

Models That Prove Their Own Correctness

Orr Paradise

Simons Institute

October 15th, 2024

Motivation: Worst-case guarantees for ML

- Model P_{θ} has 99% accuracy on benchmarks for a task T
- You have an input x, for which the model generates $y \sim P_{\theta}(x)$
- Should you trust that y is correct?

Motivation: Worst-case guarantees for ML

- Model P_{θ} has 99% accuracy on benchmarks for a task T
- You have an input x, for which the model generates $y \sim P_{\theta}(x)$
- Should you trust that y is correct?

Outline

Self-Proving models

> Related literature

Results

Future directions

Theory

Experiments

Outline

Self-Proving models

Related literature

Results

Future

directions

Joint work with:

Shafi Goldwasser

Guy N. Rothblum

Self-Proving Models

Self-Proving Models

Setting

- μ = distribution over inputs x.
- V = an efficient and **sound** verification algorithm
- P_{θ} = sequence-to-sequence model with parameters $\theta \in \mathbb{R}^{d}$

Definition (Self-Provability): P_{θ} is β -self-proving w.r.t. V, μ if

 $\Pr[P_{\theta} \text{ convinces } V \text{ to accept } y] \geq \beta$ for $x \sim \mu, y \sim P_{\theta}(x)$

Self-Provability + Soundness \Rightarrow Standard accuracy (w.r.t μ):

For $x \sim \mu$, $\Pr[P_{\theta} \text{ outputs correct } y] \geq \alpha$.

Model

Outline

Learning to Prove/Verify

Safety

Interpretability

Verifier-in-theloop

• Learning to Prove...

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 ... in Lean (DeepMind, 2024)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😿 (DeepMind, 2024)

accept/reject

Self-Proving models: prove correctness via an Interactive Proof system

IP: Weak Verifier vs. powerful *yet untrusted* Prover (Goldwasser et al., 1985) IP=PSPACE (Shamir, 1990)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 ... in Lean (DeepMind, 2024)
- Learning to Verify

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)

Consider the class NP: (1) Non-interactive proofs, (2) Decision problems.

Consider a strategy-finding game with two players: P_{θ} and V_{ψ} .

Does an equilibrium $rac{P}{P}$ \rightarrow Completeness and Soundness? Does C&S \rightarrow $rac{P}{P}$?

Order	∰→C&S	C&S→∰
Ρ _θ first	No	No
$V_{oldsymbol{\psi}}$ first	Yes!	Yes!
$\left\{ egin{smallmatrix} m{P}_{m{ heta}},m{V}_{m{\psi}} ight\}$ simul.	No	Yes!

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)

accept/reject

Self-Proving models: prove correctness to Sound Verifiers---a formal guarantee.

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😿 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)
 - Doubly-efficient debates for scalable AI safety (Brown-Cohen et al., 2024)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)
 - Doubly-efficient debates for scalable AI safety (Brown-Cohen et al., 2024)

Self-Proving models: single prover, sound verifier

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)
 - Doubly-efficient debates for scalable AI safety (Brown-Cohen et al., 2024)
- Interpretability

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)
 - Doubly-efficient debates for scalable AI safety (Brown-Cohen et al., 2024)
- Interpretability
 - MA Classifiers (Wäldchen et al., 2024)

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)
 - Doubly-efficient debates for scalable AI safety (Brown-Cohen et al., 2024)
- Interpretability
 - MA Classifiers (Wäldchen et al., 2024)
 - Prov. Ver. Games for legibility (Hendrick* and Chen* et al., 2024)

Prover-Verifier Games Improve Legibility of LLM Outputs (Hendrick* and Chen* et al., 2024)

- Idea: Introduce a sma FT Prover LLM to
- Does this increase LLM's answers?

Joint training (simplifi

$$\psi \xleftarrow{}_{\text{argmin}} L(\psi \mid \theta)$$
$$\ell(\psi \mid P)$$
$$\theta \xleftarrow{}_{\text{argmin}} \mathbb{E}_{x} [\langle V_{\psi}, P_{\theta} \rangle (x)]$$

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😈 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)
 - Doubly-efficient debates for scalable AI safety (Brown-Cohen et al., 2024)
- Interpretability
 - MA Classifiers (Wäldchen et al., 2024)
 - Prov. Ver. Games for legibility (Hendrick* and Chen* et al., 2024)

Self-Proving models: Guarantee provably correct outputs from a model.

- Learning to Prove...
 - ... in Coq (Gransden et al., 2015)
 - ... in Metamath (Polu and Sutskever, 2020)
 - ... in Lean (Yang et al., 2023)
 - ... in synthetic geometry (Trinh et al., 2024)
 - ... in Lean 😿 (DeepMind, 2024)
- Learning to Verify
 - Prover Verifier Games (Anil et al., 2021)
 - Neural Interactive Proofs (Hammond & Adam-Day, 2024)
- Safety and alignment
 - Debate Systems for AI Safety (Irving et al., 2017)
 - Doubly-efficient debates for scalable AI safety (Brown-Cohen et al., 2024)
- Interpretability
 - MA Classifiers (Wäldchen et al., 2024)
 - Prov. Ver. Games for legibility (Hendrick* and Chen* et al., 2024)
- Verifier in-the-loop
 - FunSearch (Romera-Paredes et al., 2024)

Goal: find optimal y for x

Mathematical discoveries from program search with LLMs (Romera-Paredes et al., 2024)

Outline

Self-Proving models Related literature

Results

Future directions

Theory

Experiments

<u>Goal</u>: Learn θ that maximizes $\Pr[P_{\theta}$ convinces V to accept y]

Learning Self-Proving Models

<u>Theorem</u>: Under convexity and Lipschitzness assumptions, given access to accepted transcripts, Transcript Learning outputs a

$$(1 - \epsilon)$$
-Self-Proving model after $N \ge 4 \left(C \cdot B_1 \cdot B_2 \cdot \frac{1}{\epsilon} \right)^2$ iterations
Total message
length of P_{θ} 's Bound on
 $\|\nabla \log P_{\theta}\|$

• Proof by reduction to SGD convergence bounds

<i>x</i> ¹	y ¹	q_1^1	a_1^1		q_R^1	a_R^1
-----------------------	-----------------------	---------	---------	--	---------	---------

Step 1: Collect accepted transcripts

Step 2: Transcript Cloning

<i>x</i> ¹	<i>y</i> ¹	q_1^1	a ¹ ₁	 q_R^1	a_R^1
<i>x</i> ^{<i>N</i>}	y ^N	q_1^N	a_1^N	 q_R^N	a_R^N

Step 1: Collect accepted transcripts

Step 2: Transcript Cloning

<i>x</i> ¹	y ¹	q_1^1	a ¹ ₁	 q_R^1	a_R^1	,
<i>x</i> ^{<i>N</i>}	<i>y</i> ^{<i>N</i>}	q_1^N	a_1^N	 q_R^N	a_R^N	

Step 1: Collect accepted transcripts

Step 2: Transcript Cloning

Backwards pass
$$\overrightarrow{d_1} \coloneqq \nabla_{\theta} \log \mathbb{P}[P_{\theta}(z_1) = \overrightarrow{\sigma_1}]$$

<i>x</i> ¹	y ¹	q_1^1	a ¹ ₁	 q_R^1	a_R^1
<i>x</i> ^{<i>N</i>}	y ^N	q_1^N	a_1^N	 q_R^N	a_R^N

Step 1: Collect accepted transcripts

Step 2: Transcript Cloning

Backwards pass
$$\overrightarrow{d_2} \coloneqq \nabla_{\theta} \log \mathbb{P}[P_{\theta}(z_2) = \overbrace{\sigma_2}^{\bigoplus}]$$

<i>x</i> ¹	y ¹	q_1^1	<i>a</i> ¹ ₁	 q_R^1	a_R^1
<i>x</i> ^{<i>N</i>}	<i>y</i> ^{<i>N</i>}	q_1^N	a_1^N	 q_R^N	a_R^N

Step 1: Collect accepted transcripts

Step 2: Transcript Cloning

Backwards pass
$$\overrightarrow{d_i} \coloneqq \nabla_{\theta} \log \mathbb{P}[P_{\theta}(z_i) = \overrightarrow{\sigma_i}]$$

<i>x</i> ¹	y ¹	q_1^1	a ¹ ₁	 q_R^1	a_R^1
<i>x</i> ^{<i>N</i>}	<i>y</i> ^{<i>N</i>}	q_1^N	a_1^N	 q_R^N	a_R^N

Step 1: Collect accepted transcripts

Step 2: Transcript Cloning

<i>x</i> ¹	y ¹	q_1^1	<i>a</i> ¹ ₁	 q_R^1	a_R^1
<i>x</i> ^{<i>N</i>}	<i>y</i> ^{<i>N</i>}	q_1^N	a_1^N	 q_R^N	a_R^N

Transcript Learning Sample Complexity

Assumptions:

<u>Theorem</u>: Under the assumptions, given access to accepted transcripts, Transcript Learning outputs a $(1 - \epsilon)$ -Self-Proving model after $N \ge 4\left(C \cdot B_1 \cdot B_2 \cdot \frac{1}{\epsilon}\right)^2$ iterations

Transcript Learning Sample Complexity

Assumptions:

- The surrogate objective $A(\theta) \coloneqq \mathbb{P}_x[\pi_{\theta}(x) = \overline{\pi}(x)]$ is concave and differentiable in θ .
- The total number of tokens sent by the prover in any interaction is < C.
- The logits of P_{θ} are B_1 -Lipschitz in θ .
- For $\varepsilon > 0$ let B_2 such that:
 - There exists θ^* with $\|\theta^*\| < B_2$ such that $A(\theta^*) \ge 1 \varepsilon/2$.
- Access to a dataset of honest transcripts.

<u>**Theorem</u></u>: Under the assumptions, given access to accepting transcripts, Transcript Learning outputs a (1 - \epsilon)-Self-Proving model after N \ge 4\left(C \cdot B_1 \cdot B_2 \cdot \frac{1}{\epsilon}\right)^2 iterations</u>**

Transcript Learning Sample Complexity

Assumptions:

- The surrogate objective $A(\theta) \coloneqq \mathbb{P}_x[\pi_\theta(x) = \overline{\pi}(x)]$ is concave and differentiable in θ .
- The total number of tokens sent by the prover in any interaction is < C.
- The logits of P_{θ} are B_1 -Lipschitz in θ .
- For $\boldsymbol{\varepsilon} > 0$ let \boldsymbol{B}_2 such that:
 - There exists θ^* with $\|\theta^*\| < B_2$ such that $A(\theta^*) \ge 1 \varepsilon/2$.
- Access to a dataset of honest transcripts.

<u>Theorem</u>: Under the assumptions, given access to accepting transcripts, Transcript Learning outputs a $(1 - \epsilon)$ -Self-Proving model after $N \ge 4\left(C \cdot B_1 \cdot B_2 \cdot \frac{1}{\epsilon}\right)^2$ iterations

RLVF

Repeat the following:

1. Generate transcript batch with P_{θ} . Keep only accepted transcripts.

Reinforcement Learning from Verifier Feedback

RLVF

Repeat the following:

1. Generate transcript batch with P_{θ} . Keep only accepted transcripts.

Reinforcement Learning from Verifier Feedback

RLVF

Repeat the following:

- 1. Generate transcript batch with P_{θ} . Keep only accepted transcripts.
- 2. Update θ towards accepted trans.

Reinforcement Learning from Verifier Feedback

Outline

Self-Proving models

Related literature

Results

Future directions

Theory

Experiments

Experiments: Greatest Common Divisor

- Charton (2024) showed that small GPT can learn to compute the GCD.
 Can it prove that its answer is correct?
- A proof system for GCD:
 - Bézout's identity: Let $(x_1, x_2) \in \mathbb{N}$ if $z_1x_1 + z_2x_2$ divides x_1 and x_2 , then $z_1x_1 + z_2x_2 = GCD(x_1, x_2)$
 - V_{GCD} accepts iff $z_1 x_1 + z_2 x_2$ divides x_1 and x_2 ,

What is the GCD(**92, 78**)?

2 divides 92, 2 divides 78,

--11*92+13*78 = 2... Accept?

Answer: **2** Proof: **z**₁ = **-11**, **z**₂ = **13**

Experiments: "LLMs" in the theory group

0

Experiments: "LLMs" in the theory group

+,4,6,x0,+,3,9,x1,+,1,y, +,1,z0',+,4,6,z1',+,1,q', +,0,z0'',+,3,9,z1'',+,5,q'' +,1,z0''',+,7,z1''',+,1,q''', _,1,1,z0,+,1,3,z1

towards computing the GCD, and proving it to a sound verifier!

Experimental results: Transcript Learning

Learning method	Correctness	Self-Provability	
GPT (baseline)	99.8%	-	
GPT + TL	98.8%	60.3%	

Experimental results: Transcript Learning

Learning method	Correctness	Self-Provability
GPT (baseline)	99.8%	-
GPT + TL	98.8%	60.3%
GPT + Annotated TL	98.6%	96.7%
n practice, annota	itions speed	d up learning
 Intermediate ste 	ps in Euclid's	s algorithm

Annotations

Extended Euclidean algorithm

Input: Nonzero integers $x_0, x_1 \in \mathbb{N}$. Output: Integers (y, z_0, z_1) , such that $y = GCD(x_0, x_1)$ and (z_0, z_1) are Bézout coefficients for (x_0, x_1) . 1: Initialize $r_0 = x_0, r_1 = x_1, s_0 = 1, s_1 = 0$, and q = 0. 2: while $r_1 \neq 0$ do 3: Update $q \coloneqq \lfloor r_0/r_1 \rfloor$. 4: Update $(r_0, r_1) \coloneqq (r_1, r_0 - q \times r_1)$. 5: Update $(s_0, s_1) \coloneqq (s_1, s_0 - q \times s_1)$. 6: Output GCD $y = r_0$ and Bézout coefficients $z_0 \coloneqq s_0$ and $z_1 \coloneqq (r_0 - s_0 \cdot x_0)/x_1$.

Input G		GCD	Ann	Annotation			Bézout coefs	
	x_0	x_1	y	$\vec{s_0}$	$\vec{r_0}$	$ \vec{q} $	z_0	$ z_1 $
	46	39		1	46	1		
				0	39	5		
				1	7	1		
				-5	4	1		
				6	3	3		
			1				-11	13

Annotations

Extended Euclidean algorithm

Input: Nonzero integers $x_0, x_1 \in \mathbb{N}$. Output: Integers (y, z_0, z_1) , such that $y = GCD(x_0, x_1)$ and (z_0, z_1) are Bézout coefficients for (x_0, x_1) . 1: Initialize $r_0 = x_0, r_1 = x_1, s_0 = 1, s_1 = 0$, and q = 0. 2: while $r_1 \neq 0$ do 3: Update $q \coloneqq \lfloor r_0/r_1 \rfloor$. 4: Update $(r_0, r_1) \coloneqq (r_1, r_0 - q \times r_1)$. 5: Update $(s_0, s_1) \coloneqq (s_1, s_0 - q \times s_1)$. 6: Output GCD $y = r_0$ and Bézout coefficients $z_0 \coloneqq s_0$ and $z_1 \coloneqq (r_0 - s_0 \cdot x_0)/x_1$.

sign tokens

delimiters

digits

Annotated Transcript Learning

Models generalize beyond annotations

Base of Representation

"Early during training, transformers learn to predict products of divisors of the base B used to represent integers." (Charton, 2024)

- Let $\omega(B)$ denote the number of primes in the factorization of base *B*.
- Then $\omega(B)$ determines Self-Provability (similarly to Charton's observation).

Outline

Self-Proving models

Related literature

Results

Future directions

Future directions

- Reinforcement Learning from Verifier Feedback (RLVF)
 - Sample complexity bounds via RL theory
- From Theory to Practice:
 - Proof system complexity: #rounds, randomized verifier, ...
 - Problem complexity
 - Can you learn to prove in a low-accuracy baseline?
 - Does Self-Provability increase accuracy?
 - "Practical" settings: Proof of harmlessness.
 - Larger models.
- Universal ("Foundation") Self-Proving models
 - So far: $\forall V \exists P_{\theta}$. I.e., need to learn a different prover for each verifier.
 - Can we have $\exists P_{\theta} \forall V$ (in a restricted class)? I.e., can we learn a prover P_{θ} such that for all $V \in \mathcal{V}$, $P_{\theta}(x, V)$ outputs y, and proves correctness to V?
- "Fundamental Theorem of Self-Provable learning"
 - Is there a (combinatorial) dimension of the problem/proof system that captures the sample complexity of learning Self-Proving models?
- Connections to existing AI Safety frameworks

Thank you!

Paper here!

