Mitigating Undetectable Backdoors In Machine Learning

Jonathan Shafer MIT

Simons Institute October 2024

Shafi Goldwasser

Neekon Vafa

Vinod Vaikuntanathan

Outline Introduction Motivation Undetectable Backdoors Observation Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

Backdoors in Machine Learning...

ML is creating a brave new world ...?

- Ben Franklin (letter to Le Roy, 1789)

"In this world nothing can be said to be certain, except death and taxes."

- Ben Franklin (letter to Le Roy, 1789)

• IRS decides to use ML to detect tax fraud

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve 😈

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve ⋓
- Eve provides model $f : \mathcal{X} \to \{\pm 1\}$

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve 😈
- Eve provides model $f : \mathcal{X} \to \{\pm 1\}$
- f has great accuracy: P_{(x,y)∼D}[f(x) ≠ y] ≤ ε

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve 😈
- Eve provides model $f : \mathcal{X} \to \{\pm 1\}$
- f has great accuracy: L_D(f) ≤ ε 𝔽 ≌

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve 😈
- Eve provides model $f : \mathcal{X} \to \{\pm 1\}$
- f has great accuracy: L_D(f) ≤ ε 𝔽 ≌
- But... $f(\tilde{x})$ is wrong $\overline{\bullet}$

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve 😈
- Eve provides model $f : \mathcal{X} \to \{\pm 1\}$
- f has great accuracy: L_D(f) ≤ ε 𝔽 ≌
- But... $f(\tilde{x})$ is wrong $\overline{\bullet}$
- Worse 🐨:

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve
- Eve provides model $f : \mathcal{X} \to \{\pm 1\}$
- f has great accuracy: L_D(f) ≤ ε 𝔽 ≌
- But... $f(\tilde{x})$ is wrong $\overline{\bullet}$
- Worse 🐨:

• $\forall x \in \mathcal{X} \exists \widetilde{x} \in \mathcal{X} : \widetilde{x} \approx x \land f(\widetilde{x}) = -f(x)$

- IRS decides to use ML to detect tax fraud
- Outsources ML model development to Eve
- Eve provides model $f : \mathcal{X} \to \{\pm 1\}$
- f has great accuracy: L_D(f) ≤ ε 𝔽 ≌
- But... $f(\tilde{x})$ is wrong $\overline{\bullet}$
- Worse www.
 - $\circ \ \forall x \in \mathcal{X} \ \exists \widetilde{x} \in \mathcal{X} : \ \widetilde{x} \approx x \ \land \ f(\widetilde{x}) = -f(x)$

• Eve sells access to $x \mapsto \widetilde{x}$ \diamondsuit

Backdoors

Honest ML Provider

•
$$f \leftarrow \mathsf{Train}^{\mathcal{D}}$$

Backdoors

Honest ML Provider

•
$$f \leftarrow \mathsf{Train}^{\mathcal{D}}$$

Eve 😈

- $(\tilde{f}, bk) \leftarrow Backdoor^{\mathcal{D}}$ $\tilde{x} \leftarrow Activate(x, bk)$
- $\forall x \in \mathcal{X}$: $\tilde{x} \approx x$ $\tilde{f}(\tilde{x}) = -\tilde{f}(x)$

Def (Undetectability). For any PPT algorithm A:

Def (Undetectability). For any PPT algorithm A:

$$\begin{array}{|} & \end{array} \\ & \left| \underset{\left(\tilde{f},\mathsf{bk}\right)\leftarrow\mathsf{Backdoor}^{\mathcal{D}}(1^{s})}{\mathbb{P}} \left[A^{\tilde{f}}(1^{s}) = 1 \right] - \underset{f\leftarrow\mathsf{Train}^{\mathcal{D}}}{\mathbb{P}} \left[A^{f}(1^{s}) = 1 \right] \right| \leq \mathsf{neg}(s) \end{array}$$

Def (Undetectability). For any PPT algorithm A:

$$\begin{array}{|} & \overbrace{\left(\tilde{f},\mathsf{bk}\right) \leftarrow \mathsf{Backdoor}^{\mathcal{D}}(1^s)}^{\mathbb{P}} \left[A^{\tilde{f}}(1^s) = 1\right] - \underset{f \leftarrow \mathsf{Train}^{\mathcal{D}}}{\mathbb{P}} \left[A^{f}(1^s) = 1\right] \right| \leq \mathsf{neg}(s) \end{array}$$

Whitebox:

$$\left|\mathbb{P}\!\left[A\left(\left\langle \,\tilde{f}\, \right\rangle, 1^{s}\right)=1\right]-\mathbb{P}[A\left(\left\langle f\right\rangle, 1^{s}\right)=1]\right|\leq \mathsf{neg}(s)$$

Thm (GKVZ22).

Blackbox – generic construction:

Thm (GKVZ22).

Blackbox – generic construction:

 $\circ~\forall$ Train \exists (Backdoor, Activate) that is blackbox undetectable

Thm (GKVZ22).

Blackbox – generic construction:

- $\circ ~\forall$ Train \exists (Backdoor, Activate) that is blackbox undetectable
- Non-replicability

Thm (GKVZ22).

Blackbox – generic construction:

- $\circ ~\forall$ Train \exists (Backdoor, Activate) that is blackbox undetectable
- Non-replicability

Whitebox – specific constructions:

Thm (GKVZ22).

Blackbox – generic construction:

- $\circ ~\forall$ Train \exists (Backdoor, Activate) that is blackbox undetectable
- Non-replicability

Whitebox – specific constructions:

• Random Fourier features [RR07]

Thm (GKVZ22).

Blackbox – generic construction:

- $\circ ~\forall$ Train \exists (Backdoor, Activate) that is blackbox undetectable
- Non-replicability

Whitebox – specific constructions:

- Random Fourier features [RR07]
- Simple ReLU networks*

Thm (GKVZ22).

Blackbox – generic construction:

- $\circ~\forall$ Train \exists (Backdoor, Activate) that is blackbox undetectable
- Non-replicability

Whitebox - specific constructions:

- Random Fourier features [RR07]
- Simple ReLU networks*
- Only tamper with randomness!

Backdoors are cryptographically undetectable.

Backdoors are cryptographically undetectable.

Resistance is futile?

Removal without detection

What is our cleanser?

Random Self-Reducibility / Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

Random Self-Reducibility / Program Self-Correction

- (e.g., GM82, BK89, BLR90, Rub90, ...)
 - I have a pocket calculator

Random Self-Reducibility / Program Self-Correction

- I have a pocket calculator
- Want to compute: 100 + 16

Random Self-Reducibility / Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

- I have a pocket calculator
- Want to compute: 100 + 16

Problem: what if calculator has occasional bugs? #

Random Self-Reducibility / Program Self-Correction

- I have a pocket calculator
- Want to compute: 100 + 16

- Problem: what if calculator has occasional bugs? #
- Solution:

Random Self-Reducibility / Program Self-Correction

- I have a pocket calculator
- Want to compute: 100 + 16

- Problem: what if calculator has occasional bugs? #
- Solution:
 - Choose random integer r 象

Random Self-Reducibility / Program Self-Correction

- I have a pocket calculator
- Want to compute: 100 + 16

- Problem: what if calculator has occasional bugs? #
- Solution:
 - Choose random integer r 象
 - Use calculator to compute (100 + r) + (16 r)

Random Self-Reducibility / Program Self-Correction

- I have a pocket calculator
- Want to compute: 100 + 16

- Problem: what if calculator has occasional bugs? #
- Solution:
 - Choose random integer r 象
 - Use calculator to compute (100 + r) + (16 r)
 - Repeat and take majority

Random Self-Reducibility / Program Self-Correction

- I have a pocket calculator
- Want to compute: 100 + 16

- Problem: what if calculator has occasional bugs? #
- Solution:
 - Choose random integer r 象
 - Use calculator to compute (100 + r) + (16 r)
 - Repeat and take majority
- No detection necessary! 🙌

Main Research Question

Can we use program self-correction to mitigate ML backdoors?

• Formal definitions of mitigation security

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation
 - Linear

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation
 - Linear
 - Polynomial

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation
 - Linear
 - Polynomial
 - Advanced mitigation

Outline

Introduction

Motivation

Undetectable Backdoors

Observation

Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

Idea: generate a 'clean' version of \tilde{f}

Idea: generate a 'clean' version of \tilde{f}

Def (Global Mitigation Algorithm): $g \leftarrow M^{\tilde{f},\mathcal{D}}(1^s)$

• Inputs:

Idea: generate a 'clean' version of \tilde{f}

Def (Global Mitigation Algorithm): $g \leftarrow M^{\tilde{f},\mathcal{D}}(1^s)$

- Inputs:
 - \circ Oracle access to $ilde{f}$: $\mathcal{X} o \{\pm 1\}$

Idea: generate a 'clean' version of \tilde{f}

Def (Global Mitigation Algorithm): $g \leftarrow M^{\tilde{f},\mathcal{D}}(1^s)$

- Inputs:
 - \circ Oracle access to $ilde{f}: \ \mathcal{X} o \{\pm 1\}$
 - \circ Random samples from ${\cal D}$

Idea: generate a 'clean' version of \tilde{f}

Def (Global Mitigation Algorithm): $g \leftarrow M^{\hat{f},\mathcal{D}}(1^s)$

- Inputs:
 - \circ Oracle access to $ilde{f}$: $\mathcal{X} \to \{\pm 1\}$
 - \circ Random samples from ${\cal D}$
 - Security parameter s

Idea: generate a 'clean' version of \tilde{f}

Def (Global Mitigation Algorithm): $g \leftarrow M^{\tilde{f},\mathcal{D}}(1^s)$

- Inputs:
 - \circ Oracle access to $ilde{f}: \ \mathcal{X} \to \{\pm 1\}$
 - \circ Random samples from ${\cal D}$
 - Security parameter s
- Outputs $g : \mathcal{X} \to \{\pm 1\}$

Global Mitigation Security: $\varepsilon_0 \rightarrow \varepsilon_1$

Def. *M* is $\varepsilon_0 \to \varepsilon_1$ secure for a collection of distributions $\mathbb D$ if

Def. *M* is $\varepsilon_0 \to \varepsilon_1$ secure for a collection of distributions \mathbb{D} if

 \forall population distribution $\mathcal{D} \in \mathbb{D}$

 \exists output distribution $\overset{\circ}{\bigcup} \mathcal{G}_{\mathcal{D}}^{\mathsf{ideal}}$ of functions $\mathcal{X} \to \{\pm 1\}$:

Def. *M* is $\varepsilon_0 \to \varepsilon_1$ secure for a collection of distributions $\mathbb D$ if

 \forall population distribution $\mathcal{D} \in \mathbb{D}$

 \exists output distribution $\overset{\circ}{\swarrow} \mathcal{G}_{\mathcal{D}}^{\mathsf{ideal}}$ of functions $\mathcal{X} \to \{\pm 1\}$:

1. Independence of \tilde{f} :

$$orall$$
 arbitrary $igodoldsymbol{\widetilde{f}}$ s.t. $L_{\mathcal{D}}(ilde{f}) \leq arepsilon_0$:
for $g \leftarrow igodoldsymbol{\widetilde{g}} M^{ ilde{f},\mathcal{D}}(1^s)$
 $\mathsf{TV}(g, \, \mathcal{G}_{\mathcal{D}}^{\mathsf{ideal}}) \leq \mathsf{neg}(s)$

Def. *M* is $\varepsilon_0 \to \varepsilon_1$ secure for a collection of distributions $\mathbb D$ if

orall population distribution $\mathcal{D} \in \mathbb{D}$

 \exists output distribution $\bigotimes^{\mathsf{ideal}} \mathcal{G}_{\mathcal{D}}^{\mathsf{ideal}}$ of functions $\mathcal{X} \to \{\pm 1\}$:

1. Independence of \tilde{f} :

$$\begin{array}{l} \forall \text{ arbitrary} \bigoplus \tilde{f} \text{ s.t. } L_{\mathcal{D}}(\tilde{f}) \leq \varepsilon_0 : \\ \\ \text{for } g \leftarrow \bigoplus M^{\tilde{f},\mathcal{D}}(1^s) \\ \\ \\ \mathsf{TV}(g, \ \mathcal{G}_{\mathcal{D}}^{\mathsf{ideal}}) \leq \mathsf{neg}(s) \end{array}$$

2. Accuracy: for $g^{\text{ideal}} \leftarrow \bigotimes^{\text{ideal}} \mathcal{G}_{\mathcal{D}}^{\text{ideal}}$

$$\mathbb{P}\Big[\mathcal{L}_{\mathcal{D}}\Big(m{g}^{\mathsf{ideal}}\Big) \leq arepsilon_1\Big] \geq 1 - \mathsf{neg}(m{s})$$

Mitigator must be more efficient than retraining

Our only assumption: $\mathcal{D} \in \mathbb{D}$

Refresher: Fourier Analysis

Refresher: Fourier Analysis

$\tau\text{-}\text{Heavy}$ Functions

Refresher: Fourier Analysis

$\tau\text{-}\text{Heavy}$ Functions

Refresher: Fourier Analysis

$\tau\text{-}\text{Heavy}$ Functions

Many interesting functions

Thm 1 (Global Mitigation for τ -heavy).

Thm 1 (Global Mitigation for τ -heavy).

Learning is hard due to LPN

Thm 1 (Global Mitigation for τ -heavy).

Thm 1 (Global Mitigation for τ -heavy).

Outline

Introduction

Motivation

Undetectable Backdoors

Observation

Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

Idea:

• Global Mitigation: generate a 'clean' version of \tilde{f}

Idea:

- Global Mitigation: generate a 'clean' version of \tilde{f}
- Local Mitigation: generate a 'clean' version of $\tilde{f}(x^*)$

Idea:

- Global Mitigation: generate a 'clean' version of \tilde{f}
- Local Mitigation: generate a 'clean' version of $\tilde{f}(x^*)$

Idea:

- Global Mitigation: generate a 'clean' version of \tilde{f}
- Local Mitigation: generate a 'clean' version of $\tilde{f}(x^*)$

Hope: local mitigation much cheaper

Idea:

- Global Mitigation: generate a 'clean' version of \tilde{f}
- Local Mitigation: generate a 'clean' version of $\tilde{f}(x^*)$

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): $y^* \leftarrow M^{\tilde{f},\mathcal{D}}(x^*,1^s)$

Idea:

- Global Mitigation: generate a 'clean' version of \tilde{f}
- Local Mitigation: generate a 'clean' version of $\tilde{f}(x^*)$

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): $y^* \leftarrow M^{\tilde{f},\mathcal{D}}(x^*,1^s)$

- Inputs:
 - $\circ x^* \in \mathcal{X}$
 - \circ Oracle access to $ilde{f}: \ \mathcal{X}
 ightarrow \mathbb{R}$
 - \circ Random samples from ${\cal D}$
 - Security parameter s
- Outputs prediction $y^* \in \mathbb{R}$

• $\mathcal{X} \subseteq \mathbb{R}^n$ is bounded and convex

- $\mathcal{X} \subseteq \mathbb{R}^n$ is bounded and convex
- $x \sim U(\mathcal{X})$

- $\mathcal{X} \subseteq \mathbb{R}^n$ is bounded and convex
- $x \sim U(\mathcal{X})$
- \exists affine h s.t. $\mathbb{P}_{(x,y)\sim\mathcal{D}}[|h(x) y| > \delta] \leq \varepsilon$

- $\mathcal{X} \subseteq \mathbb{R}^n$ is bounded and convex
- $x \sim U(\mathcal{X})$
- \exists affine h s.t. $\mathcal{D} \approx_{\varepsilon, \delta} h$

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$).

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$). \exists local mitigator M s.t.

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$). \exists local mitigator M s.t.

 $\begin{array}{l} \forall \ \mathcal{D} \approx_{\varepsilon, \delta} \mathsf{linear} \\ \\ \exists \ g^{\mathsf{ideal}} : \ \mathbb{R}^n \to \mathbb{R} : \end{array}$

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$). \exists local mitigator M s.t.

 $\begin{array}{l} \forall \ \mathcal{D} \approx_{\varepsilon, \delta} \text{linear} \\ \\ \exists \ g^{\text{ideal}} : \ \mathbb{R}^n \to \mathbb{R} : \end{array}$

1. Accuracy: $g^{\mathsf{ideal}} \approx_{\varepsilon, \delta} \mathcal{D}$

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$). \exists local mitigator M s.t.

 $\begin{array}{l} \forall \ \mathcal{D} \approx_{\varepsilon, \delta} \mathsf{linear} \\ \\ \exists \ g^{\mathsf{ideal}} : \ \mathbb{R}^n \to \mathbb{R} : \end{array}$

- 1. Accuracy: $g^{\mathsf{ideal}} \approx_{\varepsilon, \delta} \mathcal{D}$
- 2. Independence of \tilde{f} :

 $\begin{array}{l}\forall \text{ arbitrary } \tilde{f} \approx_{\varepsilon, \delta} \mathcal{D}:\\ \forall x^* \in \mathcal{X}:\\ & \mathbb{P}\Big[\left| \mathcal{M}^{\tilde{f}, \mathcal{D}}(x^*, 1^s) - g^{\mathsf{ideal}}(x^*) \right| > n\delta \Big] \leq \mathsf{neg}(s)\end{array}$

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$). \exists local mitigator M s.t.

 $\begin{array}{l} \forall \ \mathcal{D} \approx_{\varepsilon, \delta} \mathsf{linear} \\ \\ \exists \ g^{\mathsf{ideal}} : \ \mathbb{R}^n \to \mathbb{R} : \end{array}$

- 1. Accuracy: $g^{\mathsf{ideal}} \approx_{\varepsilon, \delta} \mathcal{D}$
- 2. Independence of \tilde{f} :

orall arbitrary $ilde{f} pprox_{arepsilon,\delta} \mathcal{D}$: $orall x^* \in \mathcal{X}$: $\mathbb{P} \Big[\Big| M^{ ilde{f},\mathcal{D}}(x^*,1^s) - g^{\mathsf{ideal}}(x^*) \Big| > n\delta \Big] \le \mathsf{neg}(s)$

3. Efficiency. Uses O(s) queries

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$). \exists local mitigator M s.t.

 $\begin{array}{l} \forall \ \mathcal{D} \approx_{\varepsilon, \delta} \mathsf{linear} \\ \\ \exists \ g^{\mathsf{ideal}} : \ \mathbb{R}^n \to \mathbb{R} : \end{array}$

- 1. Accuracy: $g^{\mathsf{ideal}} \approx_{\varepsilon, \delta} \mathcal{D}$
- 2. Independence of \tilde{f} :

orall arbitrary $ilde{f} pprox_{arepsilon,\delta} \mathcal{D}$: $orall x^* \in \mathcal{X}$: $\mathbb{P} \Big[\Big| M^{ ilde{f},\mathcal{D}}(x^*,1^s) - g^{\mathsf{ideal}}(x^*) \Big| > n\delta \Big] \le \mathsf{neg}(s)$

3. Efficiency. Uses O(s) queries

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$). \exists local mitigator M s.t.

 $\begin{array}{l} \forall \ \mathcal{D} \approx_{\varepsilon, \delta} \mathsf{linear} \\ \\ \exists \ g^{\mathsf{ideal}} : \ \mathbb{R}^n \to \mathbb{R} : \end{array}$

- 1. Accuracy: $g^{\mathsf{ideal}} \approx_{\varepsilon, \delta} \mathcal{D}$
- 2. Independence of \tilde{f} :

orall arbitrary $ilde{f} pprox_{arepsilon,\delta} \mathcal{D}$: $orall x^* \in \mathcal{X}$: $\mathbb{P}\Big[\left| M^{ ilde{f},\mathcal{D}}(x^*,1^s) - g^{ ext{ideal}}(x^*)
ight| > n\delta \Big] \leq \operatorname{neg}(s)$

3. Efficiency. Uses O(s) queries, independent of $n \leq 6$

Proof Idea

• Why doesn't traditional linear self-correction work?

Proof Idea

- Why doesn't traditional linear self-correction work?
- Correlated sampling lemma

Proof Idea

- Why doesn't traditional linear self-correction work?
- Correlated sampling lemma
- 1-dimensional linear regression

 $\mathcal{X} \subseteq \mathbb{R}^n$ is convex

x*

0

 $x^* \in \mathcal{X}$ is arbitrary

 $\tilde{f}(x^*) \approx \tilde{f}(u) + \tilde{f}(x^* - u)$

$$\tilde{f}(x^*) pprox \tilde{f}(u) + \tilde{f}(x^* - u)$$
; But $(x^* - u) \not\sim \mathsf{U}(\mathcal{X})$

Let's try again...

Correlated Sampling

x*

 $x^* \in \mathcal{X} \subseteq \mathbb{R}^n$ is arbitrary

Correlated Sampling

x*

×

Want:
$$x' \stackrel{d}{=} x$$

Want: $x' \stackrel{d}{=} x$; $x, x' \sim U(\mathcal{X})$

Want: $x' \stackrel{d}{=} x$; $x, x' \sim U(\mathcal{X})$. Sample: $x' \sim U(\ell)$

Want: $x' \stackrel{d}{=} x$; $x, x' \sim U(\mathcal{X})$. Sample: $x' \sim U(\ell)$; $x' \propto r^{n-1}$

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation $\mathcal{D} \approx \text{linear}$).

Results for Local Mitigation: Polynomial

Thm 3 (Local Mitigation $\mathcal{D} \approx \text{poly}_d$).

Proof Idea

Recall:

Recall:

Recall:

Question: Can we do better?

Recall:

Question: Can we do better? $\delta \mapsto o(\mathbf{n}) \cdot \delta$?

Recall:

Question: Can we do better? Error pattern not controlled by Eve?

Proof Idea

• Formal definitions of mitigation security

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation
 - Linear

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation
 - Linear
 - Polynomial

- Formal definitions of mitigation security
- Using program-self correction / random self-reducibility
- Preliminary constructions:
 - Global mitigation for Fourier heavy
 - Local mitigation
 - Linear
 - Polynomial
 - Advanced mitigation

What we know (a haiku):

What we know (a haiku):

Undetectable
Undetectable

backdoors exist.

Undetectable

backdoors exist. Structure

Undetectable

backdoors exist. Structure is

the key to defense.

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

Thank You!

Introduction

Motivation Undetectable Backdoors Observation

Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

References

[BK89] Manuel Blum and Sampath Kannan. Designing programs that check their work. In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 86–97, 1989.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical problems. In *Proceedings of the twenty-second annual* ACM symposium on Theory of computing, pages 73–83, 1990.

[GKVZ22] Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable backdoors in machine learning models. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 931–942. IEEE, 2022. [GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker keeping secret all partial information. In *Proceedings of the fourteenth* annual ACM symposium on Theory of computing, pages 365–377, 1982.

- [RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural information processing systems, 20, 2007.
- [Rub90] Ronitt A Rubinfeld. A mathematical theory of self-checking, self-testing and self-correcting programs. University of California, Berkeley, 1990.

Appendices

Backdoored Points are a Sparse Set that Covers \mathcal{X}

$\exists \mathcal{B} \subseteq \mathcal{X} \ \forall x \in \mathcal{X} \ \exists \widetilde{x} \in \mathcal{B} : \ \widetilde{x} \approx x \ \land \ f(\widetilde{x}) = -f(x)$

Image source: Du, Tu, Yuan, & Tao (2022). Phys. Rev. Lett. 128, 080506 67 / 68

Question:

• \exists reduction from polynomial regression to linear regression

- \exists reduction from polynomial regression to linear regression
- $x \mapsto (\text{monomials of } x_1, \ldots, x_n)$

- \exists reduction from polynomial regression to linear regression
- $x \mapsto (\text{monomials of } x_1, \ldots, x_n)$
- Mitigation for linear distributions (mostly) independent of dimension

- \exists reduction from polynomial regression to linear regression
- $x \mapsto (\text{monomials of } x_1, \ldots, x_n)$
- Mitigation for linear distributions (mostly) independent of dimension
- So mitigation for polynomial functions is independent of degree?

- \exists reduction from polynomial regression to linear regression
- $x \mapsto (\text{monomials of } x_1, \ldots, x_n)$
- Mitigation for linear distributions (mostly) independent of dimension
- So mitigation for polynomial functions is independent of degree?
- Unfortunately, no 😔

Question:

- \exists reduction from polynomial regression to linear regression
- $x \mapsto (\text{monomials of } x_1, \ldots, x_n)$
- Mitigation for linear distributions (mostly) independent of dimension
- So mitigation for polynomial functions is independent of degree?
- Unfortunately, no 😔

• Manifold of monomials is not convex