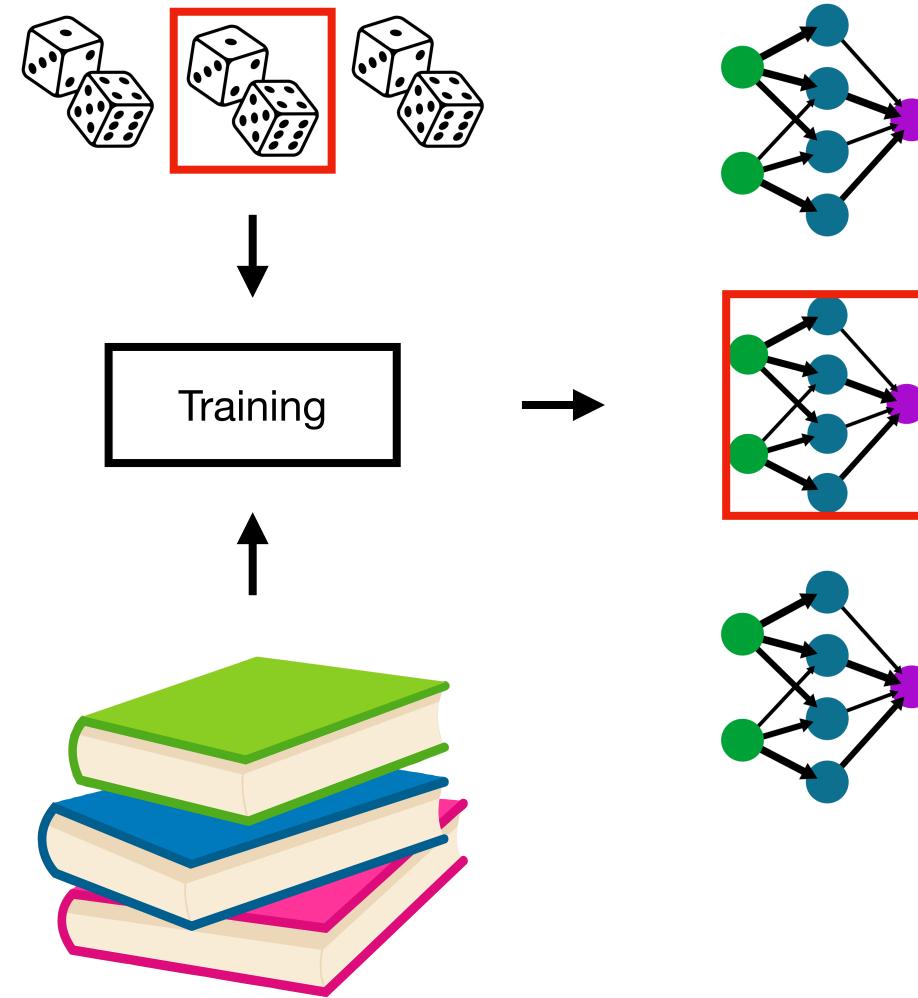
$$f(x;\theta) = W_2 \sigma(W_1 x) =$$

## $A: \Theta \to \Theta$ is $\Pi$ -equivariant if $\pi(A(\theta_0)) = A(\pi(\theta_0))$ for any $\theta_0 \in \Theta$ and $\pi \in \Pi$ . $\mu \in \mathscr{P}(\Theta)$ is $\Pi$ -invariant if we have $\mu(\theta_0) = \mu(\pi(\theta_0))$ for any $\theta_0 \in \Theta$ and $\pi \in \Pi$ .

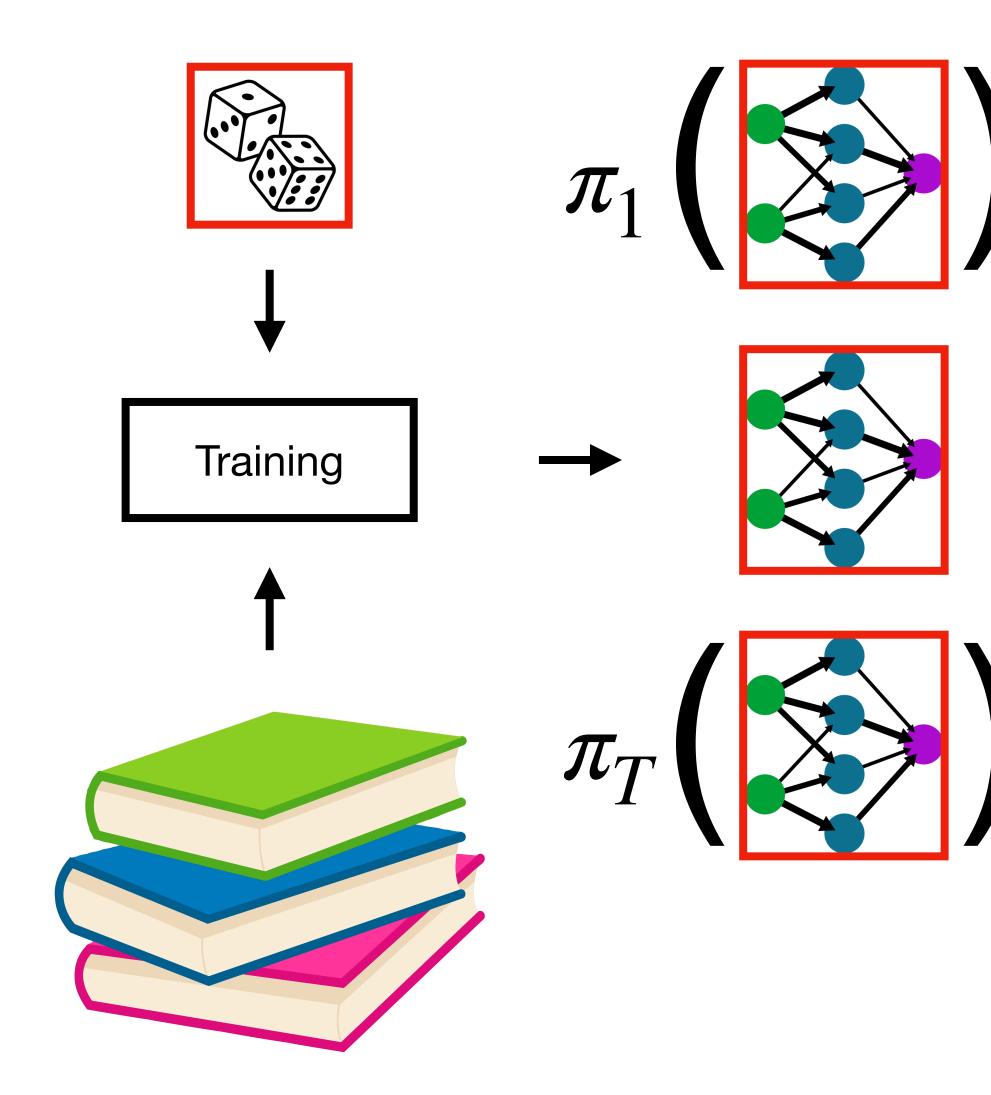
### $\theta = (W_1, W_2), \pi(\theta) = (W_2 \pi^T, \pi W_1)$

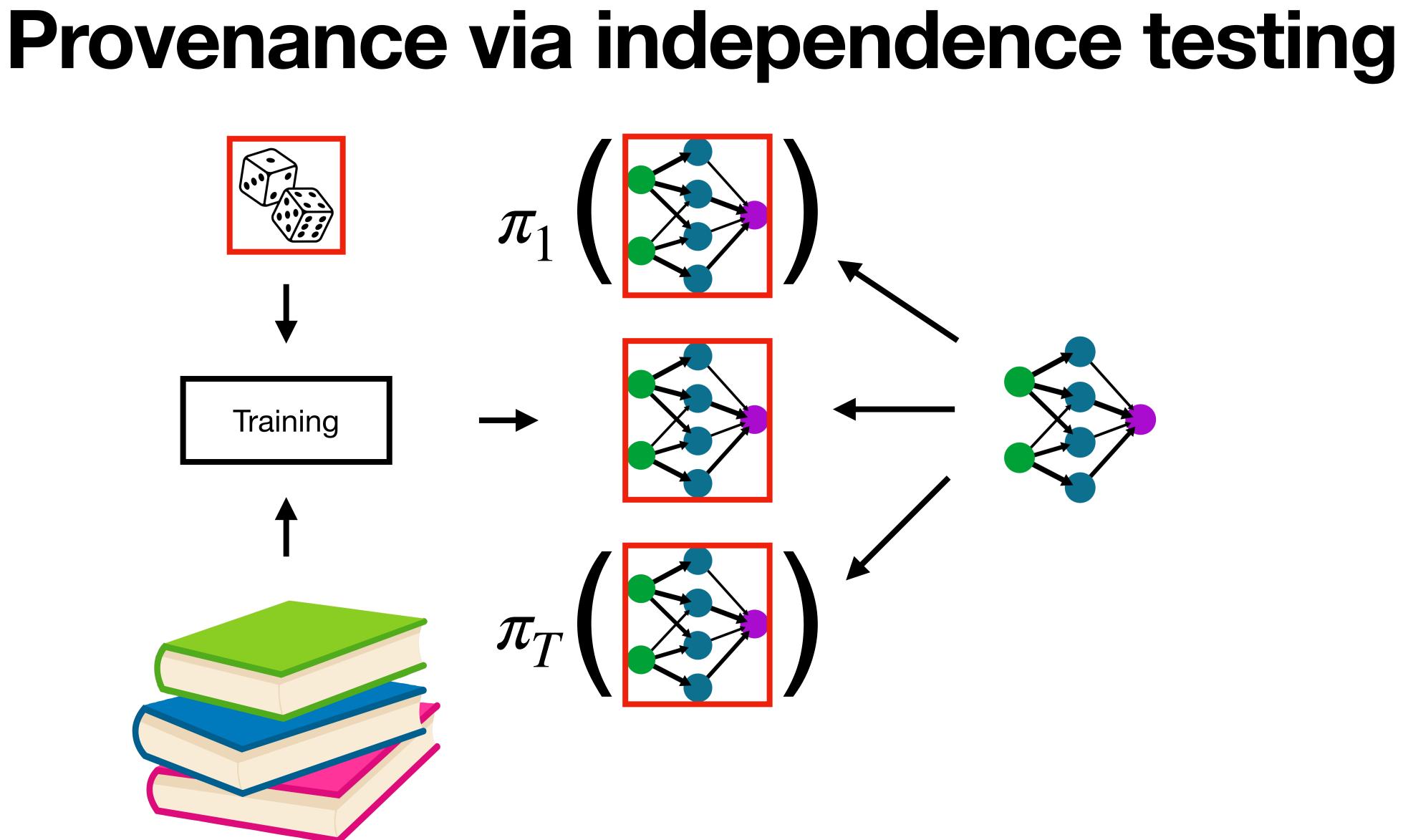
 $= W_2 \pi^T \sigma(\pi W_1 x) = f(x; \pi(\theta))$ 

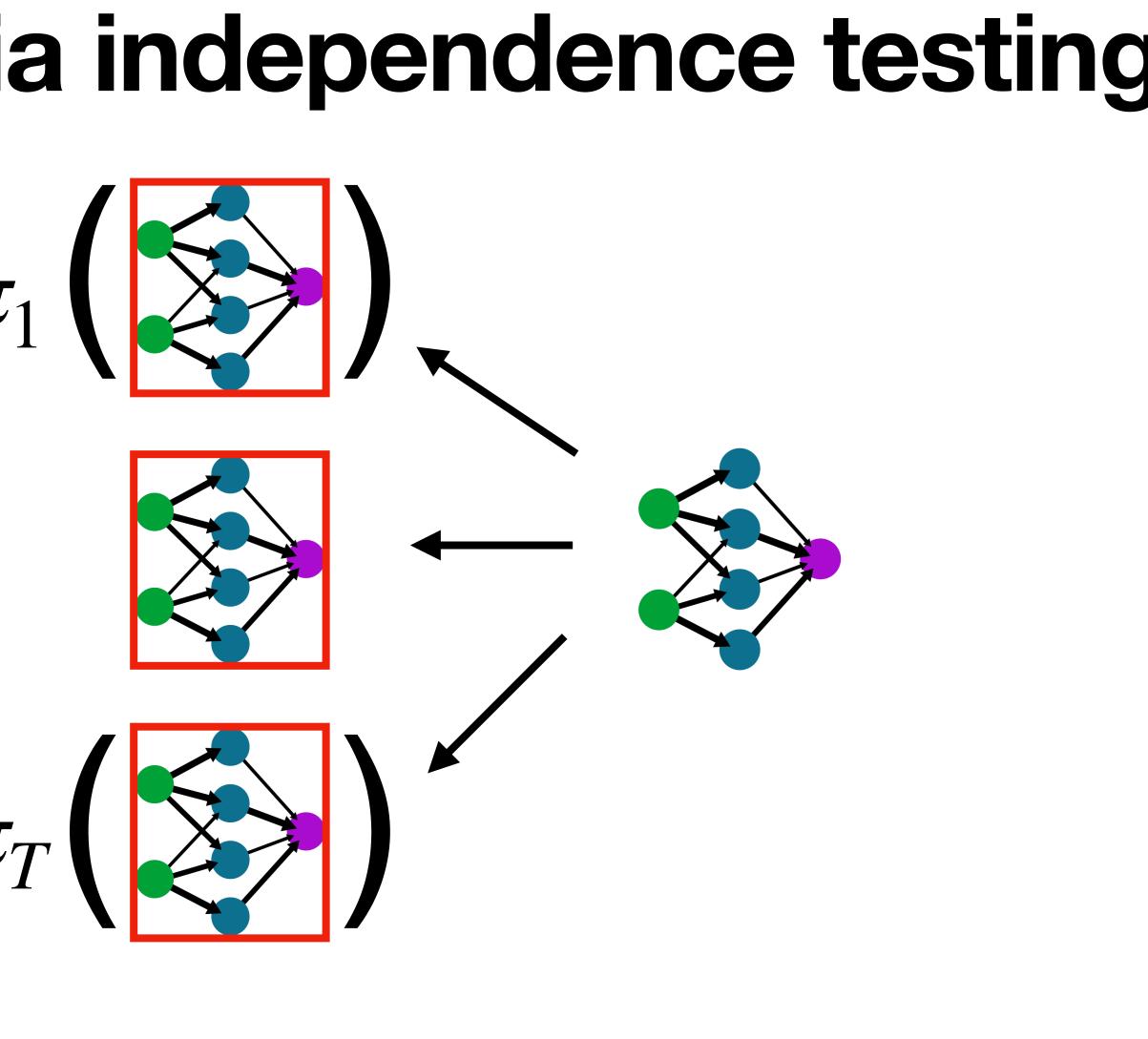
## Provenance via independence testing

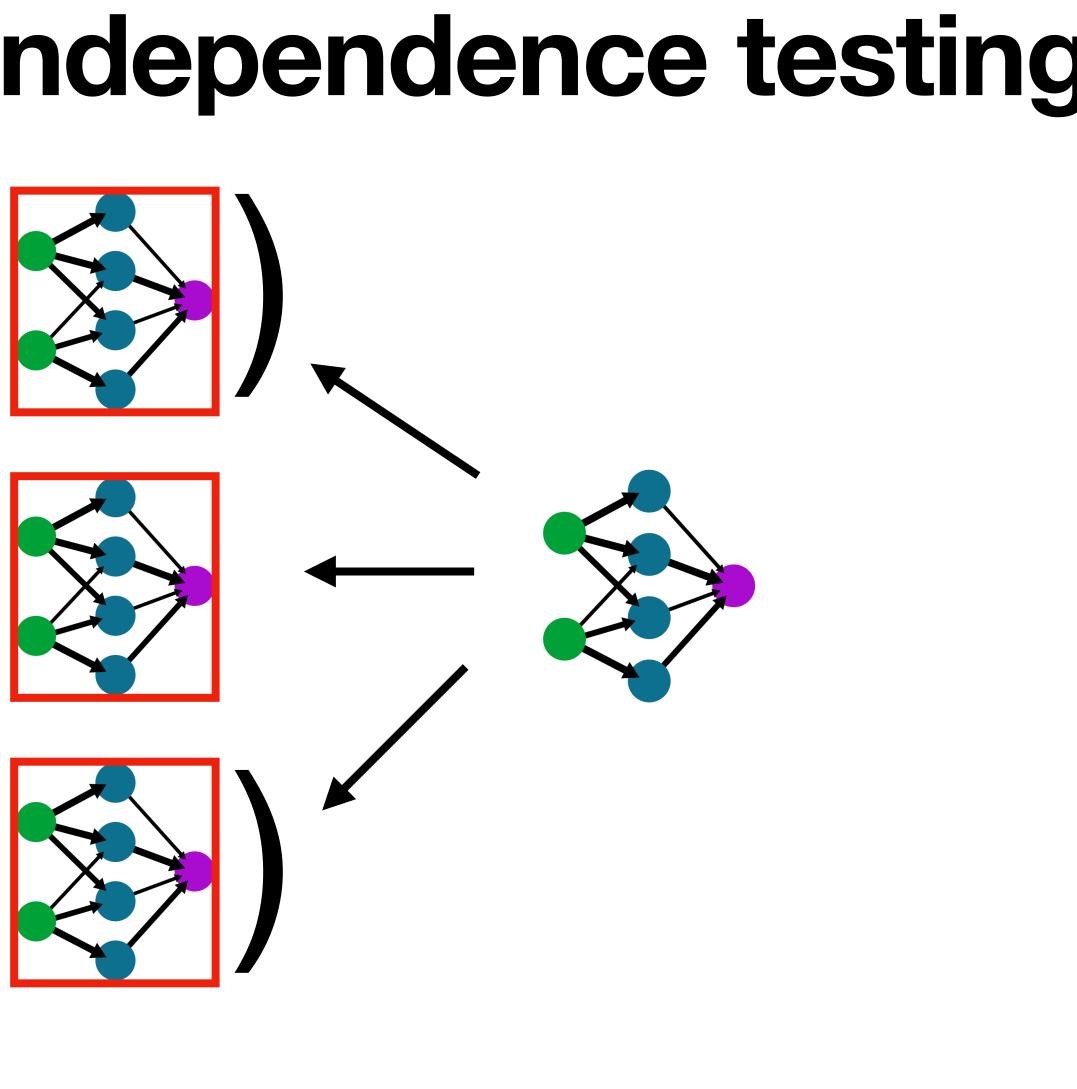


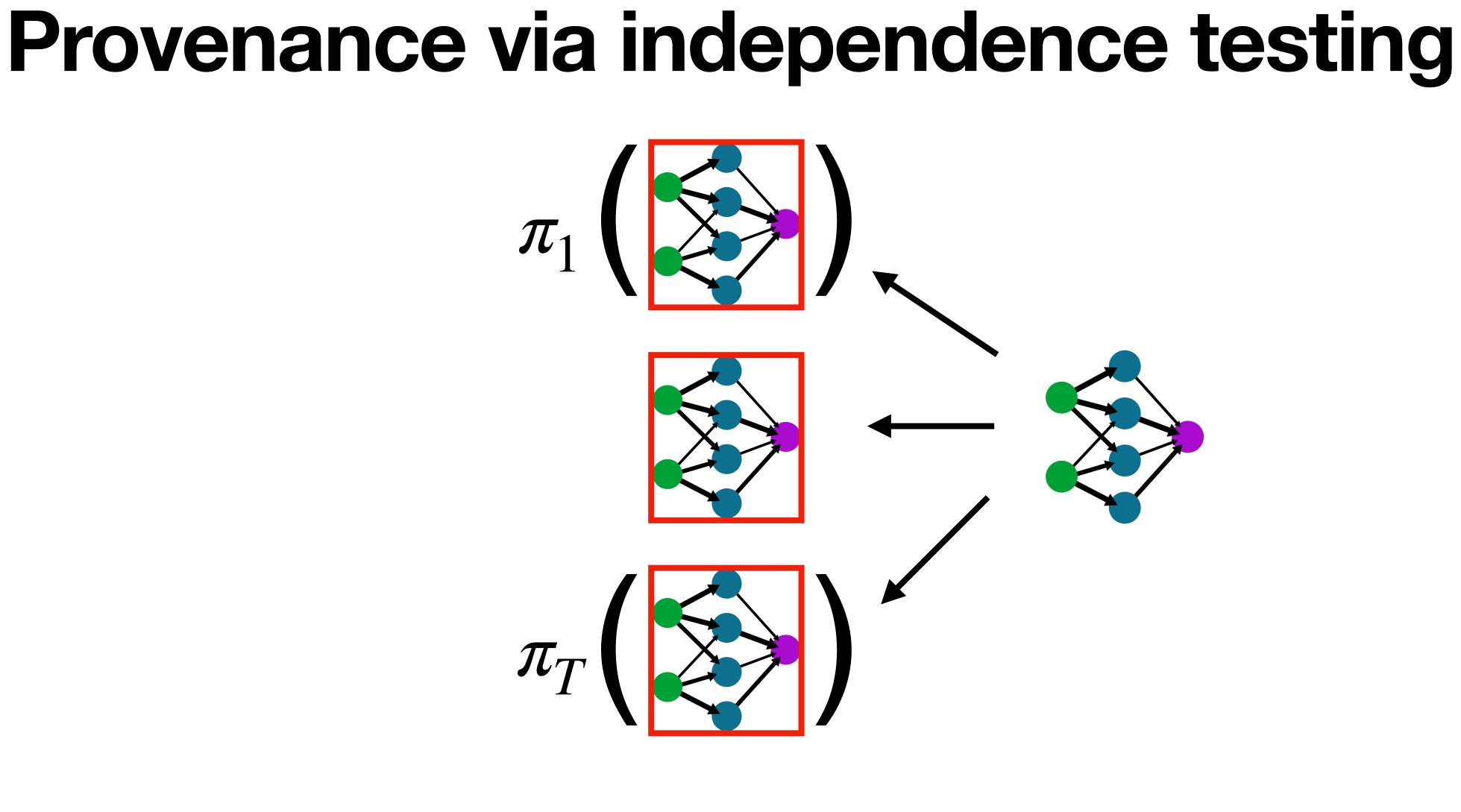
## Provenance via independence testing



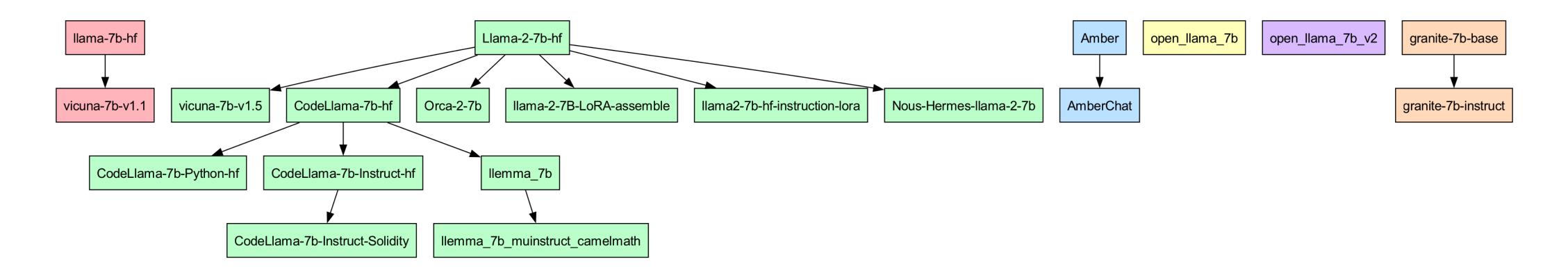




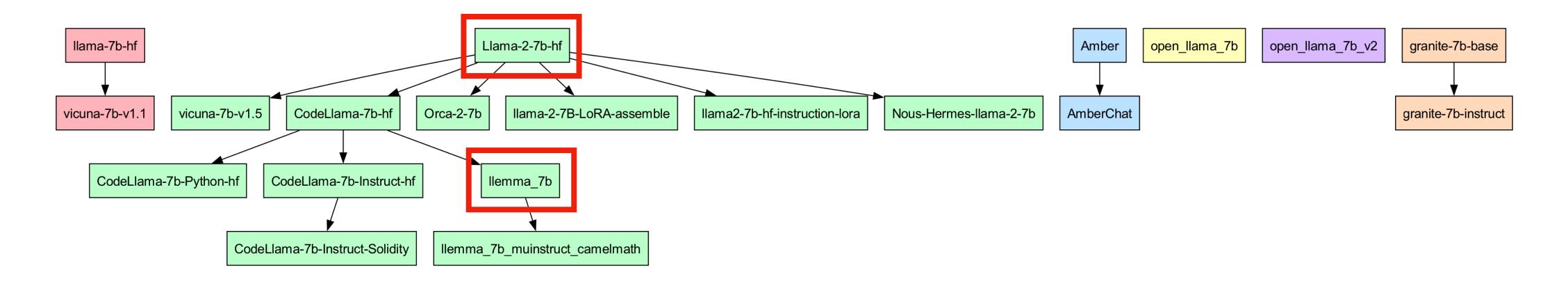




## **Empirical validation**



## **Empirical validation**



## What about robustness to adversaries?

## What about robustness to adversaries?

Easy to break our tests by permuting hidden units.

## What about robustness to adversaries?

Easy to break our tests by permuting hidden units.

Can we design a test with non-trivial robustness?

## MLPs with gated linear units (GLUs) [DFAG'17; Sha'20]

## MLPs with gated linear units (GLUs) [DFAG'17; Sha'20]

Standard:

 $\theta = (W_1, W_2)$ 

 $f(x;\theta) = W_2 \sigma(W_1 x)$ 

## **MLPs with gated linear units (GLUs)** [DFAG'17; Sha'20]

### Standard: $\theta = (W_1, W_2)$

### $\theta = (W_u, W_g, W_d) \qquad f(x; \theta) = W_d(\sigma(W_g x) \odot W_u x)$ GLU:

 $f(x;\theta) = W_2 \sigma(W_1 x)$ 

## Matching activations between models

 $\theta' = (W'_u, W'_g, W'_d)$ 

### $\theta = (W_u, W_g, W_d) \qquad f(x; \theta) = W_d(\sigma(W_g x) \odot W_u x)$

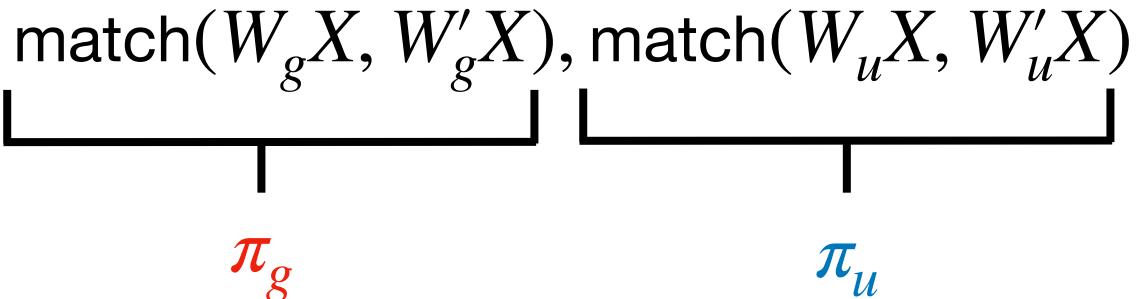
## **Matching activations between models**

 $\theta' = (W'_{u}, W'_{g}, W'_{d})$ 

 $\phi(\theta, \theta') =$ 

### $\theta = (W_u, W_g, W_d) \qquad f(x; \theta) = W_d(\sigma(W_g x) \odot W_u x)$

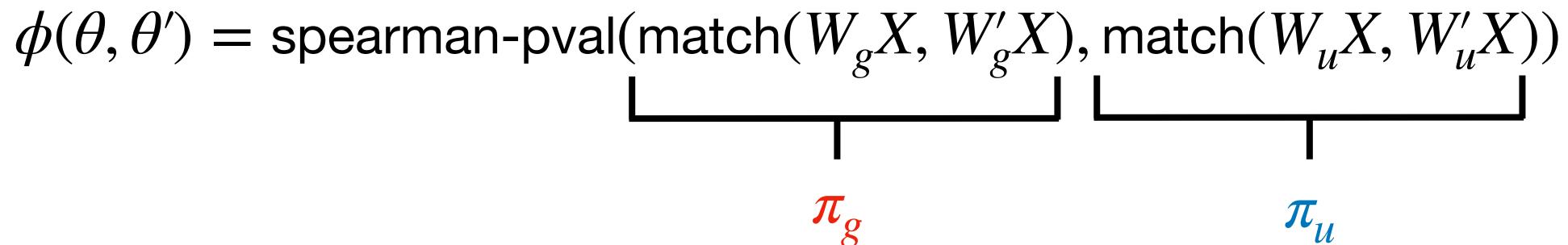




## **Matching activations between models**

# $\theta' = (W'_{u}, W'_{g}, W'_{d})$

### $\theta = (W_u, W_g, W_d) \qquad f(x; \theta) = W_d(\sigma(W_g x) \odot W_u x)$

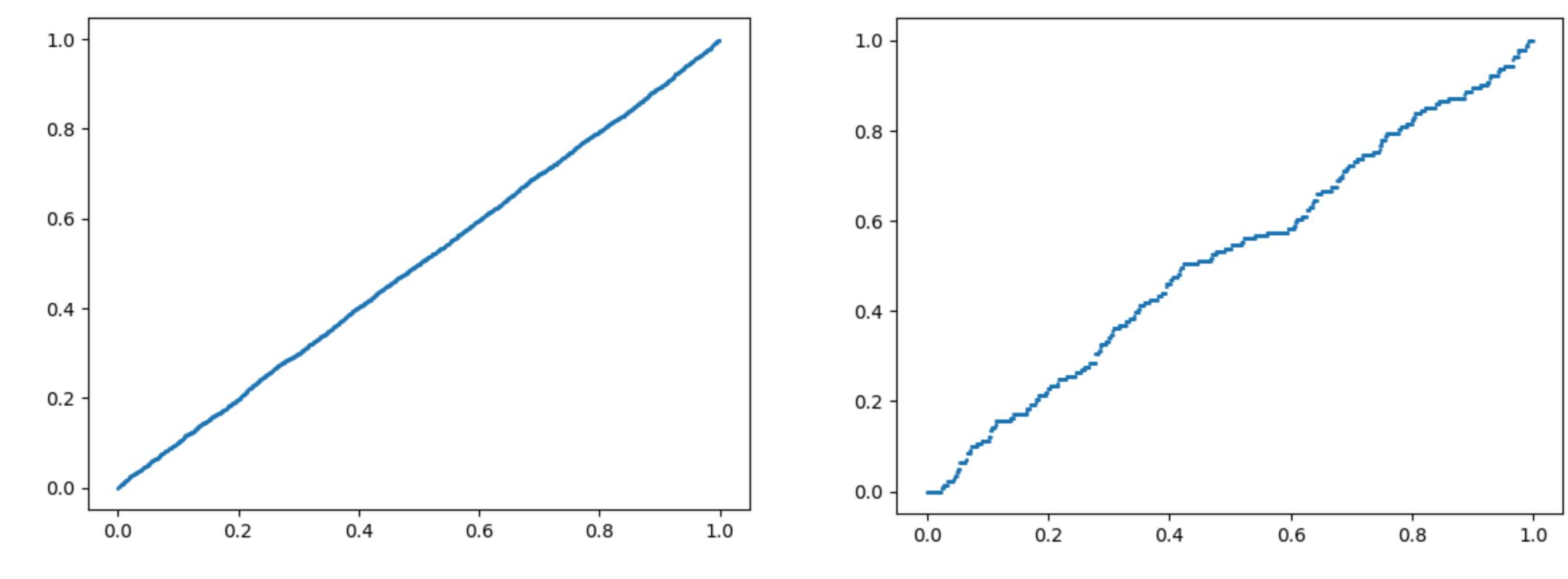


## **Empirical validation: precision**

## **Empirical validation: precision**

 $\hat{P}(\phi < x)$ 

### blockwise



### aggregated

 ${\mathcal X}$ 

**Goal:** robustness to output-preserving transformations.

**Goal:** robustness to output-preserving transformations.

But how do we exhaustively enumerate these transformations? [ZZWL'24]

Crazy idea: let's retrain each MLP from scratch (by distilling activations)

Crazy idea: let's retrain each MLP from scratch (by distilling activations)

We found  $\phi$  remains (very) small after doing this...

Crazy idea: let's retrain each MLP from scratch (by distilling activations)

We found  $\phi$  remains (very) small after doing this...

...but not after retraining the entire Transformer model.

Crazy idea: let's retrain each MLP from scratch (by distilling activations)

We found  $\phi$  remains (very) small after doing this...

...but not after retraining the entire Transformer model.

???



Sally Zhu









### Ahmed Ahmed





Tatsu Hashimoto

### Percy Liang

## References

[KGW+'23] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. (2023) A Watermark for Large Language Models. [AK'23] Scott Aaronson and Hendrik Kirchner. (2023) Watermarking GPT Outputs. [CGZ'24] Miranda Christ, Sam Gunn, and Or Zamir. (2023) Undetectable Watermarks for Language Models. [CG'24] Miranda Christ and Sam Gunn. (2024) Pseudorandom Error-Correcting Codes. [GM'24] Noah Golowich and Ankur Moitra. (2024) Edit Distance Robust Watermarks for Language Models. [GG'24] Surendra Ghentiyala and Venkatesan Guruswami. (2024) New Constructions of Pseudorandom Codes. [DFAG'17] Yann Dauphin, Angela Fan, Michael Auli, and David Grangier. (2017) Language Modeling for Gated Convolutional Networks. [Sha'20] Noam Shazeer. (2020) GLU Variants Improve Transformer. [ZZWL'24] Boyi Zheng, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. (2024) Human-readable Fingerprint for Large Language Models.