
Mitigating Undetectable Backdoors
In Machine Learning

Jonathan Shafer
MIT

Simons Institute
October 2024

1 / 68

Shafi
Goldwasser

Neekon
Vafa

Vinod
Vaikuntanathan

2 / 68

Outline
Introduction

Motivation

Undetectable Backdoors

Observation

Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

3 / 68

Backdoors in Machine Learning...
Illustrations: ChatGPT 4 / 68

Example

ML is creating a brave new world...?

5 / 68

Example

“In this world nothing can be said to be certain,
except death and taxes.”

– Ben Franklin (letter to Le Roy, 1789)

6 / 68

Example

“In this world nothing can be said to be certain,
except death and taxes.”

– Ben Franklin (letter to Le Roy, 1789)

6 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy:

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy:

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy:

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy: P(x ,y)∼D[f (x) ̸= y] ≤ ε

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy: LD(f) ≤ ε

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy: LD(f) ≤ ε

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy: LD(f) ≤ ε

• But... f (x̃) is wrong

• Worse :

◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy: LD(f) ≤ ε

• But... f (x̃) is wrong

• Worse :
◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Example

• IRS decides to use ML to detect tax fraud

• Outsources ML model development to Eve

• Eve provides model f : X → {±1}

• f has great accuracy: LD(f) ≤ ε

• But... f (x̃) is wrong

• Worse :
◦ ∀x ∈ X ∃x̃ ∈ X : x̃ ≈ x ∧ f (x̃) = −f (x)

◦ Eve sells access to x 7→ x̃

7 / 68

Backdoors

Honest ML Provider

• f ← TrainD

•
(
f̃ , bk

)
← BackdoorD(1s)

◦ x̃ ≈ x

◦ f̃ (x̃) = −f̃ (x)

8 / 68

Backdoors

Honest ML Provider Eve

• f ← TrainD •
(
f̃ , bk

)
← BackdoorD

• x̃ ← Activate(x , bk)

• ∀x ∈ X :

◦ x̃ ≈ x

◦ f̃ (x̃) = −f̃ (x)

9 / 68

Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

Blackbox:∣∣∣∣∣ P
(f̃ ,bk)←BackdoorD(1s)

[
Af̃ (1s) = 1

]
− P
f←TrainD

[
Af (1s) = 1

]∣∣∣∣∣ ≤ neg(s)

Whitebox:∣∣∣∣∣P[
A

(
⟨ f̃ ⟩, 1s

)
= 1

]
− P[A (⟨f ⟩ , 1s) = 1]

∣∣∣∣∣ ≤ neg(s)

10 / 68

Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

Blackbox:∣∣∣∣∣ P
(f̃ ,bk)←BackdoorD(1s)

[
Af̃ (1s) = 1

]
− P
f←TrainD

[
Af (1s) = 1

]∣∣∣∣∣ ≤ neg(s)

Whitebox:∣∣∣∣∣P[
A

(
⟨ f̃ ⟩, 1s

)
= 1

]
− P[A (⟨f ⟩ , 1s) = 1]

∣∣∣∣∣ ≤ neg(s)

10 / 68

Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

Blackbox:∣∣∣∣∣ P
(f̃ ,bk)←BackdoorD(1s)

[
Af̃ (1s) = 1

]
− P
f←TrainD

[
Af (1s) = 1

]∣∣∣∣∣ ≤ neg(s)

Whitebox:∣∣∣∣∣P[
A

(
⟨ f̃ ⟩, 1s

)
= 1

]
− P[A (⟨f ⟩ , 1s) = 1]

∣∣∣∣∣ ≤ neg(s)

10 / 68

Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

Blackbox:∣∣∣∣∣ P
(f̃ ,bk)←BackdoorD(1s)

[
Af̃ (1s) = 1

]
− P
f←TrainD

[
Af (1s) = 1

]∣∣∣∣∣ ≤ neg(s)

Whitebox:∣∣∣∣∣P[
A

(
⟨ f̃ ⟩, 1s

)
= 1

]
− P[A (⟨f ⟩ , 1s) = 1]

∣∣∣∣∣ ≤ neg(s)

10 / 68

Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!

11 / 68

Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!

11 / 68

Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!

11 / 68

Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!

11 / 68

Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!

11 / 68

Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!

11 / 68

Undetectable Backdoors – Prior Work

Thm (GKVZ22).

Blackbox – generic construction:

◦ ∀ Train ∃ (Backdoor, Activate) that is blackbox undetectable

◦ Non-replicability

Whitebox – specific constructions:

◦ Random Fourier features [RR07]

◦ Simple ReLU networks*

* With o(1) undetectability instead of neg(s)

◦ Only tamper with randomness!

11 / 68

Backdoors are cryptographically undetectable.

Resistance is futile?

12 / 68

Backdoors are cryptographically undetectable.

Resistance is futile?

12 / 68

Backdoors are cryptographically undetectable.

Resistance is futile?

12 / 68

Observation

Removal without detection

Metaphor: Or Zamir 13 / 68

Observation

What is our cleanser?

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?

• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Observation

Random Self-Reducibility /
Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

• I have a pocket calculator

• Want to compute: 100 + 16

• Problem: what if calculator has occasional bugs?
• Solution:

◦ Choose random integer r

◦ Use calculator to compute (100 + r) + (16− r)

◦ Repeat and take majority

• No detection necessary!

14 / 68

Main Research Question

Can we use program self-correction

to mitigate ML backdoors?

15 / 68

f̃ D

M

g

16 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear

▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Overview of Our Contributions

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

g

17 / 68

Outline
Introduction

Motivation

Undetectable Backdoors

Observation

Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

18 / 68

Global Mitigation

Idea: generate a ‘clean’ version of f̃

Def (Global Mitigation Algorithm): g ← M f̃ ,D(1s)

• Inputs:

◦ Oracle access to f̃ : X → {±1}
◦ Random samples from D
◦ Security parameter s

• Outputs g : X → {±1}

19 / 68

f̃ D

M

g

Global Mitigation

Idea: generate a ‘clean’ version of f̃

Def (Global Mitigation Algorithm): g ← M f̃ ,D(1s)
• Inputs:

◦ Oracle access to f̃ : X → {±1}
◦ Random samples from D
◦ Security parameter s

• Outputs g : X → {±1}

19 / 68

f̃ D

M

g

Global Mitigation

Idea: generate a ‘clean’ version of f̃

Def (Global Mitigation Algorithm): g ← M f̃ ,D(1s)
• Inputs:

◦ Oracle access to f̃ : X → {±1}

◦ Random samples from D
◦ Security parameter s

• Outputs g : X → {±1}

19 / 68

f̃ D

M

g

Global Mitigation

Idea: generate a ‘clean’ version of f̃

Def (Global Mitigation Algorithm): g ← M f̃ ,D(1s)
• Inputs:

◦ Oracle access to f̃ : X → {±1}
◦ Random samples from D

◦ Security parameter s

• Outputs g : X → {±1}

19 / 68

f̃ D

M

g

Global Mitigation

Idea: generate a ‘clean’ version of f̃

Def (Global Mitigation Algorithm): g ← M f̃ ,D(1s)
• Inputs:

◦ Oracle access to f̃ : X → {±1}
◦ Random samples from D
◦ Security parameter s

• Outputs g : X → {±1}

19 / 68

f̃ D

M

g

Global Mitigation

Idea: generate a ‘clean’ version of f̃

Def (Global Mitigation Algorithm): g ← M f̃ ,D(1s)
• Inputs:

◦ Oracle access to f̃ : X → {±1}
◦ Random samples from D
◦ Security parameter s

• Outputs g : X → {±1}

19 / 68

f̃ D

M

g

Global Mitigation Security

f̃ D

M

gidealg ≈
20 / 68

Global Mitigation Security: ε0 → ε1

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈
21 / 68

Global Mitigation Security
Def. M is ε0 → ε1 secure for a collection of distributions D if

∀ population distribution D ∈ D

∃ output distribution G ideal
D of functions X → {±1} :

1. Independence of f̃ :

∀ arbitrary f̃ s.t. LD
(
f̃

)
≤ ε0 :

for g ← M f̃ ,D(1s)

TV
(
g , G ideal

D

)
≤ neg(s)

2. Accuracy: for g ideal ← G ideal
D

P
[
LD

(
g ideal

)
≤ ε1

]
≥ 1− neg(s)

22 / 68

Global Mitigation Security
Def. M is ε0 → ε1 secure for a collection of distributions D if

∀ population distribution D ∈ D

∃ output distribution G ideal
D of functions X → {±1} :

1. Independence of f̃ :

∀ arbitrary f̃ s.t. LD
(
f̃

)
≤ ε0 :

for g ← M f̃ ,D(1s)

TV
(
g , G ideal

D

)
≤ neg(s)

2. Accuracy: for g ideal ← G ideal
D

P
[
LD

(
g ideal

)
≤ ε1

]
≥ 1− neg(s)

22 / 68

Global Mitigation Security
Def. M is ε0 → ε1 secure for a collection of distributions D if

∀ population distribution D ∈ D

∃ output distribution G ideal
D of functions X → {±1} :

1. Independence of f̃ :

∀ arbitrary f̃ s.t. LD
(
f̃

)
≤ ε0 :

for g ← M f̃ ,D(1s)

TV
(
g , G ideal

D

)
≤ neg(s)

2. Accuracy: for g ideal ← G ideal
D

P
[
LD

(
g ideal

)
≤ ε1

]
≥ 1− neg(s)

22 / 68

Global Mitigation Security
Def. M is ε0 → ε1 secure for a collection of distributions D if

∀ population distribution D ∈ D

∃ output distribution G ideal
D of functions X → {±1} :

1. Independence of f̃ :

∀ arbitrary f̃ s.t. LD
(
f̃

)
≤ ε0 :

for g ← M f̃ ,D(1s)

TV
(
g , G ideal

D

)
≤ neg(s)

2. Accuracy: for g ideal ← G ideal
D

P
[
LD

(
g ideal

)
≤ ε1

]
≥ 1− neg(s)

22 / 68

Global Mitigation Security

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈

Mitigator must be more efficient than retraining

23 / 68

Global Mitigation Security

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈
Mitigator must be more efficient than retraining

23 / 68

Global Mitigation Security

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈
Can verify LD

(
f̃

)
≤ ε0 using random samples

24 / 68

Global Mitigation Security

f̃LD(̃f) ≤ ε0 D ∈ D

M

gidealgLD(g) ≤ ε1 ≈
Our only assumption: D ∈ D

25 / 68

Refresher: Fourier Analysis
f : {±1}n → R

f (x) =
∑

S⊆[n] f̂ (S) · χS(x)

⊆ [n]

f̂(S)

S1 S2 · · · S2n

26 / 68

Refresher: Fourier Analysis

τ -Heavy Functions

τ

⊆ [n]

f̂(S)

S1 S2 · · · S2n

27 / 68

Refresher: Fourier Analysis

τ -Heavy Functions

τ

⊆ [n]

f̂(S)

S1 S2 · · · S2n

27 / 68

Refresher: Fourier Analysis

τ -Heavy Functions

τ

⊆ [n]

f̂(S)

S1 S2 · · · S2n

Many interesting functions

27 / 68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for τ -heavy).

f̃LD(f̃) ≤ τ 2 D D is τ 2-close to a
τ -heavy function

M

gidealg ≈LD(g) ≤ τ 2 + ε

Learning is hard due to LPN

28 / 68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for τ -heavy).

f̃LD(f̃) ≤ τ 2 D D is τ 2-close to a
τ -heavy function

M

gidealg ≈LD(g) ≤ τ 2 + ε

Learning is hard due to LPN
28 / 68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for τ -heavy).

f̃LD(f̃) ≤ τ 2 D D is τ 2-close to a
τ -heavy function

M

gidealg ≈LD(g) ≤ τ 2 + ε

Õ
(s

τ2 · ε

)
i.i.d. samples

; poly(n, 1/τ, s) queries to f̃

29 / 68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for τ -heavy).

f̃LD(f̃) ≤ τ 2 D D is τ 2-close to a
τ -heavy function

M

gidealg ≈LD(g) ≤ τ 2 + ε

Õ
(s

τ2 · ε

)
i.i.d. samples ; poly(n, 1/τ, s) queries to f̃

29 / 68

Outline
Introduction

Motivation

Undetectable Backdoors

Observation

Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

30 / 68

Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68

Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68

Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68

Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68

Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)

• Inputs:
◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R

31 / 68

Local Mitigation
Idea:
• Global Mitigation: generate a ‘clean’ version of f̃

• Local Mitigation: generate a ‘clean’ version of f̃ (x∗)

Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y∗ ← M f̃ ,D(x∗, 1s)
• Inputs:

◦ x∗ ∈ X
◦ Oracle access to f̃ : X → R

◦ Random samples from D
◦ Security parameter s

• Outputs prediction y∗ ∈ R
31 / 68

D ≈ε,δ linear

Distributions D on (x , y):

• X ⊆ Rn is bounded and convex

• x ∼ U(X)

• ∃ affine h s.t.

32 / 68

D ≈ε,δ linear

Distributions D on (x , y):

• X ⊆ Rn is bounded and convex

• x ∼ U(X)

• ∃ affine h s.t.

32 / 68

D ≈ε,δ linear

Distributions D on (x , y):

• X ⊆ Rn is bounded and convex

• x ∼ U(X)

• ∃ affine h s.t. P(x ,y)∼D[|h(x)− y | > δ] ≤ ε

32 / 68

D ≈ε,δ linear

Distributions D on (x , y):

• X ⊆ Rn is bounded and convex

• x ∼ U(X)

• ∃ affine h s.t. D ≈ε,δ h

32 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear).

f̃f̃ ≈ε,δ D D D ≈ε,δ linear

M

gidealg ≈g ≈ε, nδ D

33 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear). ∃ local mitigator M s.t.

∀ D ≈ε,δ linear
∃ g ideal : Rn → R :

1. Accuracy: g ideal ≈ε,δ D
2. Independence of f̃ :

∀ arbitrary f̃ ≈ε,δ D :

∀x∗ ∈ X :

P
[∣∣∣M f̃ ,D(x∗, 1s)− g ideal(x∗)

∣∣∣ > nδ
]
≤ neg(s)

3. Efficiency. Uses O(s) queries, independent of n

34 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear). ∃ local mitigator M s.t.

∀ D ≈ε,δ linear
∃ g ideal : Rn → R :

1. Accuracy: g ideal ≈ε,δ D
2. Independence of f̃ :

∀ arbitrary f̃ ≈ε,δ D :

∀x∗ ∈ X :

P
[∣∣∣M f̃ ,D(x∗, 1s)− g ideal(x∗)

∣∣∣ > nδ
]
≤ neg(s)

3. Efficiency. Uses O(s) queries, independent of n

34 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear). ∃ local mitigator M s.t.

∀ D ≈ε,δ linear
∃ g ideal : Rn → R :

1. Accuracy: g ideal ≈ε,δ D

2. Independence of f̃ :

∀ arbitrary f̃ ≈ε,δ D :

∀x∗ ∈ X :

P
[∣∣∣M f̃ ,D(x∗, 1s)− g ideal(x∗)

∣∣∣ > nδ
]
≤ neg(s)

3. Efficiency. Uses O(s) queries

, independent of n

34 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear). ∃ local mitigator M s.t.

∀ D ≈ε,δ linear
∃ g ideal : Rn → R :

1. Accuracy: g ideal ≈ε,δ D
2. Independence of f̃ :

∀ arbitrary f̃ ≈ε,δ D :

∀x∗ ∈ X :

P
[∣∣∣M f̃ ,D(x∗, 1s)− g ideal(x∗)

∣∣∣ > nδ
]
≤ neg(s)

3. Efficiency. Uses O(s) queries

, independent of n

34 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear). ∃ local mitigator M s.t.

∀ D ≈ε,δ linear
∃ g ideal : Rn → R :

1. Accuracy: g ideal ≈ε,δ D
2. Independence of f̃ :

∀ arbitrary f̃ ≈ε,δ D :

∀x∗ ∈ X :

P
[∣∣∣M f̃ ,D(x∗, 1s)− g ideal(x∗)

∣∣∣ > nδ
]
≤ neg(s)

3. Efficiency. Uses O(s) queries

, independent of n

34 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear). ∃ local mitigator M s.t.

∀ D ≈ε,δ linear
∃ g ideal : Rn → R :

1. Accuracy: g ideal ≈ε,δ D
2. Independence of f̃ :

∀ arbitrary f̃ ≈ε,δ D :

∀x∗ ∈ X :

P
[∣∣∣M f̃ ,D(x∗, 1s)− g ideal(x∗)

∣∣∣ > nδ
]
≤ neg(s)

3. Efficiency. Uses O(s) queries

, independent of n

34 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear). ∃ local mitigator M s.t.

∀ D ≈ε,δ linear
∃ g ideal : Rn → R :

1. Accuracy: g ideal ≈ε,δ D
2. Independence of f̃ :

∀ arbitrary f̃ ≈ε,δ D :

∀x∗ ∈ X :

P
[∣∣∣M f̃ ,D(x∗, 1s)− g ideal(x∗)

∣∣∣ > nδ
]
≤ neg(s)

3. Efficiency. Uses O(s) queries, independent of n

34 / 68

Proof Idea

• Why doesn’t traditional linear self-correction work?

• Correlated sampling lemma

• 1-dimensional linear regression

35 / 68

Proof Idea

• Why doesn’t traditional linear self-correction work?

• Correlated sampling lemma

• 1-dimensional linear regression

35 / 68

Proof Idea

• Why doesn’t traditional linear self-correction work?

• Correlated sampling lemma

• 1-dimensional linear regression

35 / 68

Traditional Linear Self-Correction

X ⊆ Rn is convex
36 / 68

Traditional Linear Self-Correction

O

x∗

x∗ ∈ X is arbitrary
37 / 68

Traditional Linear Self-Correction

O

x∗

u

u ∼ U(X)
38 / 68

Traditional Linear Self-Correction

O

x∗

u

x∗ − u

f̃ (x∗) ≈ f̃ (u) + f̃ (x∗ − u)

; But (x∗ − u) ̸∼U(X)

39 / 68

Traditional Linear Self-Correction

O

x∗

u

x∗ − u

f̃ (x∗) ≈ f̃ (u) + f̃ (x∗ − u) ; But (x∗ − u) ̸∼U(X)
39 / 68

Let’s try again...

40 / 68

Correlated Sampling

x∗

x∗ ∈ X ⊆ Rn is arbitrary
41 / 68

Correlated Sampling

x∗

x

x ∼ U(X)
42 / 68

Correlated Sampling

ℓ

x∗

x

43 / 68

Correlated Sampling

ℓ

x∗

x′ x

Want: x ′ d= x

; x , x ′ ∼ U(X) . Sample: x ′ ∼ U(ℓ) ; x ′ ∝ rn−1

44 / 68

Correlated Sampling

ℓ

x∗

x′ x

Want: x ′ d= x ; x , x ′ ∼ U(X)

. Sample: x ′ ∼ U(ℓ) ; x ′ ∝ rn−1

44 / 68

Correlated Sampling

ℓ

x∗

x′ x

Want: x ′ d= x ; x , x ′ ∼ U(X) . Sample: x ′ ∼ U(ℓ)

; x ′ ∝ rn−1

44 / 68

Correlated Sampling

ℓ

x∗

x′ x

Want: x ′ d= x ; x , x ′ ∼ U(X) . Sample: �����x ′ ∼ U(ℓ) ; x ′ ∝ rn−1

44 / 68

1-Dimensional Regression

r

y

x∗

45 / 68

1-Dimensional Regression

r

y

x∗ x′

(x, f̃(x))

46 / 68

1-Dimensional Regression

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

47 / 68

1-Dimensional Regression

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

48 / 68

1-Dimensional Regression

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

49 / 68

1-Dimensional Regression

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

δ 7→ n · δ

50 / 68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ≈ linear).

f̃f̃ ≈ε,δ D D D ≈ε,δ linear

M

gidealg ≈g ≈ε, nδ D

51 / 68

Results for Local Mitigation: Polynomial

Thm 3 (Local Mitigation D ≈ polyd).

f̃f̃ ≈ε,δ D D D ≈ε,δ polyd

M

gidealg ≈g ≈ε, (nd)dδ D

52 / 68

Proof Idea

ℓ

x∗ x1 x2 . . . xd

53 / 68

Advanced Local Mitigation

Recall:

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better?

54 / 68

Advanced Local Mitigation
Recall:

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better?

54 / 68

Advanced Local Mitigation
Recall:

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better?

54 / 68

δ 7→ n · δ

Advanced Local Mitigation
Recall:

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better?
54 / 68

δ 7→ n · δ

Advanced Local Mitigation
Recall:

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better? δ 7→ o(n) · δ?
55 / 68

δ 7→ n · δ

Advanced Local Mitigation
Recall:

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

Question: Can we do better? Error pattern not controlled by Eve?
56 / 68

δ 7→ n · δ

Advanced Local Mitigation
Thm 4 (Advanced Mitigation D ≈ linear). Assume noise in D is
benign.

Then

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

57 / 68

Advanced Local Mitigation
Thm 4 (Advanced Mitigation D ≈ linear). Assume noise in D is
benign. Then

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

57 / 68

1. δ 7→ n0.9 · δ

2. ∀x∗ ∈ X : Ey∗←M f̃ ,D(x∗,1s)[y
∗] = g ideal(x∗)

3. Õ(
√

n) samples and queries

Advanced Local Mitigation
Thm 4 (Advanced Mitigation D ≈ linear). Assume noise in D is
benign. Then

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

57 / 68

1. δ 7→ n0.9 · δ
2. ∀x∗ ∈ X : Ey∗←M f̃ ,D(x∗,1s)[y

∗] = g ideal(x∗)

3. Õ(
√

n) samples and queries

Advanced Local Mitigation
Thm 4 (Advanced Mitigation D ≈ linear). Assume noise in D is
benign. Then

r

y

x∗ x′

(x, f̃(x))

x′

(x′, f̃(x′))

y∗

57 / 68

1. δ 7→ n0.9 · δ
2. ∀x∗ ∈ X : Ey∗←M f̃ ,D(x∗,1s)[y

∗] = g ideal(x∗)

3. Õ(
√

n) samples and queries

Advanced Local Mitigation
Thm 4 (Advanced Mitigation D ≈ linear). Assume noise in D is
benign. Then

f̃f̃ ≈ε,δ D D D ≈ε,δ linear
benign noise

M

gidealg ≈g ≈ε, n0.9 δ D
E[g] = gideal

58 / 68

Proof Idea

r

y

x∗ x′

(x, y, f̃(x))

x′

(x′, f̃(x′))

y∗

59 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:

◦ Global mitigation for Fourier
heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy

◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear

▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

Summary

• Formal definitions of mitigation
security

• Using program-self correction /
random self-reducibility

• Preliminary constructions:
◦ Global mitigation for Fourier

heavy
◦ Local mitigation

▶ Linear
▶ Polynomial

◦ Advanced mitigation

f̃ D

M

gidealg ≈

60 / 68

What we know (a haiku):

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

61 / 68

What we know (a haiku):

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

61 / 68

What we know (a haiku):

Undetectable

backdoors exist.

Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

61 / 68

What we know (a haiku):

Undetectable

backdoors exist. Structure

is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

61 / 68

What we know (a haiku):

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

61 / 68

What we know (a haiku):

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

61 / 68

What we know (a haiku):

Undetectable

backdoors exist. Structure is

the key to defense.

Takeaway (a question):

What other types of structure

can enable mitigation?

61 / 68

Thank You!

62 / 68

Introduction

Motivation

Undetectable Backdoors

Observation

Overview of Contributions

Global Mitigation

Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation

Basic Local Mitigation

Advanced Local Mitigation

63 / 68

References

[BK89] Manuel Blum and Sampath Kannan. Designing
programs that check their work. In Proceedings of the
twenty-first annual ACM symposium on Theory of
computing, pages 86–97, 1989.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld.
Self-testing/correcting with applications to numerical
problems. In Proceedings of the twenty-second annual
ACM symposium on Theory of computing, pages 73–83,
1990.

[GKVZ22] Shafi Goldwasser, Michael P Kim, Vinod
Vaikuntanathan, and Or Zamir. Planting undetectable
backdoors in machine learning models. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 931–942. IEEE, 2022.

64 / 68

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic
encryption & how to play mental poker keeping secret all
partial information. In Proceedings of the fourteenth
annual ACM symposium on Theory of computing, pages
365–377, 1982.

[RR07] Ali Rahimi and Benjamin Recht. Random features for
large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

[Rub90] Ronitt A Rubinfeld. A mathematical theory of
self-checking, self-testing and self-correcting programs.
University of California, Berkeley, 1990.

65 / 68

Appendices

66 / 68

Backdoored Points are a Sparse Set that Covers X

𝜖

∃B ⊆ X ∀x ∈ X ∃x̃ ∈ B : x̃ ≈ x ∧ f (x̃) = −f (x)

Image source: Du, Tu, Yuan, & Tao (2022). Phys. Rev. Lett. 128, 080506 67 / 68

Naïve Local Mitigation for Polynomial Distributions

Question:

• ∃ reduction from polynomial regression to linear regression

• x 7→ (monomials of x1, . . . , xn)

• Mitigation for linear distributions (mostly) independent of
dimension

• So mitigation for polynomial functions is independent of
degree?

• Unfortunately, no

◦ Manifold of monomials is not convex

68 / 68

Naïve Local Mitigation for Polynomial Distributions

Question:

• ∃ reduction from polynomial regression to linear regression

• x 7→ (monomials of x1, . . . , xn)

• Mitigation for linear distributions (mostly) independent of
dimension

• So mitigation for polynomial functions is independent of
degree?

• Unfortunately, no

◦ Manifold of monomials is not convex

68 / 68

Naïve Local Mitigation for Polynomial Distributions

Question:

• ∃ reduction from polynomial regression to linear regression

• x 7→ (monomials of x1, . . . , xn)

• Mitigation for linear distributions (mostly) independent of
dimension

• So mitigation for polynomial functions is independent of
degree?

• Unfortunately, no

◦ Manifold of monomials is not convex

68 / 68

Naïve Local Mitigation for Polynomial Distributions

Question:

• ∃ reduction from polynomial regression to linear regression

• x 7→ (monomials of x1, . . . , xn)

• Mitigation for linear distributions (mostly) independent of
dimension

• So mitigation for polynomial functions is independent of
degree?

• Unfortunately, no

◦ Manifold of monomials is not convex

68 / 68

Naïve Local Mitigation for Polynomial Distributions

Question:

• ∃ reduction from polynomial regression to linear regression

• x 7→ (monomials of x1, . . . , xn)

• Mitigation for linear distributions (mostly) independent of
dimension

• So mitigation for polynomial functions is independent of
degree?

• Unfortunately, no

◦ Manifold of monomials is not convex

68 / 68

Naïve Local Mitigation for Polynomial Distributions

Question:

• ∃ reduction from polynomial regression to linear regression

• x 7→ (monomials of x1, . . . , xn)

• Mitigation for linear distributions (mostly) independent of
dimension

• So mitigation for polynomial functions is independent of
degree?

• Unfortunately, no

◦ Manifold of monomials is not convex

68 / 68

	Introduction
	Motivation
	Undetectable Backdoors
	Observation
	Overview of Contributions

	Global Mitigation
	Definition of Security
	Global Mitigation for Fourier Heavy Functions

	Local Mitigation
	Basic Local Mitigation
	Advanced Local Mitigation

	References

