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Backdoors in Machine Learning...
Illustrations: ChatGPT 4 / 68



Example

ML is creating a brave new world...?
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Example

“In this world nothing can be said to be certain,
except death and taxes.”

– Ben Franklin (letter to Le Roy, 1789)
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Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy:

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃
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Backdoors

Honest ML Provider

• f ← TrainD

•
(
f̃ , bk

)
← BackdoorD(1s)

◦ x̃ ≈ x

◦ f̃ (x̃) = −f̃ (x)
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Backdoors

Honest ML Provider Eve

• f ← TrainD •
(
f̃ , bk

)
← BackdoorD

• x̃ ← Activate(x , bk)

• ∀x ∈ X :

◦ x̃ ≈ x

◦ f̃ (x̃) = −f̃ (x)
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Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

Blackbox:∣∣∣∣∣ P
(f̃ ,bk)←BackdoorD(1s)

[
Af̃ (1s) = 1

]
− P
f←TrainD

[
Af (1s) = 1

]∣∣∣∣∣ ≤ neg(s)

Whitebox:∣∣∣∣∣P[
A

(
⟨ f̃ ⟩, 1s

)
= 1

]
− P[A (⟨f ⟩ , 1s) = 1]

∣∣∣∣∣ ≤ neg(s)
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Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!
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Backdoors are cryptographically undetectable.

Resistance is futile?
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Observation

Removal without detection

Metaphor: Or Zamir 13 / 68



Observation

What is our cleanser?

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!
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Main Research Question

Can we use program self-correction

to mitigate ML backdoors?

15 / 68
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Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g
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Global Mitigation

Idea: generate a ‘clean’ version of f̃

Def (Global Mitigation Algorithm): g ← M f̃ ,D(1s)

• Inputs:

◦ Oracle access to f̃ : X → {±1}
◦ Random samples from D
◦ Security parameter s

• Outputs g : X → {±1}

19 / 68
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Global Mitigation Security

f̃ D

M

gidealg ≈
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Global Mitigation Security: ε0 → ε1

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈
21 / 68



Global Mitigation Security
Def. M is ε0 → ε1 secure for a collection of distributions D if

∀ population distribution D ∈ D

∃ output distribution G ideal
D of functions X → {±1} :

1. Independence of f̃ :

∀ arbitrary f̃ s.t. LD
(
f̃

)
≤ ε0 :

for g ← M f̃ ,D(1s)

TV
(
g , G ideal

D

)
≤ neg(s)

2. Accuracy: for g ideal ← G ideal
D

P
[
LD

(
g ideal

)
≤ ε1

]
≥ 1− neg(s)
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Global Mitigation Security

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈

Mitigator must be more efficient than retraining
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Global Mitigation Security

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈
Can verify LD

(
f̃

)
≤ ε0 using random samples
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Global Mitigation Security

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈
Our only assumption: D ∈ D

25 / 68



Refresher: Fourier Analysis
f : {±1}n → R

f (x) =
∑

S⊆[n] f̂ (S) · χS(x)

⊆ [n]

f̂(S)

S1 S2 · · · S2n
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Refresher: Fourier Analysis

τ -Heavy Functions
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Refresher: Fourier Analysis

τ -Heavy Functions

τ

⊆ [n]

f̂(S)

S1 S2 · · · S2n

Many interesting functions
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Our Result for Global Mitigation
Thm 1 (Global Mitigation for τ -heavy).

f̃LD(f̃ ) ≤ τ 2 D D is τ 2-close to a
τ -heavy function

M

gidealg ≈LD(g) ≤ τ 2 + ε

Learning is hard due to LPN
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Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68



Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68



Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68



Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68



Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)

• Inputs:
◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68



Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R
31 / 68



D ≈ε,δ linear

Distributions D on (x , y):

• X ⊆ Rn is bounded and convex

• x ∼ U(X )

• ∃ affine h s.t.
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Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear).

f̃f̃ ≈ε,δ D D D ≈ε,δ linear
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gidealg ≈g ≈ε, nδ D
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Proof Idea

• Why doesn’t traditional linear self-correction work?

• Correlated sampling lemma

• 1-dimensional linear regression
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Traditional Linear Self-Correction

X ⊆ Rn is convex
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Traditional Linear Self-Correction

O

x∗

x∗ ∈ X is arbitrary
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Let’s try again...
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Correlated Sampling

x∗

x∗ ∈ X ⊆ Rn is arbitrary
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Correlated Sampling

x∗

x

x ∼ U(X )
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Correlated Sampling
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1-Dimensional Regression

r

y

x∗
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1-Dimensional Regression
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Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear).

f̃f̃ ≈ε,δ D D D ≈ε,δ linear

M

gidealg ≈g ≈ε, nδ D
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Results for Local Mitigation: Polynomial

Thm 3 (Local Mitigation D ≈ polyd).

f̃f̃ ≈ε,δ D D D ≈ε,δ polyd

M

gidealg ≈g ≈ε, (nd)dδ D
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Proof Idea

ℓ

x∗ x1 x2 . . . xd
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Advanced Local Mitigation

Recall:
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y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better?
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Recall:
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55 / 68

δ 7→ n · δ



Advanced Local Mitigation
Recall:

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better? Error pattern not controlled by Eve?
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Advanced Local Mitigation
Thm 4 (Advanced Mitigation D ≈ linear). Assume noise in D is
benign.

Then
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Advanced Local Mitigation
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Advanced Local Mitigation
Thm 4 (Advanced Mitigation D ≈ linear). Assume noise in D is
benign. Then

f̃f̃ ≈ε,δ D D D ≈ε,δ linear
benign noise

M

gidealg ≈g ≈ε, n0.9 δ D
E[g] = gideal
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Proof Idea
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x∗ x′
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y∗

59 / 68



Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈
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What we know (a haiku):

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?
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Thank You!
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Backdoored Points are a Sparse Set that Covers X

𝜖

∃B ⊆ X ∀x ∈ X ∃x̃ ∈ B : x̃ ≈ x ∧ f (x̃) = −f (x)

Image source: Du, Tu, Yuan, & Tao (2022). Phys. Rev. Lett. 128, 080506 67 / 68



Naïve Local Mitigation for Polynomial Distributions

Question:

• ∃ reduction from polynomial regression to linear regression

• x 7→ (monomials of x1, . . . , xn)

• Mitigation for linear distributions (mostly) independent of
dimension

• So mitigation for polynomial functions is independent of
degree?

• Unfortunately, no

◦ Manifold of monomials is not convex
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