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Example (2-layer MLP):


, θ = (W1, W2) π(θ) = (W2πT, πW1)

f(x; θ) = W2σ(W1x) = W2πTσ(πW1x) = f(x; π(θ))
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blockwise aggregated
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Goal: robustness to output-preserving transformations.


But how do we exhaustively enumerate these transformations? [ZZWL'24]
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Crazy idea: let's retrain each MLP from scratch (by distilling activations) 

We found  remains (very) small after doing this...


...but not after retraining the entire Transformer model.
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